
Appendix A, ACA as an AutoDiff Function in PyTorch Style
Forward (f, T, z0, tolerance):

t = 0, z = z0
state0 = f.state dict(), cache.save(state0)
Select initial step size h = h0 (adaptively with adaptive step-size solver).
time points = empty list()
z values = empty list()
While t < T :

state = f.state dict(), accept step = False
While Not accept step:

f.load state dict(state)
with grad disabled:

z new, error estimate = ψ(f, z, t, h)
If error estimate < tolerance:

accept step = True
z = z new, t = t+ h,
z values.append(z), time points.append(t)

else:
reduce stepsize h according to error estimate
delete error estimate local computation graph

cache.save(time points, z values)
return z, cache

Backward (f, T, tolerance, cache, ∂J
∂z(T ) ):

Initialize λ = − ∂J
∂z(T ) ,

∂L
∂θ = 0

{z0, z1, z2, ...zN−1, zN} = cache.z values
{t0, t1, t2, ...tN−1, tN} = cache.time points
For ti in {tN , tN−1, ..., t1, t0} :

Local forward ẑi = ψ(f, zi−1, ti−1, hi = ti − ti−1)
Local backward

∂L
∂θ ←

∂L
∂θ − λ

> ∂ẑi
∂θ

λ← λ> ∂ẑi
∂zi−1

delete local computation graph
return ∂L

∂θ , λ



Appendix B, Proof of Theorem 3.2
We refer readers to Fig. 2 in the main paper for a graphical interpretation, and Sec. 2.3 for a list of notations.

Lemma 0.1 Suppose f is composed of a finite number of ReLU activations and linear transforms,

f(t, z) = Linear1 ◦ReLU ◦ Linear2 ◦ ... ◦ LinearN (z)

if the spectral norm of linear transform is bounded, then the IVP defined above has a unique solution on a bounded region.

Proof: f does not depend on t explicitly, hence is continuous in t. ReLU (and other activation functions such as sigmoid,
tanh, ...) is uniformly continuous; a linear transform Wz is also uniformly continuous if the spectral norm of W is bounded.
From Picard-Lindelöf Theorem, the IVP has a unique solution on a bounded region.

Flow map Denote ΦTt0(z0) as the oracle solution to the IVP at time T , with the initial condition (t0, z0). Then ΦTt0(z0)
satisfies:

Φt3t2 ◦ Φt2t1 = Φt3t1 (1)

d

dt
Φtt0(z0) = f(t,Φtt0(z0)) (2)

Φtt0(z0) = z0 +

∫ t

t0

f
(
s,Φst0(z0)

)
ds (3)

Variational flow The derivative w.r.t initial condition is called the variational flow, denoted as DΦtt0 , then it satisfies:

DΦtt0(z0) =
dΦtt0(z0)

dz0
, DΦt0t0 = I (4)

DΦt0+ht0 = I +O(h), if h is small. (5)

From Eq. 1 and 5, using the chain rule, we have:

DΦtt0(z0) =
dΦtt0(z0)

dz0
=
dΦtt0+h(Φt0+ht0 (z0))

dΦt0+ht0 (z0)

dΦt0+ht0 (z0)

dz0
= DΦtt0+h +O(h) (6)

Local truncation error Denote the step function of a one-step ODE solver as ψh(t, z), with step-size h starting from
(t, z). Denote the local truncation error as:

Lh(t, z) = ψh(t, z)− Φt+ht (z) (7)

For a solver of order p, the error is of order O(hp+1), and can be written as

Lh(t, z) = hp+1l(t, z) +O(hp+2) (8)

where l is some function of order O(1).

Global error Denote the global error as G(T ) at time T , then it satisfies:

G(T ) = zN − ΦTt0(z0) =

N−1∑
k=0

Rk (9)

where

Rk = ΦTtk+1
(zk+1)− ΦTtk(zk) (10)

= ΦTtk+1

(
Φ
tk+1

tk
(zk) + Lhk

(tk, zk)
)
− ΦTtk+1

(Φ
tk+1

tk
(zk)) (11)



Lemma 0.2 (Approximation of Rk)

Rk = DΦTtk+1

(
Φ
tk+1

tk
(zk)

)
Lhk

(tk, zk) +O(h2p+2
k ) (12)

Lemma 0.2 can be viewed as a Taylor expansion of Eq. 11, with detailed proof in (Niesen et al., 2004).

Lemma 0.3 If Lh(t, y) = O(hp+1), then Gh(T ) = O(hp)

Proof for Lemma 0.3 is in (Niesen et al., 2004).

Plug Eq. 8 and Eq. 6 into Eq. 12, we have

Rk =
[
DΦTtk(zk) +O(hk)

]
Lhk

(tk, zk) +O(h2p+2
k ) (13)

=
[
DΦTtk(zk) +O(hk)

][
hp+1
k l(tk, zk) +O(hp+2

k )
]

+O(h2p+2
k ) (14)

= hp+1
k DΦTtk(zk)l(tk, zk) +O(hp+2

k ) (15)

Plug Eq. 15 into Eq. 9, then we have:

G(T ) =

N−1∑
k=0

Rk =

N−1∑
k=0

[
hp+1
k DΦTtk(zk)l(tk, zk) +O(hp+2

k )
]

(16)

=

N−1∑
k=0

[
hp+1
k DΦTtk(zk)l(tk, zk)

]
+O(hp+1

max) (17)

Global error of the adjoint method If we solve an IVP forward-in-time from t = 0 to T , then take z(T ) as the initial
condition, and solve it backward-in-time from T to 0, the numerical error can be written as:

G(t0 → T → t0) =

Nt−1∑
k=0

[
hp+1
k DΦTtk(zk)l(tk, zk)

]
+

Nr−1∑
J=0

[
(−hj)p+1DΦ

τj
T (zj)l(τj , zj)

]
+O(hp+1

max) (18)

= G(t0 → T ) +G(T → t0) +O(hp+1) (19)

where G(t0 → T ) represents the numerical error of forward-in-time (t0 to T ) solution (discretized at step k, denoted as
zk); and G(T → t0) denotes the numerical error of reverse-in-time solution (T to t0) (discretized at step j, denoted as zj).
G(t0 → T → t0) represents the error in reconstructed initial condition by the adjoint method. Note that generally z does
not overlap with z. The local error of forward-in-time and reverse-in-time numerical integration is represented as l and l
respectively.

Although going backward is equivalent to a negative stepsize, which might cause the second term to have different signs
compared to the first term in Eq. 18, we demonstrate that generally their sum cannot cancel.

For the ease of analysis, we assume the forward and reverse-in-time calculation are discretized at the same grid points, with
a sufficiently small constant stepsize (For a variable-stepsize solver, we can modify it to a constant-stepsize solver, whose
stepsize is the minimal step in variable-stepsize solver. With this modification, the constant stepsize solver should be no
worse than adaptive stepsize solver). Then Eq. 18 can be written as:

G(t0 → T → t0) =

N−1∑
k=0

[
hp+1
k DΦTtk(zk)l(tk, zk)

]
+

N−1∑
k=0

[
(−hk)p+1DΦtkT (zk)l(tk, zk)

]
+O(hp+1

max) (20)

=

N−1∑
k=0

[
hp+1
k DΦTtk(zk)l(tk, zk) + (−hk)p+1DΦtkT (zk)l(tk, zk)

]
+O(hp+1) (21)



If the stepsize is sufficiently small, we can assume

zk = zk +O(h) (22)

DΦtkT (zk) = DΦtkT (zk) +O(h) (23)

l(tk, zk) = l(tk, zk) +O(h) (24)

Assume the existence and uniqueness conditions are satisfied on t ∈ [0, T ], so ΦTt0 defines a homeomorphism, hence:

DΦtkT = (DΦTtk)−1 (25)

Plug Eq. 22 to Eq. 25 into Eq. 21, we have

G(t0 → T → t0) =

N−1∑
k=0

hp+1l(tk, zk)ek +O(hp+1) (26)

ek = DΦTtk(zk) + (−1)p+1(DΦTtk(zk))−1 (27)

Reverse accuracy for all t0 requires ek = 0 for all k. If p is odd, then the two terms in ek are the same sign, and thus cannot
cancel to 0; if p is even, then ek = 0 requires DΦTtk(zk) = DΦTtk(zk)−1 = I , which is generally not satisfied with a trained
network (otherwise the network is an identity function with a constant bias).

In short, solving an IVP from t0 to T with z(0) = z0, then taking z(T ) as initial condition and solving it from T to t0 and
getting z(0), generally z(0) 6= z(0) because of numerical errors.

Appendix C. Proof of Theorem 2.1
In this section we derive the gradient in NODE from an optimization perspective.

Notations With the same notations as in the main paper, we use z(t) to denote hidden states z at time t. Denote parameters
of f as θ, and input as x, target as y, and predicted output as ŷ. Denote the loss as J(ŷ, y). Denote the integration time as 0
to T .

Problem setup The continuous model is defined to follow an ODE:

dz(t)

dt
= f(z(t), t, θ), s.t. z(0) = x (28)

We assume f is differentiable almost everywhere, since f is represented by a neural network in our case. The forward pass
is defined as:

ŷ = z(T ) = z(0) +

∫ T

0

f(z(t), t, θ)dt (29)

The loss function is defined as:
J(ŷ, y) = J(z(T ), y) (30)

We formulate the training process as an optimization problem:

argmin
θ

1

N

N∑
i=1

J(ŷi, yi) s.t.
dzi(t)

dt
= f(zi(t), t, θ), zi(0) = xi, i = 1, 2, ...N (31)

For simplicity, Eq. 31 only considers one ODE block. In the case of multiple blocks, z(T ) is the input to the next ODE
block. As long as we can derive dLoss

dθ and dLoss
dz(0) when dLoss

dz(T ) is given, the same analysis here can be applied to the case
with a chain of ODE blocks.



Lagrangian Multiplier Method We use the Lagrangian Multiplier Method to solve the problem defined in Eq. 31. For
simplicity, only consider one example (can be easily extended to the multiple examples case), then the Lagrangian is

L = J(z(T ), y) +

∫ T

0

λ(t)>[
dz(t)

dt
− f(z(t), t, θ)]dt (32)

Karush-Kuhn-Tucker (KKT) conditions are necessary conditions for a solution to be optimal. In the following sections we
start from the KKT conditions and derive our results.

Derivative w.r.t. λ At optimal point, we have δL
δλ = 0. Note that λ is a function of t, and we derive the derivative from

calculus of variation.

Consider a continuous and differentiable perturbation λ(t) on λ(t), and a scalar ε, L now becomes a function of ε,

L(ε) = J
(
z(0) +

∫ T

0

f(z(t), t, θ), y
)

+

∫ T

0

(λ(t) + ελ(t))>[
dz(t)

dt
− f(z(t), t, θ)]dt (33)

It’s easy to check the conditions for Leibniz integral rule, and we can switch integral and differentiation, thus:

dL

dε
=

∫ T

0

λ(t)
>

[
dz(t)

dt
− f(z(t), t, θ)]dt (34)

At optimal λ(t), dLdε |ε=0 = 0 for all continuous differentiable λ(t).

Therefore,

dz(t)

dt
− f(z(t), t, θ) = 0, ∀t ∈ (0, T ) (35)

Derivative w.r.t z Consider perturbation z(t) on z(t), with scale ε. With similar analysis:

L(ε) = J(z(T ) + εz(T ), y) +

∫ T

0

λ(t)>[
dz(t) + εz(t)

dt
− f(z(t) + εz(t), t, θ)]dt (36)

Take derivative w.r.t ε, it’s easy to check conditions for Leibniz integral rule are satisfied, when f and z(t) are Lipschitz
continuous differentiable functions:

(1) f(z(t), t, θ) is a Lebesgue-integrable function of θ for each z(t) ∈ Rd, since we use a neural network to represent f ,
which is continuous and differentiable almost everywhere.

(2) for almost all θ, ∂f(z(t),t,θ)∂z(t) exists for almost all x ∈ Rd.

(3) ∂f(z(t),t,θ)∂z(t) is bounded by g(θ) for all z(t) for almost all θ.



Then we calculate dL(ε)
d , note that we can switch integral and derivative:

dL

dε
|ε=0 =

∂J

∂z(T )

>
z(T ) +

d

dε

∫ T

0

λ(t)>
[dz(t) + εz(t)

dt
− f(z(t) + εz(t), t, θ)

]
dt (37)

=
∂J

∂z(T )

>
z(T ) +

∫ T

0

λ(t)>
[dz(t)
dt
− ∂f(z(t), t, θ)

∂z(t)
z(t)

]
dt (38)

=
∂J

∂z(T )

>
z(T ) +

∫ T

0

[
λ(t)>

dz(t)

dt
+
dλ(t)

dt

>
z(t)− dλ(t)

dt

>
z(t)− λ(t)>

∂f(z(t), t, θ)

∂z(t)
z(t)

]
dt (39)

=
∂J

∂z(T )

>
z(T ) + λ(t)>z(t)|T0 −

∫ T

0

z(t)
>[dλ(t)

dt
+
∂f(z(t), t, θ)

∂z(t)

>
λ(t)

]
dt (40)

=
∂J

∂z(t)

>
z(T ) + λ(t)>z(T )− λ(0)T z(0)−

∫ T

0

z(t)
>[dλ(t)

dt
+
∂f(z(t), t, θ)

∂z(t)

>
λ(t)

]
dt (41)

=
( ∂J

∂z(T )
+ λ(T )

)>
z(T )− λ(0)T z(0)−

∫ T

0

z(t)
>[dλ(t)

dt
+
∂f(z(t), t, θ)

∂z(t)

>
λ(t)

]
dt (42)

Since the initial condition z(0) = x is given, perturbation z(0) at t = 0 is 0, then we have:

dL

dε
|ε=0 =

( ∂J

∂z(T )
+ λ(T )

)>
z(T )−

∫ T

0

z(t)
>[dλ(t)

dt
+
∂f(z(t), t, θ)

∂z(t)

>
λ(t)

]
dt = 0 (43)

for any z(t) s.t. z(0) = 0 and z(t) is differentiable.

The solution is:
∂J

∂z(T )
+ λ(T ) = 0 (44)

dλ(t)

dt
+
∂f(z(t), t, θ)

∂z(t)

>
λ(t) = 0 ∀t ∈ (0, T ) (45)

Derivative w.r.t θ From Eq. 32,
dL

dθ
= −

∫ T

0

λ(t)>
∂f(z(t), t, θ)

∂θ
dt (46)

To sum up, we first solve the ODE forward-in-time with Eq. 28, then determine the boundary condition by Eq. 44, then
solve the ODE backward with Eq. 45, and finally calculate the gradient with Eq. 46. In fact λ corresponds to the negative
adjoint variable.



Appendix D, Experimental Details
1. Experiments with van der Pol Equation

For experiments with the van der Pol equation, the ODE is defined as:

dy1
dt

= y2 (47)

dy2
dt

= (0.15− y21)× y2 − y1 (48)

with initial condition y1(0) = 2, y2(0) = 0. Experiments are performed in MATLAB with ode45 solver under default
settings. Results are shown as follow:

Figure 1. Results on simulation with van der Pol equation.

2. Experiments on supervised image classification

Experimental settings All experiments were performed with PyTorch 0.4.1 on a single GTX-1080Ti GPU. To generate
Fig. 7 (a) and (b) in the main paper, we trained a NODE18 model for 90 epochs, with the initial learning rate 0.01 and
decayed by a factor of 0.1 at epoch 30 and 60. Training images were augmented with random crop and horizontal flip. For
ACA, we used HeunEuler solver for training, with rtol = 10−2 and atol = 10−2; for the adjoint and naive method, we used
the solver implemented by (Chen et al., 2018) (https://github.com/rtqichen/torchdiffeq), with a Dopri5
solver, setting rtol = 10−5 and atol = 10−5; we tried larger error tolerance (10−2) for the adjoint method, but it led to
divergence during training. Batchsize is set as 128 for ACA and the adjoint method, and 32 for the naive method.

To generate Fig. 7(c) and (d), and Table 3 in the main paper, we trained NODE18-ACA and ResNet with the following
settings: initial learning rate is 0.1, decayed by 0.1 at epoch 30 and 60, total training epoch is 90; batchsize is set as 128.

To generate Table 2 in the main paper, we trained NODE18-ACA for 350 epochs, with initial learning rate 0.1, and decayed
by 0.1 at epoch 150 and 250.

Extra experiments on impact of model depth We performed experiments on CIFAR10 dataset to measure the influence
of model depth. We trained models using the same settings as described above, and tested with different solvers without
re-training.

During test, constant stepsize solvers using different stepsizes are equivalent to different model depths, for example, with
a stepsize of 0.2, the model depth is 5 times deeper than with a stepsize of 1.0 ( 1.00.2 = 5); higher-order solvers evaluates
the function more times than low-order solvers, for example, using the same stepsize, RK4 evaluates 4 times wile RK2
evaluates twice at each step. Adaptive stepsize solvers evaluate the function using a finer grid for smaller error tolerance,
hence a deeper computation graph.

https://github.com/rtqichen/torchdiffeq


Constant Stepsize Solvers Adaptive Stepsize Solvers
stepsize 1.0 0.5 0.2 0.1 rtol / atol 1e-1 1e-2 1e-3

Euler +0.0 +1.14 +3.62 +4.84 HeunEuler +5.32 +6.33 +6.42
RK2 +7.69 +6.43 +6.38 +6.43 RK23 +6.03 +6.31 +6.44
RK4 +5.69 +6.31 +6.30 +6.47 RK45 +6.30 +6.47 +6.46

Table 1. Increase in error rate of a ResNet18 (equivalently, NODE using 1-step Euler method with integration time [0,1]) when tested
with different solvers. When trained and tested with the same method, the error rate is 8.47%, the increase in error rate is 0 as bold fonted.
When tested with different solvers without re-training, the increase in error rate is reported, with a smaller difference represents better
robustness.

Constant Stepsize Solvers Adaptive Stepsize Solvers
stepsize 1.0 0.5 0.2 0.1 rtol / atol 1e-1 1e-2 1e-3

Euler +8.31 +1.57 +0.67 +0.57 HeunEuler +1.29 +0.0 +0.18
RK2 +6.61 +0.57 +0.42 +0.39 RK23 +0.46 +0.07 +0.40
RK4 +1.09 +0.48 +0.39 +0.37 RK45 +1.75 +0.44 +0.16

Table 2. Increase in error rate of a NODE18 when trained using HeunEuler with rtol = atol = 10−2 and tested with different solvers.
When trained and tested with the same method, the error rate is 4.85%, the increase in error rate is 0 as bold fonted. When tested with
different solvers without re-training, the increase in error rate is reported, with a smaller difference represents better robustness.

To sum up, depth of the computation graph is determined by both the stepsize and order for constant stepsize solvers, and
determined by error tolerance and order for adaptive stepsize solvers.

We performed experiments on a ResNet18; equivalently, ResNet18 is NODE18 using one-step Euler solver, with integration
time [0, 1]. We also experimented with a NODE18, trained with HeunEuler solver with rtol = etol = 10−2. Results for
their performance using different solvers without re-training are summarized in Table. 1 and Table. 2.

NODE generally achieves a lower error rate than ResNet (4.85% v.s 8.47% when trained and tested using the same method).
Ignoring the absolute value of error rate, to measure the robustness to solvers, on the same model, we focus on the increase
in test error rate using different methods compared to using the same method as training.

For ResNet, when tested with different solvers, most results have a ∼ 7% increase in error rate; for NODE when trained
with HeunEuler with rtol = 10−2, and tested with different methods, most results have a ∼ 1% increase in error rate. This
results show that training as ResNet is sensitive to model depth during test; while training as NODE with adaptive solvers
are robust to different solvers (hence different model depth) during test.

3. Experiments on time-series modeling with irregularly sampled data

We performed experiments using the official implementation by (Rubanova et al., 2019) (https://github.com/
YuliaRubanova/latent_ode). All models are trained for 300 epochs on the Mujoco dataset provided by (Rubanova
et al., 2019). For the ease of visualization, we plot the test MSE curve for epochs 0-100.

Figure 2. 10% training data Figure 3. 20% training data Figure 4. 50% training data

https://github.com/YuliaRubanova/latent_ode
https://github.com/YuliaRubanova/latent_ode


4. Experiments on the three-body problem

We summarize the training details in the following table. All models are trained with Adam optimizer. Learning rate
schedule is:

lr = InitialLR× decayepoch (49)

For all LSTM models, initial learning rate is 0.01 with a decay of 0.999, trained for 5,000 epochs; all NODEs are trained
with initial learning rate 0.1 for 100 epochs, with decay 0.99. We set a much larger epoch and smaller learning rate for
LSTM, because we found in practice the training of LSTM is much harder to converge. For adjoint and naive method,
we use Dopri5 solver by (Chen et al., 2018) with rtol = atol = 10−5; for ACA, we implemented Dopri5 solver with
rtol = atol = 10−5.

We simulate a 3-body system with unequal mass and arbitrary initial condition, use time range [0,1] year for training, and
measure the mean MSE of trajectory on [0,2] years. Training data has 1,000 equally sampled points, cut into sequences of
20 points as input to LSTM models. During inference, 1 initial point is fed to NODE and ODE, and first 10 points are fed to
LSTM. Results are shown in figures below and videos in the supplementary material, with numerical measures in the main
paper.

LSTM LSTM-aug-input NODE ODE
adjoint naive ACA adjoint naive ACA

Epoch 5,000 5,000 100 100 100 100 100 100
InitialLR 0.01 0.01 0.1 0.1 0.1 0.1 0.1 0.1

decay 0.999 0.999 0.99 0.99 0.99 0.99 0.99 0.99

Table 3. Training details for the three-body problem

Figure 5. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results for
LSTM model.



Figure 6. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results for
LSTM-aug-input.

Figure 7. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results for
NODE-adjoint.

Figure 8. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results for
NODE-naive.



Figure 9. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results for
NODE-ACA.

Figure 10. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results
for ODE-adjoint.

Figure 11. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results
for ODE-naive.



Figure 12. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results
for ODE-ACA.

More results of ODE-ACA with different initial conditions

Figure 13. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results
for ODE-ACA.



Figure 14. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results
for ODE-ACA.

Figure 15. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results
for ODE-ACA.

References
Chen, T. Q. et al. Neural ordinary differential equations. In Advances in neural information processing systems, pp.

6571–6583, 2018.

Niesen, J. et al. On the global error of discretization methods for ordinary differential equations. In Citeseer, 2004.

Rubanova, Y. et al. Latent ordinary differential equations for irregularly-sampled time series. In Advances in Neural
Information Processing Systems, pp. 5321–5331, 2019.


