
Supplementary Material for Learning Optimal Tree Models under Beam
Search

Jingwei Zhuo 1 Ziru Xu 1 Wei Dai 1 Han Zhu 1 Han Li 1 Jian Xu 1 Kun Gai 1

This supplementary material consists of 3 sections: Sec. A introduces PLTs and TDMs in details and illustrates that both of
them share the same training loss formulation; Sec. B proves Proposition 1 and Proposition 3, and derives the computational
complexity of Algorithm 1 in details; Sec. C gives the detailed settings and additional results of experiments.

A. Detailed Introduction of PLTs and TDMs
A.1. Probabilistic Label Trees (PLTs)

PLTs formulate tree modelsM(T , g) as hierarchical probability estimators for the marginal distribution p(yj |x) (Jain et al.,
2016; Wydmuch et al., 2018). In PLTs, the pseudo target zn is defined as zn = I(

∑
n′∈L(n) yπ(n′) ≥ 1), which implies that

zn = 1 if and only if there exists n′ ∈ C(n) such that zn′ = 1. In other words, zn = 1 implies zρ(n) = 1. As a result, for
any n ∈ N , corresponding p(zn|x) can be decomposed as

p(zn = 1|x) =
∏

n′∈Path(n)

p(zn′ = 1|zρ(n′) = 1,x). (A.1)

Therefore, p(yj |x) can be represented as

p(yj |x) = p(zπ−1(j)|x) =
{ ∏

n∈Path(π−1(j)) p(zn = 1|zρ(n) = 1,x), yj = 1

1−
∏
n∈Path(π−1(j)) p(zn = 1|zρ(n) = 1,x), yj = 0

. (A.2)

According to Eq. (A.2), {p(yj |x) : j ∈ I} can be decomposed and represented by {p(zn|zρ(n) = 1,x) : n ∈ N}.
Leveraging this, PLTs transform the original probability estimation problem for p(yj |x) to a series of hierarchical estimation
problems for p(zn|zρ(n) = 1,x), whose corresponding probability estimator is formulated as pg(zn|zρ(n) = 1,x) =
1/(1 + exp(−(2zn − 1)g(x, n))). In other words, g(x, n) is trained as a binary classifier for zn ∼ p(zn|zρ(n) = 1,x).
Given an instance (x,y) ∈ Dtr where Dtr denotes the training dataset, g(x, n) is trained only on the node n ∈ N whose
parent satisfies zρ(n) = 1. As a result, the loss function of PLTs can be denoted as

∑
(x,y)∼Dtr

L(y,g(x)) with

L(y,g(x)) =
∑
n∈N

I(zρ(n) = 1)`BCE(zn, g(x, n))

=

H∑
h=1

∑
n∈Nh

I(zρ(n) = 1)`BCE(zn, g(x, n))

=

H∑
h=1

∑
n∈C(n′)

∑
n′∈Nh−1

I(zn′ = 1)`BCE(zn, g(x, n))

=

H∑
h=1

∑
n∈Sh(y)

`BCE(zn, g(x, n)),

(A.3)

where Sh(y) = {n : n ∈ C(n′), n′ ∈ Nh−1, zn′ = 1} = {n : zρ(n) = 1, n ∈ Nh}.
1Alibaba Group. Correspondence to: Jingwei Zhuo <zjw169463@alibaba-inc.com>.

Proceedings of the 37 th International Conference on Machine Learning, Online, PMLR 119, 2020. Copyright 2020 by the author(s).

Supplementary Materials for Learning Optimal Tree Models under Beam Search

A.2. Tree-based Deep Models (TDMs)

TDMs in the original paper (Zhu et al., 2018) only apply to the restricted case where |Ix| = 1, i.e., there exists only one
target relevant to x. For a training instance (x,y) satisfying

∑
j∈I yj = 1, let j denote the single relevant target (i.e.,

yj = 1), TDMs assign each n ∈ N a pseudo target zn = 1 when n is the ancestor node of π−1(j), and zn = 0 when n is
not the ancestor node of π−1(j). They call n ∈ N a positive sample if zn = 1 and n a negative sample if zn = 0.

According to the notations introduced in Sec. 2.1 of the main body, if n is the ancestor node of π−1(j), the relationship
between n and π−1(j) can be represented as

π−1(j) ∈ L(n)⇔
∑

n′∈L(n)

yπ(n′) ≥ 1, (A.4)

and thus the pseudo target zn defined in TDMs satisfies

zn = I(π−1(j) ∈ L(n)) = I(
∑

n′∈L(n)

yπ(n′) ≥ 1), (A.5)

which coincides with the pseudo target definition of PLTs1.

Unlike PLTs, TDMs formulate tree modelsM(T , g) to estimate p(zn|x) directly via pg(zn|x) = 1/(1 + exp(−(2zn −
1)g(x, n)). More specifically, g(x, n) is formulated as a binary classifier for zn ∼ p(zn|x) instead of zn ∼ p(zn|zρ(n) =
1,x). To guarantee logarithmic computational complexity in training, TDMs leverage the idea of negative sampling, and
constitute the subsample set of negative samples by randomly selecting nodes except the positive one at each level. Let
S−h (y) denote the subsample set of negative samples at h-th level and S+h (y) = {n : zn = 1, n ∈ Nh} denote the set of the
positive sample at h-th level, the training loss of TDMs can be denoted as

∑
(x,y)∼Dtr

L(y,g(x)) where

L(y,g(x)) =

H∑
h=1

∑
n∈S+

h (y)
⋃
S−h (y)

`BCE(zn, g(x, n))

=

H∑
h=1

∑
n∈Sh(y)

`BCE(zn, g(x, n)),

(A.6)

where Sh(y) = S+h (y)
⋃
S−h (y).

By far, we can find out that Eq. (A.3) and Eq. (A.6) follow the same formulation, which explains Eq. (2) in Sec. 3. 2.1 of
the main body. Besides, noticing that both Eq. (A.5) and Eq. (A.6) do not require |Ix| = 1, TDMs can be naturally extended
to multiple relevant targets case by removing the original restriction |Ix| = 1 without changing its training loss formulation.

B. Detailed Derivations
B.1. Proof of Proposition 1

Given the condition in Proposition 1 that Eq. (9) holds for any x ∈ X and any n ∈
⋃H
h=1 B̃h(x) with beam size k, our

proof is divided into two parts: (1) provingM(T , g) is top-m Bayes optimal under beam search when m = k; (2) proving
M(T , g) is top-m Bayes optimal under beam search for any m < k. Notice that proving M(T , g) is Bayes optimal
under beam search can be regarded as the beam size k =M case of our proof, since B̃h(x) = Bh(x) = Nh holds for any
1 ≤ h ≤ H when k =M . Besides, our proof does not rely on the assumption that there are no ties2 among {ηj(x) : j ∈ I}
(that is, for any i, j ∈ I with i 6= j, ηi(x) 6= ηj(x)), which makes our proof more general with the price that argmax and
argTopm operators may have multiple solutions and thus the proof becomes more complex.

1In Eq. (A.5), under the restriction
∑
j∈I yj = 1, an equivalent representation of

∑
j∈I yj ≥ 1 is

∑
j∈I yj = 1.

2This is a common assumption in previous papers, e.g., Lapin et al. (2017).

Supplementary Materials for Learning Optimal Tree Models under Beam Search

B.1.1. PROOF OF THE m = k CASE

Let L(Bh(x)) =
⋃
n∈Bh(x)

L(n) denote the leaf node set of every subtree rooted at n ∈ Bh(x), Eq. (8) in Definition 1, i.e.,
{π(n) : n ∈ BH(x)} ∈ argTopkj∈I ηj(x), can be rewritten as

{BH(x)} = argTopk
n∈BH(x)

ηπ(n)(x) = argTopk
n∈L(BH(x))

ηπ(n)(x) ⊂ argTopk
n∈L(B0(x))

ηπ(n)(x) = argTopk
n∈NH

ηπ(n)(x). (A.7)

In Eq. (A.7), the first equality holds since |BH(x)| ≤ k and thus BH(x) is the unique solution of argTopkn∈BH(x) ηπ(n)(x),
the second equality holds since L(BH(x)) = BH(x), the subset relationship holds since B0(x) contains ancestor nodes of
BH(x) and thus L(BH(x)) ⊂ L(B0(x)), and the last equality holds since B0(x) = {r(T)} and L({r(T)}) = NH .

As a result, Eq. (A.7) can be proved by showing that pruning B̃h(x) \ Bh(x) according to Eq. (3) does not lead to the
retrieval performance deterioration where the top-k targets w.r.t. ηπ(n)(x) among L(Bh(x)) are also the top-k targets w.r.t.
ηπ(n)(x) among NH (i.e., I), i.e.,

argTopk
n∈L(BH(x))

ηπ(n)(x) ⊂ · · · ⊂ argTopk
n∈L(Bh(x))

ηπ(n)(x) ⊂ · · · ⊂ argTopk
n∈L(B0(x))

ηπ(n)(x), (A.8)

which corresponds to showing
argTopk
n∈L(Bh(x))

ηπ(n)(x) ⊂ argTopk
n∈L(Bh−1(x))

ηπ(n)(x), (A.9)

holds for any x ∈ X and any 1 ≤ h ≤ H .

For h such that |Nh| ≤ k, i.e., the number of nodes at h-th level is not larger than k, all nodes at h-th level are regarded as
the beam, which corresponds to Bh(x) = Nh. In this case, |Nh−1| ≤ k also holds, which implies L(Bh(x)) = L(Nh) =
L(Nh−1) = L(Bh=1(x)) and thus Eq. (A.9) always holds for any x ∈ X .

For h such that |Nh| > k and thus |Bh(x)| = k, Eq. (A.9) can be proved by contradiction. Let Vh(x) ∈
argTopkn∈L(Bh(x))

ηπ(n)(x) denote the set of top-k nodes among L(Bh(x)), we assume that there exists x ∈ X such that
Eq. (A.9) does not holds, i.e.,

argTopk
n∈L(Bh(x))

ηπ(n)(x) * argTopk
n∈L(Bh−1(x))

ηπ(n)(x). (A.10)

According to the definition of L(Bh(x)), L(Bh(x)) ⊂ L(Bh−1(x)), which indicates that both Vh(x) and Vh−1(x) are
subsets of L(Bh−1(x)). As a result, Eq. (A.10) holds if and only if∑

n∈Vh−1(x)

ηπ(n)(x) >
∑

n′∈Vh(x)

ηπ(n′)(x). (A.11)

Eq. (A.11) implies that3 Vh−1(x) \ L(Bh(x)) 6= ∅ and there exists n0 ∈ Vh−1(x) \ L(Bh(x)) such that

ηπ(n0)(x) > min
n′∈Vh(x)

ηπ(n′)(x), (A.12)

otherwise
∑
n∈Vh(x) ηπ(n)(x) =

∑
n′∈V′h(x)

ηπ(n)(x).

Let ρH−h(n0) = (ρ ◦ · · · ◦ ρ)(n0) denote the ancestor node of n0 at h-th level, n0 ∈ Vh−1(x) \ L(Bh(x)) implies that
ρH−h(n0) ∈ B̃h(x) \ Bh(x). According to the definition of Bh(x) in Eq. (3), we have

pg(zn = 1|x) ≥ pg(zρH−h(n0)) = 1|x) ≥ ηπ(n0)(x), ∀n ∈ Bh(x). (A.13)

Recall that pg(zn = 1|x) = maxn′∈L(n) ηπ(n′)(x) holds for any n ∈ B̃h(x) according to Eq. (9) of Proposition 1, Eq.
(A.13) can be rewritten as

max
n′∈L(n)

ηπ(n′)(x) ≥ max
n′∈L(ρH−h(n0)))

ηπ(n′)(x) ≥ ηπ(n0)(x), ∀n ∈ Bh(x), (A.14)

where the last inequality holds since n0 ∈ L(ρH−h(n0)).
3Otherwise Vh−1(x) ⊂ L(Bh(x)) which violates that Vh(x) ∈ argTopkn∈L(Bh(x)) ηπ(n)(x).

Supplementary Materials for Learning Optimal Tree Models under Beam Search

According to Eq. (A.14), for any n ∈ Bh(x), there exists at least one n′ ∈ L(n) such that ηπ(n′)(x) =
maxn′∈L(n) ηπ(n′)(x) ≥ ηπ(n0)(x). In other words, let Wh(x) = {n′ : n′ ∈ argmaxn′∈L(n) ηπ(n′)(x), n ∈ Bh(x)} ⊂
L(Bh(x)) denote such nodes, we have |Wh(x)| ≥ k and minn′∈Wh(x) ηπ(n′)(x) ≥ ηπ(n0)(x).

Since Vh(x) denotes the top-k nodes among L(Bh(x)), we have

min
n′∈Vh(x)

ηπ(n′)(x) ≥ min
n′∈Wh(x)

ηπ(n′)(x) ≥ ηπ(n0)(x). (A.15)

It is obvious that Eq. (A.15) contradicts with Eq. (A.12). Therefore, the assumption does not hold and Eq. (A.9) always
holds. By doing so, we have proven that Eq. (A.11) holds for any x ∈ X and 1 ≤ h ≤ H , which indicatesM(T , g) is
top-m Bayes optimal under beam search when m = k.

B.1.2. PROOF OF THE m < k CASE

Them < k case can be proved by reusing the proof of them = k case. To see this, let B(m)
h (x) ∈ argTopmn∈Bh(x)

pg(zn =
1|x) denote the set of top-m nodes w.r.t. pg(zn = 1|x) among Bh(x), which may not be the unique solution since we do
not assume there exists no ties, we introduce a lemma as follows:
Lemma 1. Suppose that a tree modelM(T , g) satisfies Eq. (9) for any x ∈ X and n ∈

⋃H
h=1 B̃h(x) with beam size k. For

any x ∈ X , 1 ≤ h ≤ H , 1 ≤ m ≤ k and B(m)
h (x), there always exists B(m)

h−1(x) such that

B(m)
h (x) ∈ argTopm

n∈B̃(m)
h (x)

pg(zn = 1|x), B̃(m)
h (x) =

⋃
n′∈B(m)

h−1(x)

C(n′). (A.16)

Proof. Eq. (A.16) follows the same formulation as Eq. (3) with the only difference in replacing Bh(x) with B(m)
h .

For h such that |Bh(x)| ≤ m, we have B(m)
h (x) = Bh(x) and thus there always exists B(m)

h−1(x) = Bh−1(x) such that Eq.
(A.16) holds.

For h such that |Bh(x)| > m, since Eq. (9) holds for any n ∈
⋃H
h=1 B̃h(x), we have

pg(zn = 1|x) = max
n′∈L(n)

ηπ(n′)(x) = max
n′∈C(n)

max
n′′∈L(n′)

ηπ(n′′)(x) = max
n′∈C(n)

pg(zn′ = 1|x), ∀n ∈
H⋃
h=1

Bh(x). (A.17)

For any B(m)
h (x) ∈ argTopmn∈Bh(x)

pg(zn = 1|x), since Bh(x) ∈ argTopkn∈B̃h(x)
pg(zn = 1|x), we have B(m)

h (x) ∈
argTopmn∈B̃h(x)

pg(zn = 1|x), i.e., B(m)
h (x) is also the set of top-m nodes among B̃h(x), which is equivalent to

min
n∈B(m)

h (x)

pg(zn = 1|x) ≥ max
n∈B̃h(x)\B(m)

h (x)

pg(zn = 1|x). (A.18)

As a result, let Ah−1(x) = {ρ(n) : n ∈ B(m)
h (x)} ⊂ Bh−1(x) denote the parent node set of B(m)

h (x), we have

min
n∈Ah−1(x)

pg(zn = 1|x) = min
n∈Ah−1(x)

max
n′∈C(n)

pg(zn′ = 1|x)

≥ min
n′∈B(m)

h (x)

pg(zn′ = 1|x)

≥ max
n′∈B̃h(x)\B(m)

h (x)

pg(zn′ = 1|x)

≥ max
n∈Bh−1(x)\Ah−1(x)

max
n′∈C(n)

pg(zn′ = 1|x)

= max
n′∈Bh−1(x)\Ah−1(x)

pg(zn = 1|x).

(A.19)

In Eq. (A.19), the first equality and the last equality holds because of Eq. (A.17), the first inequality holds since4

argmaxn′∈C(n) pg(zn′ = 1|x)
⋂
B(m)
h (x) 6= ∅ always holds for any n ∈ Ah−1(x), the second inequality holds because of

Eq. (A.18), and the last inequality holds since {n′ : n′ ∈ C(n), n ∈ Bh−1(x) \ Ah−1(x)} ⊂ B̃h(x) \ B(m)
h (x).

4Otherwise there exists n ∈ Ah−1(x) such that for any n′ ∈ argmaxn′∈C(n) pg(zn′ = 1|x), pg(zn′ = 1|x) > pg(zn′′ = 1|x)
always holds for any n′′ ∈ C(n)

⋂
B(m)
h (x), which violates Eq. (A.18).

Supplementary Materials for Learning Optimal Tree Models under Beam Search

Now, suppose that A′h(x) denotes the top-(m− |Ah(x)|) nodes among Bh−1(x) \ Ah−1(x), i.e.,

min
n∈A′h−1(x)

pg(zn = 1|x) ≥ max
n′∈Bh−1(x)\Ah−1(x)\A′h−1(x)

pg(zn′ = 1|x), (A.20)

we have |Ah−1(x)
⋃
A′h−1(x)| = m and

min
n∈Ah−1(x)

⋃
A′h−1(x)

pg(zn = 1|x) ≥ max
n′∈Bh−1(x)\Ah−1(x)\A′h−1(x)

pg(zn′ = 1|x), (A.21)

which is equivalent to
Ah−1(x)

⋃
A′h−1(x) ∈ argTopm

n∈Bh−1(x)

pg(zn = 1|x). (A.22)

In other words, there always exists B(m)
h (x) = Ah−1(x)

⋃
A′h−1(x) such that Eq. (A.16) holds. Therefore Lemma 1 has

been proved.

Lemma 1 indicates a nice property ofM(T , g) in Proposition 1: The top-m nodes among Bh(x), i.e., B(m)
h (x), can be

regarded as the generated beam of the top-m nodes among Bh−1(x), i.e., B(m)
h−1(x). Besides, according to the definition

of B(m)
h (x), B(m)

h (x) ⊂ Bh(x) always holds, which implies that Eq. (9) also holds for any n ∈
⋃H
h=1 B̃

(m)
h (x) given

the condition of Proposition 1. Combining these two together, for any x ∈ X , there exists {B(m)
h (x)}Hh=1 satisfying Eq.

(A.16) such that Eq. (9) also holds for any n ∈
⋃H
h=1 B̃

(m)
h (x). Therefore, the top-m Bayes optimality under beam search

of M(T , g) for any m < k can be proved by reusing the proof in Sec. B.1.1 to show that {π(n) : n ∈ B(m)
H (x)} ⊂

argTopmj∈I ηj(x).

Combining the proof of the m = k case and the m < k case, we have proven Proposition 1.

B.2. Proof of Proposition 3

Let pgθ (zn|x) = 1/(1 + exp(−(2zn − 1)gθ(x, n))), the loss function in Eq. (18) of Proposition 3 can be rewritten as

Ep(x,y)
[
L∗θt

(y,g(x);θ)
]

= Ep(x,y)

[
H∑
h=1

∑
n∈Nh

wn(x,y;θt)
(
− ẑn(x;θt) log pgθ (zn = 1|x)− (1− ẑn(x;θt)) log pgθ (zn = 0|x)

)]

= Ep(x)

[
H∑
h=1

∑
n∈Nh

wn(x,y;θt)
(
− Ep(y|x) [ẑn(x;θt)] log pgθ (zn = 1|x)− (1− Ep(y|x) [ẑn(x;θt)]) log pgθ (zn = 0|x)

)]

= Ep(x)

[
H∑
h=1

∑
n∈Nh

wn(x,y;θt)
(
KL
(
p̃gθt (zn|x)‖pgθ (zn|x)

)
+H(p̃gθt (zn|x))

)]
,

(A.23)
where

p̃gθt (zn|x) =
{

Ep(y|x) [ẑn(x;θt)] , zn = 1
1− Ep(y|x) [ẑn(x;θt)] , zn = 0

, (A.24)

and H(p̃gθt (zn|x)) = −p̃gθt (zn = 1|x) log p̃gθt (zn = 1|x) − p̃gθt (zn = 0|x) log p̃gθt (zn = 0|x) denotes the entropy of
pgθt (zn|x). Since H(p̃gθt (zn|x)) can be regarded as a constant term with respect to θ, Eq. (18) can be rewritten as

θt ∈ argmin
θ∈Θ

Ep(x)

[
H∑
h=1

∑
n∈Nh

wn(x,y;θt)KL
(
p̃gθt (zn|x)‖pgθ (zn|x)

)]
. (A.25)

According to the definition of KL divergence, the minimizer of KL
(
p̃gθt (zn|x)‖pgθ (zn|x)

)
satisfies pgθ (zn|x) =

p̃gθt (zn|x). Since G has enough capacity (e.g., infinite capacity with non-parametric limit), such a minimizer can be
obtained in Θ. Therefore, if Eq. (A.25) holds, we have pgθ (zn|x) = p̃gθt (zn|x) when θ = θt for any x ∈ X and n ∈ N .

Supplementary Materials for Learning Optimal Tree Models under Beam Search

For any n ∈ N \ NH , we have

pgθt (zn = 1|x) = p̃gθt (zn = 1|x)
= Ep(y|x) [ẑn(x;θt)]
= Ep(y|x) [ẑn′(x;θt)] , n′ ∈ argmax

n′∈C(n)
pgθt (zn′ = 1|x)

= p̃gθt (zn′ = 1|x), n′ ∈ argmax
n′∈C(n)

pgθt (zn′ = 1|x)

= pgθt (zn′ = 1|x), n′ ∈ argmax
n′∈C(n)

pgθt (zn′ = 1|x)

= max
n′∈C(n)

pgθt (zn′ = 1|x), ∀x ∈ X .

(A.26)

For any n ∈ NH , ẑn(x;θt) = yπ(n) according to Eq. (15), and thus we have

pgθt (zn = 1|x) = p̃gθt (zn = 1|x) = Ep(y|x)
[
yπ(n)

]
= ηπ(n)(x), ∀x ∈ X . (A.27)

Now, assuming that pgθt (zn = 1|x) = maxn′∈L(n) ηπ(n′)(x) holds for any n ∈ Nh+1, for any n ∈ Nh, we have

pgθt (zn = 1|x) = max
n′∈C(n)

pgθt (zn′ = 1|x)

= max
n′∈C(n)

max
n′′∈L(n′)

ηπ(n′′)(x)

= max
n′′∈L(n)

ηπ(n′′)(x).

(A.28)

By doing so, we have proven that pgθt (zn = 1|x) = maxn′∈L(n) ηπ(n′)(x) holds for any x ∈ X and n ∈ N , i.e.,
pgθt (zn|x) = p̃(zn|x) holds for any x ∈ X and n ∈ N . According to Proposition 1, we can conclude thatM(T , gθt

) is
Bayes optimal under beam search.

B.3. Computational Complexity of Algorithm 1

In Algorithm 1, the computational complexity depends on step 4 and step 5, where the former retrieves nodes according to
beam search and the latter estimates the optimal pseudo target for each node retrieved by beam search. Recall that (x,y)
denotes an instance and y ∈ {0, 1}M is an equivalent representation of Ix (the relevant target subset), we analyze the
complexity per instance as follows.

For step 4, there are at most bk nodes needed to be queried at each level according to Eq. (3) and the tree has H levels.
Therefore, its complexity is O(Hbk).

For step 5, according to the definition in Eq. (15), ẑn(x; θ) = 0 always holds if L(n)
⋂
Ix = ∅, i.e., n /∈ S+h (y) for

any h ∈ {1, ...,H}. Therefore, at the h-th level, we only need to compute ẑn(x;θ) for n ∈ B̃h(x;θ)
⋂
S+h (y) and set

ẑn(x;θ) = 0 directly for n ∈ B̃h(x;θ) \ S+h (y). In the worst case, we need to compute ẑn(x;θ) for each n ∈ S+h (y) at
the h-th level, which can be computed recursively in a bottom-up manner. According to Eq. (15), computing ẑn(x;θ) needs
to query the children set C(n) of n ∈ S+h (y), where ẑn′(x;θ) for n′ ∈ C(n)

⋂
S+h+1(y) has been computed while that for

n′ ∈ C(n) \ S+h+1(y) is always zero. As a result, it needs to query |C(n)| ≤ b nodes. Since |S+h (y)| ≤ |Ix| and the tree has
H levels, the complexity of step 5 is O(Hb|Ix|).

To conclude, the computational complexity of Algorithm 1 is O(Hbk +Hb|Ix|).

C. Experiments
C.1. Toy Example

The toy example in Sec. 4.1 investigates the retrieval performance of a tree modelM(T , g) whose pseudo targets are
defined in Eq. (1). Given the training dataset Dtr = {y(i)}Ni=1,M(T , g) is trained to estimate the node-wise probability
of zn directly via pg(zn = 1) =

∑N
i=1 z

(i)
n /N , where z(i)n = I(

∑
n′∈L(n) y

(i)
π(n) ≥ 1). Table 1 showsM(T , g) with such

pg(zn = 1) have non-zero regret in general, which corresponds to the retrieval performance deterioration.

Supplementary Materials for Learning Optimal Tree Models under Beam Search

Table A.1. Results for the toy experiment with M = 1000, b = 2. The reported number is regp@m(M) under different hyperparameter
settings of m, k and N , and is averaged over 100 runs with random initialization over T and ηj .

k m DirEst HierEst OptEst
100 1000 10000 ∞ 100 1000 10000 ∞ 100 1000 10000 ∞

1 1 0.088 0.083 0.079 0.059 0.093 0.078 0.081 0.059 0.009 0.000 0.000 0.000

5 1 0.023 0.013 0.012 0.007 0.021 0.012 0.011 0.007 0.009 0.000 0.000 0.000
5 5 0.073 0.052 0.044 0.032 0.071 0.051 0.046 0.032 0.007 0.000 0.000 0.000

10 1 0.014 0.006 0.004 0.002 0.014 0.006 0.005 0.002 0.008 0.001 0.000 0.000
10 5 0.031 0.019 0.015 0.008 0.031 0.018 0.016 0.008 0.007 0.000 0.000 0.000
10 10 0.064 0.046 0.039 0.023 0.063 0.045 0.039 0.023 0.005 0.001 0.000 0.000

20 1 0.010 0.003 0.002 0.001 0.011 0.003 0.002 0.001 0.009 0.001 0.000 0.000
20 5 0.017 0.008 0.006 0.002 0.017 0.008 0.006 0.002 0.007 0.000 0.000 0.000
20 10 0.028 0.015 0.013 0.006 0.028 0.016 0.013 0.006 0.005 0.001 0.000 0.000
20 20 0.059 0.038 0.033 0.020 0.060 0.039 0.033 0.020 0.005 0.000 0.000 0.000

50 1 0.009 0.001 0.000 0.000 0.009 0.001 0.000 0.000 0.009 0.001 0.000 0.000
50 5 0.008 0.001 0.001 0.000 0.009 0.002 0.001 0.000 0.007 0.000 0.000 0.000
50 10 0.011 0.002 0.001 0.000 0.011 0.003 0.001 0.000 0.005 0.001 0.000 0.000
50 20 0.017 0.005 0.003 0.001 0.017 0.005 0.003 0.001 0.005 0.000 0.000 0.000
50 50 0.042 0.021 0.016 0.011 0.042 0.021 0.016 0.011 0.005 0.001 0.000 0.000

In this subsection, we provide additional experimental results for this toy example. More specifically, we consider three
different methods for building pg(zn = 1), i.e.,

• Direct Estimator (DirEst)5: pg(zn = 1) =
∑N
i=1 z

(i)
n /N , where z(i)n = I(

∑
n′∈L(n) y

(i)
π(n′) ≥ 1) (i.e., Eq. (1));

• Hierarchical Estimator (HierEst): pg(zn = 1) =
∏
n′∈Path(n) pg(zn′ = 1|zρ(n′) = 1) with pg(zn = 1|zρ(n) = 1) =∑N

i=1 z
(i)
n z

(i)
ρ(n)/

∑N
i=1 z

(i)
ρ(n), where z(i)n = I(

∑
n′∈L(n) y

(i)
π(n′) ≥ 1) and z(i)ρ(n) = I(

∑
n′∈L(ρ(n)) y

(i)
π(n′) ≥ 1) (i.e., Eq.

(1));

• Optimal Estimator (OptEst): pg(zn = 1) =
∑N
i=1 z

(i)
n /N , where zn = zn′ with n′ ∈ argmaxn′∈C(n) pg(zn′ = 1)

(i.e., Eq. (15)).

We use the abbreviation DirEst, HierEst and OptEst to denote these three methods. Table A.1 shows corresponding
experimental results. Comparing DirEst and HierEst, we can find that both of them produce similar results for any choices
of k, m and N , which verifies the rationality of only providing results of DirEst in Table 1. Besides, regp@m(M) of both
DirEst and HierEst is non-zero in general6, which is consistent with the results in Table 1. Compared to both DirEst and
HierEst, OptEst achieves much smaller regp@m(M) for any choices of k, m and N . In the ideal case when N = ∞,
OptEst achieves zero regret. These findings verify the correctness of the optimal pseudo target definition in Eq. (13) and the
rationality of its recursive estimation in Eq. (15). For these three methods, a common phenomenon is that given the same m
and N , increasing k leads to smaller regp@m(M), i.e., better retrieval performance. The reason is that a larger beam size k
corresponds to a larger leaf level beam set BH on which the argTopm operator is used to retrieve targets7.

C.2. Synthetic Data

Recall that in Sec. 5.1, we set c = −5 to simulate the practical case when the number of relevant targets is much smaller
than the target set size. In other words, such a c can be regarded as a sparsity controller for the target set. In this subsection,

5The method used in Table 1 corresponds to DirEst.
6regp@m(M) seems to be zero for cases when N =∞, k = 50 and m = 1, 5 or 10. This is because the reported number is rounded

to three decimal places.
7An extreme case is that k =M and N =∞ such that BH = NH , pg(zn = 1) = ηπ(n), respectively. In this case, no matter which

pg(zn = 1) is used, regp@m(M) always equals zero.

Supplementary Materials for Learning Optimal Tree Models under Beam Search

Table A.2. A comparison of r̂egp@m(M) averaged by 5 runs with random initialization under hyperparameter settings M = 1000,
d = 10, |Dtr| = 10000, |Dte| = 1000, k = 50 and various c.

(a) c = 0.

m 1 10 20 50

PLT 0.0008 0.0024 0.0041 0.0150
TDM 0.0005 0.0021 0.0037 0.0148
OTM 0.0006 0.0015 0.0026 0.0088

OTM (-BS) 0.0001 0.0007 0.0019 0.0110
OTM (-OptEst) 0.0007 0.0025 0.0048 0.0139

(b) c = −1.

m 1 10 20 50

PLT 0.0022 0.0056 0.0091 0.0302
TDM 0.0004 0.0024 0.0057 0.0280
OTM 0.0006 0.0021 0.0044 0.0182

OTM (-BS) 0.0002 0.0016 0.0042 0.0242
OTM (-OptEst) 0.0005 0.0023 0.0054 0.0262

(c) c = −2.

m 1 10 20 50

PLT 0.0055 0.0124 0.0189 0.0564
TDM 0.0008 0.0045 0.0111 0.0538
OTM 0.0008 0.0036 0.0082 0.0369

OTM (-BS) 0.0004 0.0033 0.0091 0.0502
OTM (-OptEst) 0.0007 0.0039 0.0097 0.0481

(d) c = −3.

m 1 10 20 50

PLT 0.0145 0.0278 0.0394 0.0978
TDM 0.0013 0.0087 0.0214 0.0919
OTM 0.0008 0.0061 0.0149 0.0648

OTM (-BS) 0.0008 0.0070 0.0183 0.0878
OTM (-OptEst) 0.0011 0.0076 0.0187 0.0826

(e) c = −4.

m 1 10 20 50

PLT 0.0281 0.0542 0.0693 0.1335
TDM 0.0022 0.0139 0.0319 0.1224
OTM 0.0012 0.0093 0.0225 0.0906

OTM (-BS) 0.0012 0.0106 0.0278 0.1183
OTM (-OptEst) 0.0014 0.0116 0.0278 0.1090

(f) c = −5.

m 1 10 20 50

PLT 0.0444 0.0778 0.0955 0.1492
TDM 0.0033 0.0205 0.0453 0.1363
OTM 0.0024 0.0163 0.0349 0.1083

OTM (-BS) 0.0048 0.0201 0.0421 0.1313
OTM (-OptEst) 0.0033 0.0198 0.0418 0.1218

we provide a thorough comparison of PLT, TDM and OTM on the synthetic data with various sparsity of relevant targets.
More specifically, we choose c in {0,−1,−2,−3,−4,−5}, which results in that the ratio of relevant targets per instance
becomes 50.07%, 38.57%, 28.26%, 19.38%, 12.92%, 8.14%, respectively.

Results are shown in Table A.2. We can find that OTM and its variants perform better than PLT and TDM in general. An
interesting phenomenon is the different behaviors of the beam search aware subsampling (BS) and the estimating optimal
pseudo targets (OptEst) on various c. OTM (-BS) has lower r̂egp@m(M) compared to PLT and TDM for all choices of c,
which reflects that OptEst contributes to better performance consistently. By comparing the results between OTM (-OptEst)
and OTM (-BS), we can find that OTM (-OptEst) performs worse than OTM (-BS) when c is large (e.g., c = 0) and OTM
(-OptEst) performs better than OTM (-BS) when c is small (e.g., c = −5), which implies that BS plays different roles
according to the sparsity of relevant targets: When relevant targets are sparse, BS contributes to better performance; When
relevant targets are not sparse, BS negatively affect retrieval performance. Besides, another interesting phenomenon is that
OTM performs the best when m = k, while for the m < k case, OTM may perform worse than OTM (-BS). Since k = 50 is
fixed, the retrieved beam BH(x) is also fixed and the performance for varying m only depends on {g(x, n) : n ∈ BH(x)}.
Therefore, such a phenomenon implies that g(x, n) on the leaf level may not be well trained to preserve the order information
among {ηπ(n)(x) : n ∈ BH(x)}. We’d like to analyze this phenomenon in details for future work.

C.3. Real Data

Table A.3 summarizes the statistics of Amazon Books and UserBehavior datasets.

Preprocessing: In the main body we briefly introduce how to preprocess these two datasets.

Implementation: The node-wise scorer g(x, n) is built as follows: After preprocessing, for each instance (x,y), x ∈ I69
is a 69-dimensional vector where xt (1 ≤ t ≤ 69) denotes the user’s behavior (i.e., the interacted item) at t-th nearest time

Supplementary Materials for Learning Optimal Tree Models under Beam Search

Table A.3. Statistics of Amazon Books and UserBehavior datasets.

Amazon Books UserBehavior

Num. of users 294,739 969,529
Num. of items 1,477,922 4,162,024

Num. of records 8,654,619 100,020,395

Table A.4. Precision@m, Recall@m and F-Measure@m comparison between Zhu et al. (2019) and our implementation, with beam size
k = 400 and m = 200. The percent sign (%) is omitted for each number.

Method Amazon Books UserBehavior
Precision Recall F-Measure Precision Recall F-Measure

HSM Zhu et al. (2019) 0.42 6.22 0.72 1.80 8.62 2.71
Our implementation 0.54 8.04 0.95 2.01 9.52 3.03

JTM Zhu et al. (2019) 0.79 12.45 1.38 3.11 14.71 4.68
Our implementation 0.80 12.60 1.40 3.12 14.75 4.70

w.r.t. the earliest interaction time of item in y ∈ {0, 1}|Ix|. For any n ∈ Nh, x is transformed8 to a level-wise representation
x(n) by replacing xt with xt(n) = ρH−h(π−1(xt)). Both xt(n) and n are embeded to be 24-dimensional continuous
vectors denoted by emb(xt(n)) and emb(n), respectively. According to the time order from near to far, {emb(xt(n))}69t=1

is further split into 10 windows with window size 1, 1, 1, 2, 2, 2, 10, 10, 20, 20, respectively. Then, average pooling is
applied to produce a 24-dimensional vector for each window. Finally, these 10 vectors are concatenated with the node
embedding vector and produces a 264-dimensional vector as the input to the following neural network, which consists of
three fully-connected layers, with 128, 64 and 24 hidden units and Parametric ReLU as the activation function. The tree
hierarchy T is chosen to be the one produced by JTM9 and is shared by all the tree models, including HSM, PLT, JTM and
OTM. By doing so, all the tree models have the same tree hierarchy and the same formulation of node-wise scorers, the
difference of retrieval performance of these models can be attributed to the difference of training algorithms of them, and
thus different tree models can be compared fairly under this setting.

Results: In Table 3 and Table 4 of the main body, the results for YouTube product-DNN
and HSM are produced using codes in https://github.com/alibaba/x-deeplearning/
tree/master/xdl-algorithm-solution/TDM/ and the results for JTM are pro-
duced using codes provided by the supplemental of https://papers.nips.cc/paper/
8652-joint-optimization-of-tree-based-index-and-deep-model-for-recommender-systems.

We also provide additional experimental results for comparing the retrieval performance reported in the original JTM paper
(Zhu et al., 2019) and that in our implementation, which is shown in Table A.4. For JTM, we can find that our implementation
achieves similar results to that reported in the original paper, which verifies the rationality of our implementation. An
interesting observation is that our implemented HSM achieves better results compared to the original one. The reason is that
in our experiment settings, HSM uses the same T and g(x, n) formulation as JTM. While in the original paper, HSM uses a
different T which is built according to category information of raw dataset and g(x, n) does not use the hierarchical user
preference representation.

References
Jain, H., Prabhu, Y., and Varma, M. Extreme multi-label loss functions for recommendation, tagging, ranking & other

missing label applications. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 935–944, 2016.

Lapin, M., Hein, M., and Schiele, B. Analysis and optimization of loss functions for multiclass, top-k, and multilabel
classification. IEEE transactions on pattern analysis and machine intelligence, 40(7):1533–1554, 2017.

8This is called the hierarchical user preference representation, which is proposed in Zhu et al. (2019).
9Recall that JTM optimizes T and g(x, n) jointlty.

Supplementary Materials for Learning Optimal Tree Models under Beam Search

Wydmuch, M., Jasinska, K., Kuznetsov, M., Busa-Fekete, R., and Dembczynski, K. A no-regret generalization of hierarchical
softmax to extreme multi-label classification. In Advances in Neural Information Processing Systems, pp. 6355–6366,
2018.

Zhu, H., Li, X., Zhang, P., Li, G., He, J., Li, H., and Gai, K. Learning tree-based deep model for recommender systems.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
1079–1088. ACM, 2018.

Zhu, H., Chang, D., Xu, Z., Zhang, P., Li, X., He, J., Li, H., Xu, J., and Gai, K. Joint optimization of tree-based index and
deep model for recommender systems. In Advances in Neural Information Processing Systems, pp. 3973–3982, 2019.

