
Supplementary material for the paper: ”Linear Convergence of Randomized
Primal-Dual Coordinate Method for Large-scale Linear Constrained Convex

Programming”

First of all, we have the following observations:

In algorithm RPDC, the indices i(k), k = 0, 1, 2, . . . are random variables. After k iterations, RPDC method gener-
ates a random output (uk+1, pk+1). Recall the definition of filtration Fk which is generated by the random variable
i(0), i(1), . . . , i(k), i.e.,

Fk
def
= {i(0), i(1), . . . , i(k)},Fk ⊂ Fk+1.

Additionally, F = (Fk)k∈N, EFk+1
= E(·|Fk) is the conditional expectation w.r.t. Fk and the conditional expectation in

term of i(k) given i(0), i(1), . . . , i(k − 1) as Ei(k).

Knowing Fk−1 = {i(0), i(1), . . . , i(k − 1)}, we have:

Ei(k)〈∇i(k)G(uk), (uk − u)i(k)〉 =
1

N
〈∇G(uk), uk − u〉 ≥ 1

N

[
G(uk)−G(u)

]
, (A.1)

Ei(k)

[
Ji(k)(u

k
i(k))− Ji(k)(ui(k))

]
=

1

N

[
J(uk)− J(u)

]
, (A.2)

and

Ei(k)〈qk, Ai(k)(u
k − u)i(k)〉 =

1

N
〈qk, A(uk − u)〉. (A.3)

Secondly, reconsidering the point T (wk) =
(
Tu(wk), Tp(w

k)
)

generated by one deterministic iteration of APP-AL (Cohen
& Zhu, 1984) for given wk,

APP-AL{
Tu(wk) = arg min

u∈U
〈∇G(uk), u〉+ J(u) + 〈qk, Au〉+ 1

εD(u, uk);

Tp(w
k) = pk + γ

[
ATu(wk)− b

]
,

with qk = pk + γ(Auk − b), we have the following observations. The convex combination of uk and Tu(wk) provides the
expected value of uk+1 as following.

Ei(k)u
k+1 =

1

N
Tu(wk) + (1− 1

N
)uk, (A.4)

or
Tu(wk) = NEi(k)u

k+1 − (N − 1)uk. (A.5)

Moreover, the point T (wk) satisfies that: for any (u, p) ∈ U×Rm, 〈∇G(uk), u− Tu(wk)〉+ J(u)− J(Tu(wk)) + 〈qk, A(u− Tu(wk))〉
+ 1
ε 〈∇K(Tu(wk))−∇K(uk), u− Tu(wk)〉 ≥ 0,

γ
[
ATu(wk)− b

]
= Tp(w

k)− pk.
(A.6)
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1. Proof of Lemma 1
Proof. Take w′ = w∗ in (9), we have that

Λ(w,w∗) = D(u∗, u) +
ε

2Nρ
‖p− p∗‖2 +

ε(N − 1)

N
[L(u, p)− L(u∗, p∗)] +

ε(N − 2)γ

2N
‖Au− b‖2

= D(u∗, u) +
ε

2Nρ
‖p− p∗‖2 +

ε(N − 1)

N
[L(u, p∗)− L(u∗, p∗)] +

ε(N − 1)

N
〈p− p∗, Au− b〉

+
ε(N − 2)γ

2N
‖Au− b‖2. (A.7)

(i) Since L(u, p∗)− L(u∗, p∗) ≥ 0 and 1
2γ ‖p− p

∗‖2 + γ
2 ‖Au− b‖

2 + 〈p− p∗, Au− b〉 ≥ 0, (A.7) follows that

Λ(w,w∗) ≥ D(u∗, u) +
ε

2Nρ
‖p− p∗‖2 − ε(N − 1)

2Nγ
‖p− p∗‖2 − εγ

2N
‖Au− b‖2.

From Assumption 2, we have D(u∗, u) ≥ β
2 ‖u − u

∗‖2. Together with the fact Au∗ = b and ρ < 2γ
2N−1 , above

inequality follows that
Λ(w,w∗) ≥ d1‖w − w∗‖2,

with d1 = min

{
1

2N [Nβ − εγλmax(A>A)], ε
4Nγ

}
.

(ii) By Young’s inequality, (A.7) follows that

Λ(w,w∗) ≤ D(u∗, u) +
ε

2Nρ
‖p− p∗‖2 +

ε(N − 1)

N
[L(u, p∗)− L(u∗, p∗)]

+
ε(N − 1)

N
[

1

2γ
‖p− p∗‖2 +

γ

2
‖Au− b‖2] +

ε(N − 2)γ

2N
‖Au− b‖2.

From Assumption 2, we have D(u∗, u) ≤ B
2 ‖u− u

∗‖2. Together with the fact Au∗ = b and 2γ > (2N − 1)ρ, above
inequality follows that

Λ(w,w∗) ≤ d2‖w − w∗‖2 +
ε(N − 1)

N
[L(u, p∗)− L(u∗, p∗)],

with d2 = max

{
(4N−3)ε

(4N−2)Nρ ,
NB+ε(2N−3)γλmax(A>A)

2N

}
.

(iii) By the definition of Λ(w,w′), we have

Λ(w,w′) ≥ ε(N − 1)

N
[L(u, p)− L(u∗, p∗)] +

ε(N − 2)γ

2N
‖Au− b‖2

=
ε(N − 1)

N
[L(u, p)− L(u, p∗)] +

ε(N − 1)

N
[L(u, p∗)− L(u∗, p∗)] +

ε(N − 2)γ

2N
‖Au− b‖2

≥ ε(N − 1)

N
[L(u, p)− L(u, p∗)] +

ε(N − 2)γ

2N
‖Au− b‖2

=
ε(N − 1)

N
〈p− p∗, Au− b〉+

ε(N − 2)γ

2N
‖Au− b‖2

≥ −d3‖p− p∗‖2, (A.8)

with d3 = ε(N−1)2

2γN(N−2) .

�
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2. Proof of Lemma 2
Proof. Step 1: Estimate ε

NEi(k)

[
L(uk+1, qk)− L(u, qk)

]
;

For all u ∈ U, the unique solution uk+1 of the primal problem of RPDC is characterized by the following variational
inequality:

〈∇i(k)G(uk), (uk+1 − u)i(k)〉+ Ji(k)(u
k+1
i(k) )− Ji(k)(ui(k)) + 〈qk, Ai(k)(u

k+1 − u)i(k)〉

+
1

ε
〈∇K(uk+1)−∇K(uk), uk+1 − u〉 ≤ 0,

which follows that

〈∇i(k)G(uk),
(
uk − u− (uk − uk+1)

)
i(k)
〉+ Ji(k)(u

k
i(k))− Ji(k)(ui(k))−

(
Ji(k)(u

k
i(k))− Ji(k)(u

k+1
i(k) )

)
+〈qk, Ai(k)

(
uk − u− (uk − uk+1)

)
i(k)
〉+

1

ε
〈∇K(uk+1)−∇K(uk), uk+1 − u〉 ≤ 0. (A.9)

Observing that for any separable mapping ψ(u) =
N∑
i=1

ψi(ui), we have ψi(k)(u
k
i(k))− ψi(k)(u

k+1
i(k) ) = ψ(uk)− ψ(uk+1).

Therefore, (A.9) follows that

〈∇i(k)G(uk), (uk − u)i(k)〉+ Ji(k)(u
k
i(k))− Ji(k)(ui(k)) + 〈qk, Ai(k)(u

k − u)i(k)〉

≤ 〈∇G(uk), uk − uk+1〉+ J(uk)− J(uk+1) + 〈qk, A(uk − uk+1)〉

+
1

ε
〈∇K(uk+1)−∇K(uk), u− uk+1〉. (A.10)

Taking expectation with respect to i(k) on both side of (A.10), together the condition expectation (A.1)-(A.3), we get

1

N

[
L(uk, qk)− L(u, qk)

]
≤ Ei(k)

{
〈∇G(uk), uk − uk+1〉+ J(uk)− J(uk+1)

+〈qk, A(uk − uk+1)〉+
1

ε
〈∇K(uk+1)−∇K(uk), u− uk+1〉

}
. (A.11)

or

1

N
Ei(k)

[
L(uk+1, qk)− L(u, qk)

]
≤ Ei(k)

{
〈∇G(uk), uk − uk+1〉︸ ︷︷ ︸

a1

+J(uk)− J(uk+1)

+〈qk, A(uk − uk+1)〉+
1

N

[
L(uk+1, qk)− L(uk, qk)

]
+

1

ε
〈∇K(uk+1)−∇K(uk), u− uk+1〉︸ ︷︷ ︸

a2

}
. (A.12)

By the gradient Lipschitz of G, term a1 in (A.12) is bounded by

a1 = 〈∇G(uk), uk − uk+1〉 ≤ G(uk)−G(uk+1) +
BG
2
‖uk − uk+1‖2. (A.13)

The simple algebraic operation and Assumption 2 follows that

a2 =
1

ε
〈∇K(uk+1)−∇K(uk), u− uk+1〉 =

1

ε

[
D(u, uk)−D(u, uk+1)−D(uk+1, uk)

]
≤ 1

ε

[
D(u, uk)−D(u, uk+1)

]
− β

2ε
‖uk − uk+1‖2. (A.14)

Combining (A.12)-(A.14), we obtain that

ε

N
Ei(k)

[
L(uk+1, qk)− L(u, qk)

]
≤

[
D(u, uk)− Ei(k)D(u, uk+1)

]
+ Ei(k)

{
ε(N − 1)

N

[
L(uk, qk)− L(uk+1, qk)

]︸ ︷︷ ︸
a3

−β − εBG
2

‖uk − uk+1‖2
}

(A.15)



Supplementary material for the paper: ”Linear Convergence of RPDC Method for Large-scale LCCP”

Since pk+1 = pk + ρ(Auk+1 − b) and qk = pk + γ(Auk − b), term a3 in (A.15) follows that

a3 = L(uk, qk)− L(uk+1, qk)

= L(uk, pk)− L(uk+1, pk+1) + 〈qk − pk, Auk − b〉+ 〈pk+1 − qk, Auk+1 − b〉
= L(uk, pk)− L(uk+1, pk+1) + γ‖Auk − b‖2 + ρ‖Auk+1 − b‖2 − γ〈Auk − b, Auk+1 − b〉

= L(uk, pk)− L(uk+1, pk+1) +
γ

2
‖Auk − b‖2 + (ρ− γ

2
)‖Auk+1 − b‖2 +

γ

2
‖A(uk − uk+1)‖2

≤ L(uk, pk)− L(uk+1, pk+1) +
γ

2
‖Auk − b‖2 + (ρ− γ

2
)‖Auk+1 − b‖2

+
γλmax(A>A)

2
‖uk − uk+1‖2. (A.16)

Combining (A.15)-(A.16), we have that

ε

N
Ei(k)

[
L(uk+1, qk)− L(u, qk)

]
≤

[
D(u, uk)− Ei(k)D(u, uk+1)

]
+ Ei(k)

{
ε(N − 1)

N

[
L(uk, pk)− L(uk+1, pk+1)

]
−
β − ε[BG + N−1

N γλmax(A>A)]

2
‖uk − uk+1‖2 +

εγ(N − 1)

2N
‖Auk − b‖2

+
ε(2ρ− γ)(N − 1)

2N
‖Auk+1 − b‖2

}
(A.17)

Step 2: Estimate ε
NEi(k)

[
L(uk+1, p)− L(uk+1, qk)

]
L(uk+1, p)− L(uk+1, qk) = 〈p− qk, Auk+1 − b〉

=
1

ρ
〈p− pk, pk+1 − pk〉 − γ〈Auk − b, Auk+1 − b〉

=
1

2ρ

[
‖p− pk‖2 − ‖p− pk+1‖2 + ‖pk − pk+1‖2

]
− γ〈Auk − b, Auk+1 − b〉

=
1

2ρ

[
‖p− pk‖2 − ‖p− pk+1‖2 + ‖pk − pk+1‖2

]
+
γ

2
‖A(uk − uk+1)‖2

−γ
2
‖Auk − b‖2 − γ

2
‖Auk+1 − b‖2

=
1

2ρ

[
‖p− pk‖2 − ‖p− pk+1‖2

]
+
γ

2
‖A(uk − uk+1)‖2

−γ
2
‖Auk − b‖2 +

ρ− γ
2
‖Auk+1 − b‖2 (since pk+1 = pk + ρ(Auk+1 − b).)

≤ 1

2ρ

[
‖p− pk‖2 − ‖p− pk+1‖2

]
+
γλmax(A>A)

2
‖uk − uk+1‖2

−γ
2
‖Auk − b‖2 +

ρ− γ
2
‖Auk+1 − b‖2 (A.18)

Multiply ε
N on both side of above inequality, we obtain that: ∀p ∈ Rm

ε

N

[
L(uk+1, p)− L(uk+1, qk)

]
≤ ε

2Nρ

[
‖p− pk‖2 − ‖p− pk+1‖2

]
+
ε 1
N γλmax(A>A)

2
‖uk − uk+1‖2

− εγ

2N
‖Auk − b‖2 +

ε(ρ− γ)

2N
‖Auk+1 − b‖2. (A.19)

Taking expectation with respect to i(k) on both side of inequality (A.19), we have

ε

N
Ei(k)

[
L(uk+1, p)− L(uk+1, qk)

]
≤ ε

2Nρ

[
‖p− pk‖2 − Ei(k)‖p− pk+1‖2

]
+
ε 1
N γλmax(A>A)

2
Ei(k)‖uk − uk+1‖2

− εγ

2N
‖Auk − b‖2 +

ε(ρ− γ)

2N
Ei(k)‖Auk+1 − b‖2. (A.20)
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Step 3: Estimate the variance of Λ(wk, w).

Summing inequalities (A.17) and (A.20), with d4 =

min

{
β−ε[BG+γλmax(A>A)]

2 ,
ε[2γ−(2N−1)ρ]

2N

}
max{N2+2γ2(N2+2)λmax(A>A),4γ2} , we have that

Λ(wk, w)− Ei(k)Λ(wk+1, w)

≥ Ei(k)

{
ε

N

[
L(uk+1, p)− L(u, qk)

]
+
β − ε[BG + γλmax(A>A)]

2
‖uk − uk+1‖2 +

ε[2γ − (2N − 1)ρ]

2N
‖Auk+1 − b‖2

}
≥ Ei(k)

{
ε

N

[
L(uk+1, p)− L(u, qk)

]
+ d4[

(
N2 + 2γ2(N2 + 2)λmax(A>A)

)
‖uk − uk+1‖2 + 4γ2‖Auk+1 − b‖2]

}
≥ Ei(k)

{
ε

N

[
L(uk+1, p)− L(u, qk)

]
+ d4

[ (
1 + 2γ2λmax(A>A)

)
N2‖uk − uk+1‖2 + 4γ2[‖A(uk − uk+1)‖2 + ‖Auk+1 − b‖2]

]}
≥ Ei(k)

{
ε

N

[
L(uk+1, p)− L(u, qk)

]
+ d4

[ (
1 + 2γ2λmax(A>A)

)
N2‖uk − uk+1‖2 + 2γ2‖Auk − b‖2

]}
=

ε

N
Ei(k)

[
L(uk+1, p)− L(u, qk)

]
+ d4

[ (
1 + 2γ2λmax(A>A)

)
N2Ei(k)‖uk − uk+1‖2 + 2γ2‖Auk − b‖2

]
. (A.21)

By Jensen’s inequality, (A.21) follows that

Λ(wk, w)− Ei(k)Λ(wk+1, w) ≥ ε

N
Ei(k)

[
L(uk+1, p)− L(u, qk)

]
+d4

[ (
1 + 2γ2λmax(A>A)

)
N2‖uk − Ei(k)u

k+1‖2 + 2γ2‖Auk − b‖2
]
.(A.22)

Since Ei(k)u
k+1 − uk = 1

N [Tu(wk)− uk] in (A.4), (A.22) yields that

Λ(wk, w)− Ei(k)Λ(wk+1, w) ≥ ε

N
Ei(k)

[
L(uk+1, p)− L(u, qk)

]
+d4

[ (
1 + 2γ2λmax(A>A)

)
‖uk − Tu(wk)‖2 + 2γ2‖Auk − b‖2

]
. (A.23)

Since λmax(A>A)‖uk − Tu(wk)‖2 ≥ ‖A[uk − Tu(wk)]‖2 and Tp(wk)− pk = γ[ATu(wk)− b], (A.23) follows that

Λ(wk, w)− Ei(k)Λ(wk+1, w) ≥ ε

N
Ei(k)

[
L(uk+1, p)− L(u, qk)

]
+d4

[
‖uk − Tu(wk)‖2 + 2γ2‖A[uk − Tu(wk)]‖2 + 2γ2‖Auk − b‖2

]
≥ ε

N
Ei(k)

[
L(uk+1, p)− L(u, qk)

]
+ d4

[
‖uk − Tu(wk)‖2 + γ2‖ATu(wk)− b‖2

]
≥ ε

N
Ei(k)

[
L(uk+1, p)− L(u, qk)

]
+ d4‖wk − T (wk)‖2.

Then we have the result of Lemma 2. �
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3. Proof of Theorem 1 (Almost surely convergence)
Proof.

(i) Take w = w∗ in Lemma 2, we have

Λ(wk, w∗) ≥ Ei(k)Λ(wk+1, w∗) +
ε

N
Ei(k)

[
L(uk+1, p∗)− L(u∗, qk)

]
+ d4‖wk − T (wk)‖2. (A.24)

Observe that L(uk+1, p∗)− L(u∗, qk) ≥ 0. From statement (i) of Lemma 1, we have that Λ(wk, w∗) is nonnegative.
By the Robbins-Siegmund Lemma (Robbins & Siegmund, 1971), we obtain that lim

k→+∞
Λ(wk, w∗) almost surely exists,

+∞∑
k=0

‖wk − T (wk)‖2 < +∞ a.s..

(ii) Since lim
k→+∞

Λ(wk, w∗) almost surely exists, thus Λ(wk, w∗) is almost surely bounded. Thanks statement (i) of Lemma

1, it implies the sequences {wk} is almost surely bounded.

(iii) From statement (i) we have that

lim
k→∞

‖wk − T (wk)‖ = 0 a.s..

By variational inequality system (A.6), we have that any cluster point of a realization sequence generated by RPDC
almost surely is a saddle point of Lagrangian for (P).

�

4. Proof of Theorem 2 (Expected primal suboptimality and expected feasibility)
Proof.

(i) Let h(w,w′) = Λ(w,w′) + d3
d1

Λ(w,w∗). By statement (i) and (iii) in Lemma 1, we have h(w,w′) ≥ 0. From Lemma
2, we obtain that

Ei(k)
ε

N

[
L(uk+1, p)− L(u, qk)

]
≤ Λ(wk, w)− Ei(k)Λ(wk+1, w)

Taking expectation with respect to Ft, t > k for above inequality, we obtain that

ε

N
EFt

[
L(uk+1, p)− L(u, qk)

]
≤ EFt [Λ(wk, w)− Λ(wk+1, w)]. (A.25)

Take w = w∗ in (A.25), we obtain

0 ≤ EFt [Λ(wk, w∗)− Λ(wk+1, w∗)]. (A.26)

By the combination of (A.25) and (A.26), it follows

ε

N
EFt

[
L(uk+1, p)− L(u, qk)

]
≤ EFt [h(wk, w)− h(wk+1, w)] (A.27)

From the definition of ūt and p̄t, we have ūt ∈ U and p̄t ∈ Rm. From the convexity of set U, Rm and the function
L(u′, p)− L(u, p′) is convex in u′ and linear in p′, for all u ∈ U and p ∈ Rm, we have that

EFt
[
L(ūt, p)− L(u, p̄t)

]
≤ EFt

1

t+ 1

t∑
k=0

[
L(uk+1, p)− L(u, qk)

]
≤ Nh(w0, w)

ε(t+ 1)
. (A.28)
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(ii) If EFt‖Aūt − b‖ = 0, statement (ii) is obviously. Otherwise, EFt‖Aūt − b‖ 6= 0 i.e., there is set W such that
P{ω ∈W|‖Aūt − b‖ 6= 0} > 0. Let p̂ be a random vector:

p̂(ω) =

{
0 ω /∈W

M
(
Aūt−b

)
‖Aūt−b‖ ω ∈W.

(A.29)

Noted that for ω /∈W, we have p̂(ω) = 0 and ‖Aūt − b‖ = 0. Thus

〈p̂(ω), Aūt − b〉 = M‖Aūt − b‖ = 0. (A.30)

Otherwise, for ω ∈W, we have that

〈p̂(ω), Aūt − b〉 = M‖Aūt − b‖. (A.31)

Together (A.30) and (A.31), we have

〈p̂, Aūt − b〉 = M‖Aūt − b‖ (A.32)

Moreover, since Au∗ = b, we have

L(ūt, p̂)− L(u∗, p̄t) = F (ūt) + 〈p̂, Aūt − b〉 − F (u∗) = F (ūt)− F (u∗) +M‖Aūt − b‖. (A.33)

Moreover, by taking u = ūt in the right hand side of saddle point inequality, we have

F (ūt)− F (u∗) ≥ −〈p∗, Aūt − b〉 ≥ −‖p∗‖‖Aūt − b‖. (A.34)

Combine (A.33) and (A.34), we have that

‖Aūt − b‖ ≤
L(ūt, p̂)− L(u∗, p̄t)

(M − ‖p∗‖)
.

Take expectation on both side of above inequality, we have that

EFt‖Aūt − b‖ ≤
EFt [L(ūt, p̂)− L(u∗, p̄t)]

(M − ‖p∗‖)
≤ EFt

Nh(w0, (u∗, p̂))

(M − ‖p∗‖) ε(t+ 1)
(by (i))

≤ EFt
Nd5

(M − ‖p∗‖) ε(t+ 1)
(A.35)

where d5 = sup
‖p‖<M

h(w0, (u∗, p)).

(iii) Again from (A.33), (A.34) and statement (ii), statement (iii) is coming.

�

5. Proof of Lemma 3
Proof.

(i) This statement directly follows from the definition of φ(w,w∗) and statement (i) in Lemma 1.

(ii) This statement directly follows from the definition of φ(w,w∗) and statement (ii) in Lemma 1.

(iii) By the definition of φ(w,w∗), we have that.

φ(wk, w∗)− Ei(k)φ(wk+1, w∗)

= Λ(wk, w∗)− Ei(k)

{
Λ(wk+1, w∗) +

ε

N
[L(uk, p∗)− L(u∗, p∗)]− ε

N
[L(uk+1, p∗)− L(u∗, p∗)]

}
≥ Λ(wk, w∗)− Ei(k)

{
Λ(wk+1, w∗) +

ε

N
[L(uk, p∗)− L(u∗, p∗)]− ε

N
[L(uk+1, p∗)− L(u∗, qk)]

}
(by the definition of saddle point.)

≥ d4[‖wk − T (wk)‖2 +
ε

N
[L(uk, p∗)− L(u∗, p∗)]. (by Lemma 2)

�
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6. Proof of Theorem 3 (Global strong metric subregularity of H(w) implies linear convergence
of RPDC)

Proof. Considering the reference point T (wk) associated with given point wk, we have that{
0 ∈ ∇G(uk) + ∂J(Tu(wk)) +A>qk + 1

ε

[
∇K(Tu(wk))−∇K(uk)

]
+NU(Tu(wk))

0 = b−ATu(wk) + 1
γ

[
Tp(w

k)− pk
] (A.36)

Thus

v(T (wk)) =

(
∇G(Tu(wk))−∇G(uk) +A>(Tp(w

k)− qk) + 1
ε

[
∇K(uk)−∇K(Tu(wk))

]
1
γ

[
pk − Tp(wk)

] )
∈ H(T (wk)).

From Assumption 1 and 2, there is δ > 0 such that

‖v(T (wk))‖2 ≤ δ‖wk − T (wk)‖2. (A.37)

Since H(w) is global strong metric subregular at w∗ for 0, then

‖T (wk)− w∗‖ ≤ cdist(0, H(T (wk))) ≤ c‖v(T (wk))‖ ≤ c
√
δ‖wk − T (wk)‖. (A.38)

Since ‖wk − w∗‖ ≤ ‖T (wk)− w∗‖+ ‖wk − T (wk)‖, we have

‖wk − w∗‖ ≤ (c
√
δ + 1)‖wk − T (wk)‖. (A.39)

From statement (iii) of Lemma 3, we have that

φ(wk, w∗)− Ei(k)φ(wk+1, w∗) ≥ d4‖wk − T (wk)‖2 +
ε

N
[L(uk, p∗)− L(u∗, p∗)]

≥ d4

(c
√
δ + 1)2

‖wk − w∗‖2 +
ε

N
[L(uk, p∗)− L(u∗, p∗)] (by (A.39))

≥ δ′{d2‖wk − w∗‖2 + ε[L(uk, p∗)− L(u∗, p∗)]}
≥ δ′φ(wk, w∗). (by (i) of Lemma 3) (A.40)

where δ′ = min{ d4
max{d2(c

√
δ+1)2,d4+1} ,

1
N+1} < 1. It follows that

Ei(k)φ(wk+1, w∗) ≤ αφ(wk, w∗). (A.41)

where α = 1− δ′ ∈ (0, 1). Taking expectation with respect to Fk+1 for above inequality, we obtain that

EFk+1
φ(wk+1, w∗) ≤ αk+1φ(w0, w∗). (A.42)

�

7. Proof of Corollary 1 (R-linear rate of the sequence {EFk
wk})

Proof. By statement (i) in Lemma 3, we have that φ(w,w∗) ≥ d1‖w − w∗‖2. By Theorem 3, we have that

EFkφ(wk, w∗) ≤ αkφ(w0, w∗).

Then we have that

EFk‖wk − w∗‖2 ≤
αkφ(w0, w∗)

d1
.

By convexity of ‖ · ‖2 and Jensen’s inequality, we obtain that

‖EFkwk − w∗‖ ≤ M̂(
√
α)k with M̂ =

√
φ(w0, w∗)

d1
.

This shows that the sequence {EFkwk} converges to the desired saddle point w∗ at R-linear rate; i.e.,

lim
k→∞

sup k

√
‖EFkwk − w∗‖ =

√
α < 1.

�
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8. Proof of Proposition 1
Proof. By the piecewise linear of H(w) and Zheng and Ng (Zheng & Ng, 2014), we have that H(w) is global metric
subregular at w∗ for 0. Since Q is positive-definite, then problem (SVM) has unique solution u∗. Hence, to show H(w) is
global strongly metric subregular, we need to prove uniqueness of the Lagrangian multiplier for (SVM). Suppose their are
two multipliers p and p′, thus we have{

0 ∈ Qu∗ − 1n + py +N[0,c]n(u∗)
0 ∈ Qu∗ − 1n + p′y +N[0,c]n(u∗)

Since there exists at least one component u∗i of optimal solution u∗ satisfies 0 < u∗i < c, then ξi = N[0,c](u
∗
i ) = 0. Thus,

we have that {
Qiu

∗ − 1 + yip = 0
Qiu

∗ − 1 + yip
′ = 0

(A.43)

We conclude that p = p′. Therefore H(w) is global strongly metric subregular. �

9. Proof of Proposition 2
Proof. By the piecewise linear of H(w) and Zheng and Ng (Zheng & Ng, 2014), we have that H(w) is global metric
subregular at w∗ for 0. Since Σ is positive-definite, then problem (MLP) has unique solution u∗. Hence, to show H(w) is
global strongly metric subregular, we need to prove uniqueness of the Lagrangian multiplier for (MLP). Suppose their are
two pare of multipliers (p1, p2) and (p′1, p

′
2), thus we have{
0 ∈ Σu∗ + λ∂‖u∗‖1 + p1µ+ p21n
0 ∈ Σu∗ + λ∂‖u∗‖1 + p′1µ+ p′21n

Since u∗i 6= 0, u∗j 6= 0, thus ξi = ∂|u∗i | and ξj = ∂|u∗j | are single valued and we have{
Σiu

∗ + λξi + µip1 + p2 = 0
Σiu

∗ + λξi + µip
′
1 + p′2 = 0

(A.44){
Σju

∗ + λξj + µjp1 + p2 = 0
Σju

∗ + λξj + µjp
′
1 + p′2 = 0

(A.45)

It follows that {
µi(p1 − p′1) + p2 − p′2 = 0
µj(p1 − p′1) + p2 − p′2 = 0

(A.46)

Since µi 6= µj , we conclude that p1 = p′1 and p2 = p′2. Therefore H(w) is global strongly metric subregular. �
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