Supplementary material for the paper: ’Linear Convergence of Randomized
Primal-Dual Coordinate Method for Large-scale Linear Constrained Convex
Programming”

First of all, we have the following observations:

In algorithm RPDC, the indices i(k), k = 0,1,2,... are random variables. After k iterations, RPDC method gener-
ates a random output (u*+1 pF*1). Recall the definition of filtration Fj, which is generated by the random variable
i(0),4(1),...,i(k), ie.,
def . . .
Fr M 1i(0),iQ), .. i(k)}, Fr © Fg.

Additionally, F = (F)ken, Ex,,, = E(:|F%) is the conditional expectation w.r.t. F} and the conditional expectation in
term of i(k) given i(0),i(1),...,i(k — 1) as E;().

Knowing Fj,—1 = {i(0),4(1),...,i(k — 1)}, we have:
1

1
Eick) (Vi Gu®), (uF — u)i)) = NWG(UIC),U’C —u) > i [G(uF) — G(u)], (A.1)
1
Eitky [Jick) (Whiny) = Jigiy (wir))] = N [J(uF) = J(w)], (A.2)
and
1
Ei(k)<qk, Ai(k)(uk —U)i(k)) = N<qk7 A(ub — ). (A.3)

Secondly, reconsidering the point T'(w*) = (T,,(w*), T,,(w*)) generated by one deterministic iteration of APP-AL (Cohen
& Zhu, 1984) for given w”,

APP-AL
Tu(wk) = arg mig(VG(uk)ﬂﬁ + J(u) + <qk, Au) + %D(u,uk);
ue
Tp(wk) =pF 4+~ [ATu(wk) — b] ,

with ¢* = p* + v(Au* — b), we have the following observations. The convex combination of u* and T}, (w") provides the

expected value of u**! as following.
By ubt! = =T (W) + (1 — i)u’c (A.4)
i(k) N N ) .
or
T (wh) = NE;u*t — (N — 1)ur. (A.5)

Moreover, the point 7'(w") satisfies that: for any (u,p) € U x R™,

(VG(uF),u— Tu(w)) + J(u) — J(Tu(w")) + (¢*, A(u — Ty (w*)))
+ VK (T, (wh)) — VK (ub),u — T, (wk)) > 0, (A6)
v [AT (w*) — b] = T, (w*) — p*.
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1. Proof of Lemma 1

Proof. Take w' = w* in (9), we have that

* * € * |12 E(N B 1) * k €(N - 2)7 2
= _ — _— — _— A —
Mwu) = D)+ gl =P+ ) - )+ LD -
_ * € %2 €(N - 1) *®\ * % G(N - 1) o _
= D)+ gt =1+ L) - L)+ L - g -
e(N —2)y 2

(i) Since L(u,p*) — L(u*,p*) > 0 and %Hp —p* |12 + 2| Au — b]|? + (p — p*, Au— b) > 0, (A.7) follows that

€ e(N —1)
A Y > D(u* - k12 S\ )

* |2 €y 2
o2 = o Au— b2,
llp = p*II* = 57 llAu = bl
From Assumption 2, we have D(u*,u) > 5lu — u*||?. Together with the fact Au* = band p < 521, above

2N—1°
inequality follows that
A(w7 w*) > dy ||’UJ - w*”Qa

with d; = min {Q%V[Nﬂ — Y Amax (AT A)], ™ }

(i) By Young’s inequality, (A.7) follows that

€ e(N —1)
* < * _ a*2 *\ * %
Mww) < D)+ gl =1+ LD ) - L)
e(N-1) 1 5 Y 9 €(N —2)y 9
- —|lp —p* ~||Au —b —— || Au — bl|“.
S g2 w4 Ly

From Assumption 2, we have D(u*,u) < £|lu — u*||%. Together with the fact Au* = b and 2y > (2N — 1)p, above
inequality follows that

N -1
Alw, w*) < dol|w — w*||* + %[L(u,p*) — L(u*,p")],
— € € - max T
with d; = max { (i;lvj\igj)vp’ NB+e(2N 33\7)‘ (4 _4) }
(iii) By the definition of A(w,w’), we have
e(N -1 .« e(N —2)y
Aw) > D) - pwe )+ 27w
e(N -1 . e(N -1 . - e(N —2)y
= ) - 2 + D ) - 2wt 5]+ 2 a2
N -1 N -2
> WD) - s+ C 2wy
_ €<N B 1) * €<N B 2)7 2
= T@ p* Au—1b) + N [|[Au — b]|
> —dsllp—p"|%, (A8)
. e(N—1)2
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2. Proof of Lemma 2

Proof.  Step 1: Estimate ;) [L(u’”l, q*) — L(u, qk)];
For all u € U, the unique solution u**! of the primal problem of RPDC is characterized by the following variational
inequality:

<vi(k)G(uk)’ (UkH - u)i(k)> + Jz‘(k)(uf(:)l) - Ji(k) (ui(k)) + <qk7 Az‘(lc)(ukJrl - u)i(k)>
+%<VK(uk“) — VK (uF), u* 1t —u) <0,
which follows that
(Vi G(u®), (u" = — (u* —a*h)), )+ Tig (W) — Jiow (wicry) — (i (W) = Jigw (wighy))

1
+(q", Ayry (U —u — (u" — ukﬂ))i(k)} + E(VK(ukH) — VK (uP), u* T —u) <0. (A9)

Observing that for any separable mapping v (u) = g:lwi (u;), we have wi(k)(uf(k)) — ik (uf(z)l) = p(uf) — P(uFt).
i=
Therefore, (A.9) follows that
(Vi G(uF), (¥ = w)igy) + Jige) (i) = Jigey (wacry) + (¢, Aigry (u® — )iy
< (VG(@F),ub — bt 4 J(Wh) — T 4 (g8, Ak — ub )
+%<VK(UI€+1) — VK (uF),u — u*t1). (A.10)
Taking expectation with respect to ¢(k) on both side of (A.10), together the condition expectation (A.1)-(A.3), we get

%[L(uk,qk) — L(u, qk)] < Ei(k){<VG(uk),uk — ukH} + J(uk) — J(ukH)

+{g", A(uf — ) 4 %(VK(ukH) — VK (u"),u— uk+1)}. (A.11)

or
1 X
~ itk (L, ¢%) = L(u, ¢")] < Ei(k){ (VG(uF),uf —u") +J (") — J(utT)
ay
1
" At = ™) + F[LWM ) - Lu®, ")
1
+ (VK uM) = VK (u), u — u**h) } (A.12)
€
az
By the gradient Lipschitz of G, term a; in (A.12) is bounded by
B
a = (VG(uF), ub — ") < GuF) — GuP ) + 7G||uk — k2, (A.13)

The simple algebraic operation and Assumption 2 follows that

az = %(VK(uk'H) — VK@), u— o)y = —[D(u,u") — D(u,u""") — D", u")]

A==

< Zluf =2 (AL14)

Combining (A.12)-(A.14), we obtain that

€
NEi(k) [L(u*,¢") — L(u,q")] < [D(u,u*) = E;yD(u,u* )] + Ei(k){

—€eB
Bz Bay e )
2
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Since p**t1 = pk + p(AuFtl —b) and ¢* = p* + v(Au* — 1), term a3 in (A.15) follows that

as = L(uk7qk) - L(uk+17 qk)
= L(uF,p*) — L p" ) + (g7 — pF, AuP — b) + (" — ¢F, AP —b)
= L) = L ) At B2 pl Autt < b = (At — b, AuFH )
: Y Y Y
= LR pb) = L) + DA = b 4 (o — D)l Aet - bl 4 DAt - a2
) vy Y
< LG, ph) = L)+ D aut < bl + (o - D))ttt — )
Amax (AT A
+’Y 2( )”uk: _ uk+1”2. (A.16)

Combining (A.15)-(A.16), we have that

€ e(N -1
N]Ei(k) [L(uk“7 qk) — L(u, qk)} < [D(u, uk) — Ei(k)D(u,ukH)} + Ei(k){(N) [L(uk,pk) — L(ukH,PkH)]

— €| B, Nl pax (AT A N -1 )
_6 6[ G+ ~N ) ( )] ”uk _ uk+1||2 + 67( )”Auk _ b||2

2 2N

€2p—7)(N - 1) E+1 72
+ N [l Au bl (A.17)

Step 2: Estimate <E; () [L(uFt1,p) — L(uF*1, ¢%)]

L' p) = L, ¢") = (p—q", Al —b)
1
= —(p—pF P = pF) — oy (AuF — b, AUt —b)
1
= 27[) [Hp _pk”Q _ ||p _pk+1||2 + ”pk _pk+1||2] _ 7<Auk — b, AuFtt — b>
! g
= 2*/) [Hp _pk”2 — ”p _pk+1||2 + ”pk _pk+1||2] + §|‘A(uk _ uk+1)||2

— 3l Au® = b2 = T Autt — b

—1 v
= o [l = P17 — llp = #5712 — w2
p
_%HAu’f — b2 + %HAMH — b2 (since p**1 = pF + p(AuF+! — b))
71 ry)‘max ATA
< 2 [Hp_pk”Z _ ||p_pk+1||2] +%Huk _uk+1”2

Tk b+ LY Ak ) (A18)

Multiply + on both side of above inequality, we obtain that: Vp € R™

1 T
€ € 6*”Y)‘maX(A A)
E LR o) — L(uk+. gk < R 2 {1y k12 N E_, k+1)2
N L@ p) = Lt )] < gl = I e = 2] 5 lu® — ™
& k702 €(p—1) k+1 72
—2N||Au bl +72N | Aw b= (A.19)
Taking expectation with respect to i(k) on both side of inequality (A.19), we have
1 T
€ € . E*")/)\max(A A)
NEi(k) [L(uk-H,p) _ L(uk—i_l,qk)} < 2Np [Hp _ pkHQ _ ]Ei(k)Hp _ pk+1||2] + N 5 ]Ei(k)Huk _ uk+1||2

€7y € -
—ﬁHAuk —b|)* + %Ei(k)||,4u’““ —b||% (A.20)
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Step 3: Estimate the variance of A(w*, w).

B—e[Bg+yAmax (A A)] e[2v—(2N—1)p]
2 ’ 2N

min

, we have that

Summing inequalities (A.17) and (A.20), with dy = e [NZT27 2 (NZF2) nman (AT AY 92T

A(wkvw) z(k:)A( k+1 ’LU)

5 - E[BG + ’y)‘max(ATA)]
2

v

[L(Ukﬂap) - L(Uqu)} + u* —u

E;
(k) 2N

[L(u*T!, p) — L(u, ¢")] + da[(N? + 292 (N? + 2)Amax (AT A)) [[u¥ — uF T2 4 492 AP — b||2]}

vV
=
=z
— =
=k

k+1||2 + 6[27 — (2N - ]-)p] ||Auk+1 o bHQ}

€
z By (L p) = L(u, ¢")] + da (1429 Amax (AT A)) N2[JuF — a2 4 42 (| A(u® — o™ Y)|2 + [[Au®T = b]|?]] }
€ )
> By [L(u",p) — L(u,q")] + da[ (1 + 29 Amax (AT A)) N?[Ju¥ — «* |2 4 292 (| Au® — b)|?] }
€
= B [L(u",p) — L(u,q")] + da[ (1 + 29 Amax (AT A)) N2E; ) |Ju” — T2 + 292 AuF —b]%].

By Jensen’s inequality, (A.21) follows that

€ )
A(wkﬂﬂ) - Ei(k)A(wk+1a w) > NEi(k) [L(UkH?p) — L(u, qk)]

+da[ (14 27 Amax(ATA)) N2 [|uF — Eju T2 + 297 || Au® - b]|?](A22)

1 k _

Since E;(ju" ™! — ub = LT, (w*) — u*] in (A.4), (A.22) yields that

z|=

€
A(wk7 w) - Ei(k)A(warlv U}) > 7Ez(k) [L(’U,k+1,p) - L(u7 qk)]

N
+da [ (1427 Amax (AT A)) [Ju¥ — T, (wh)]12 + 292 (| Au” — b]?]. (A23)

Since Amax (AT A)|Juk — T, (w*)||> > || Alu® — T, (w*)]||? and T, (w*) — p* = y[AT, (w*) — b], (A.23) follows that
A w) = g At w) > %Ei(k)[ (u*,p) = L(u, ¢")]
Hdy[[|u = Ty (w®) |2 + 292 Afu® — T (w*)] 1 + 297 Au® — b]?]
> %Ei(k)[l/( uPthp) = L(u, ¢°)] + da[[|u® = Tu(w®)|? + 7| AT, (w"*) - b]|?]
> B (LM p) — L gh)] + daflut (b))

Then we have the result of Lemma 2. O

(A21)
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3. Proof of Theorem 1 (Almost surely convergence)

Proof.

(i) Take w = w™ in Lemma 2, we have
* * € * *
A, w") > B A, w") + FEigy [L(u™,p") = Lu", ¢*)] + dallw® = T(w")[%, (A.24)

Observe that L(u**1, p*) — L(u*, ¢*) > 0. From statement (i) of Lemma 1, we have that A(w*,w*) is nonnegative.
By the Robbins-Siegmund Lemma (Robbins & Siegmund, 1971), we obtain that . lim  A(w",w*) almost surely exists,
—+00

“+o0
3wk — T(wk)||? < +o0 as..
k=0

(i) Since X lim A(w”,w*) almost surely exists, thus A(w”, w*) is almost surely bounded. Thanks statement (i) of Lemma
—+o0

1, it implies the sequences {w*} is almost surely bounded.
(iii) From statement (i) we have that

lim [|w® —T(w")|| =0 as..
k—o0

By variational inequality system (A.6), we have that any cluster point of a realization sequence generated by RPDC
almost surely is a saddle point of Lagrangian for (P).

4. Proof of Theorem 2 (Expected primal suboptimality and expected feasibility)
Proof.

(i) Let h(w,w') = A(w,w') + %L A(w, w*). By statement (i) and (iii) in Lemma 1, we have h(w,w’) > 0. From Lemma

dy
2, we obtain that

€
]Ei(k)ﬁ [L(uk+1,p) — L(u, qk)] < A(wk,w) _ Ei(k)A(wk+1, w)

Taking expectation with respect to F;, t > k for above inequality, we obtain that
%]E;t [L(u*,p) — L, ¢%)] < Ep [A(w”,w) — A(w* !, w)]. (A.25)
Take w = w* in (A.25), we obtain
0 < Ex, [A(w®, w*) — A(w*t w*)). (A.26)
By the combination of (A.25) and (A.26), it follows
SEr LW, p) = L(u,¢")] < Bz [h(w¥, w) — (@ w)] (A27)

From the definition of @; and p;, we have @, € U and p, € R™. From the convexity of set U, R and the function
L(v',p) — L(u,p') is convex in u’ and linear in p/, for all u € U and p € R™, we have that

Er, [L(ﬂnp) - L(u,ﬁt)] < EEH% Z [L(uk+17p) ~ L(u, qk)] <
k=0

Nh(w®, w)

e(t+1) (A28)



Supplementary material for the paper: ”’Linear Convergence of RPDC Method for Large-scale LCCP”

(i) If Ex,||Aa; — b|| = 0, statement (ii) is obviously. Otherwise, Ex,| At — b|| # 0 i.e., there is set W such that

P{w € W|||Aa; — b|]| # 0} > 0. Let p be a random vector:
X 0 weWw
P = { —ﬁ&iﬁ;? weW.
Noted that for w ¢ W, we have p(w) = 0 and || A, — b|| = 0. Thus
(p(w), Aty — by = M || Au; — b|| = 0.
Otherwise, for w € W, we have that
(p(w), Aty — b) = M|| At — b]|.
Together (A.30) and (A.31), we have
(b, Auy — b) = M|[Auy — b]|
Moreover, since Au* = b, we have
Ly, p) — L(u*,pr) = F(ur) + (p, Aug — b) — F(u*) = F(ay) — F(u”) + M| Aug — b]|.
Moreover, by taking u = i, in the right hand side of saddle point inequality, we have
F(a) — F(u") = —=(p", Aug — b) = —||p" ||| Aay — b]|.
Combine (A.33) and (A.34), we have that
L(ut,p) — L(u*, pr)
(M —lp*1)
Take expectation on both side of above inequality, we have that
Er [L(u, p) — L(u®, pr)]
(M —[p*I) -

|Aa, —b|| <

Nh(w®, (u*, p))
(M — |lp*[|) e(t + 1)
Nds
(M — [lp*[|) e(t + 1)

Er, || Aw; - bl <

Er,

(by (1))

Ex,

where d5 = sup h(w?, (u*,p)).
llpll<M

(iii) Again from (A.33), (A.34) and statement (ii), statement (iii) is coming.

5. Proof of Lemma 3
Proof.
(i) This statement directly follows from the definition of ¢(w, w*) and statement (i) in Lemma 1.
(ii) This statement directly follows from the definition of ¢(w, w*) and statement (ii) in Lemma 1.
(iii) By the definition of ¢(w, w™*), we have that.
p(w®, w*) — By d(w* 1, w*)
€ €

= AR ) = B { AR ) 4 ) - L] - Lt ) - L)

(A.29)

(A.30)

(A31)

(A.32)

(A.33)

(A.34)

(A.35)

* * € * * * € * *
> A(’LUk71_U )_Ei(k:){A(wk+1’w )+N[L(ukap )—L(U » D )]_N[L(uk+17p )—L(’LL 7qk)]}
(by the definition of saddle point.)
€
> dafllw® = T(w")|* +  [Lu*,p") = Lu", p")]. (by Lemma 2)

O
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6. Proof of Theorem 3 (Global strong metric subregularity of / (w) implies linear convergence
of RPDC)

Proof. Considering the reference point 7'(w") associated with given point w”, we have that

0 € VG(u*) + 0J(T,(w*)) + AT¢" + L [VK (T, (w")) — VK (uF)] + Nu(Tu(w"))
AR o Y (A36)
Thus
U(T(wk)) _ ( g?;(kTu(;Uj:()i;)]VG(uk) + AT(Tp(wk) - qk) + % [VK(uk) - VK(TU(wk))] ) c H(T(wk)).
From Assumption 1 and 2, there is 6 > 0 such that
[o(T (w*))||* < 6]|w” — T (") (A.37)
Since H(w) is global strong metric subregular at w* for 0, then
1T (w") = w*|| < edist(0, H(T(w"))) < c|lo(T(w*))]| < eVélw* — T (w")]. (A.38)
Since ||wk — w*|| < | T(w*) — w*|| + ||w* — T(w*)||, we have
[w® —w*|| < (v + 1)[|wk — T(w")]]. (A39)

From statement (iii) of Lemma 3, we have that

* * € * * %
P(w", w*) = By d(w™H w*) > dafw® = T(w®)|?* + N[L(ukm ) — L(u”, p")]
d

4 k * (12 € k _* * *
> — " —w + —[L(u”, — L(u", (by (A.39))
(c\/5+1)2” 17+ 7 [L(u®,p") = L(u", p")] y
> §{dafw® —w*|® + e[L(u",p*) — L(u*,p")]}
> o(w®,w). (by (i) of Lemma 3) (A.40)
. d 1
where ¢’ = min{ max{dg(cx/gil)z’,d4+1}’ ~g1) < L. It follows that
Ei(k)gb(warl,w*) < aqﬁ(wk, w™). (A41)
where « = 1 — ¢’ € (0, 1). Taking expectation with respect to Fj41 for above inequality, we obtain that
Erpp, ¢(w w') < oo, w). (A42)
O

7. Proof of Corollary 1 (R-linear rate of the sequence {Ez, w"})

Proof. By statement (i) in Lemma 3, we have that ¢(w, w*) > d; ||w — w*||2. By Theorem 3, we have that
Ex, o(u*, w7) < a*¢(u®, w").

Then we have that

k 0 %
Er, |w* — w*|? < atP(w’, w”)
dy
By convexity of || - ||? and Jensen’s inequality, we obtain that
N N 0 q*
[Ex,w* —w*| < M(va)* with M = w.
1

This shows that the sequence {Ex, w*} converges to the desired saddle point w* at R-linear rate; i.e.,

lim sup /| Ex,w* — w*| = ya < 1.
k—o00
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8. Proof of Proposition 1

Proof. By the piecewise linear of H (w) and Zheng and Ng (Zheng & Ng, 2014), we have that H(w) is global metric
subregular at w* for 0. Since @ is positive-definite, then problem (SVM) has unique solution «*. Hence, to show H (w) is
global strongly metric subregular, we need to prove uniqueness of the Lagrangian multiplier for (SVM). Suppose their are
two multipliers p and p’, thus we have

0€ Qu* — 1, +py + Njg,qn (u*)
0€ Qu* — 1, +p'y+Njggn(u*)

Since there exists at least one component u; of optimal solution u* satisfies 0 < u; < ¢, then §; = N{g () (u;) = 0. Thus,
we have that

Qv —1+yip=0
{ Qiu* —1+yp' =0 (4.43)

We conclude that p = p’. Therefore H(w) is global strongly metric subregular. ]

9. Proof of Proposition 2

Proof. By the piecewise linear of H (w) and Zheng and Ng (Zheng & Ng, 2014), we have that H(w) is global metric
subregular at w* for 0. Since X is positive-definite, then problem (MLP) has unique solution u*. Hence, to show H (w) is
global strongly metric subregular, we need to prove uniqueness of the Lagrangian multiplier for (MLP). Suppose their are
two pare of multipliers (p1, p2) and (p}, p}), thus we have

0€ Xu*+ >\8||U*H1 +pip+ p2ly,
0 € Zu* + A0||u*||1 + pip + phl,

Since uf # 0, uj # 0, thus §; = Olu;| and ; = OJuj| are single valued and we have

Yiu* + A + pipr +p2 =0
A.44
{ Siu” + A& + i) +ph = 0 (A4

Yjut 4+ A 4 pipr +p2 =0
A.45
{ Yijut 4+ A+ piph +p5 =0 (A45)

It follows that
pi(p1 —py) +p2 —py =0

A.46
{ pj(p1—p1) +p2 —py =0 (A.40)
Since p; # p;, we conclude that p; = p) and py = p). Therefore H(w) is global strongly metric subregular. O
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