
A. Proofs
In this section, we provide the proofs of our theoretical results in Section 3.

For ease of presentation, we introduce the following notations and an alternative definition of the∞-Wasserstein distance.
Let (X , µ) and (Y, ν) be two probability spaces. We say that T : X → Y transports µ ∈ P(X) to ν ∈ P(Y), and we call T
a transport map, if ν(B) = µ(T−1(B)), for all ν-measurable sets B. In addition, for any measurable map T : X → Y , we
define the pushforward of µ through T as (T#(µ)) given by

(T#(µ))(B) = µ(T−1(B)), for any measurable B ⊆ Y.

Alternative definition of∞-Wasserstein distance. From the perspective of transportation theory, given two probability
measures µ and ν on (X ,∆), any joint probability distribution γ ∈ Γ(µ, ν) corresponds to a specific transport map
T : X → X that moves µ to ν. Then, the p-th Wasserstein distance can viewed as finding the optimal transport map to
move from µ to ν that minimizes some cost functional depending on p (Kolouri et al., 2017). For the case where p =∞, if
we let T be the transport map induced by a given γ ∈ Γ(µ, ν), then the cost functional can be informally understood as
the maximum of all the transport distances ∆(T (x),x). More rigorously, the∞-Wasserstein distance can be alternatively
defined as

W∞(µ, ν) := inf
γ∈Γ(µ,ν)

γ -ess sup
(x,x′)∈X 2

∆(x,x′)

= inf
γ∈Γ(µ,ν)

inf
{
t ≥ 0: γ

(
∆(x,x′) > t

)
= 0
}
.

A more detailed discussion of∞-Wasserstein distance can be found in Champion et al. (2008).

A.1. Proof of Theorem 3.2

Theorem 3.2 (restated here) connects the vulnerability of a given representation with the minimum adversarial gap of any
classifier based on that representation.

Theorem 3.2. Let (X , ‖ · ‖p) be the input metric space and Y = {−1, 1} be the label space. Assume the underlying data
are generated according to (3.1). Consider the feature space Z = {−1, 1} and the set of representations,

Gbin = {g : x 7→ sgn(w>x),∀x ∈ X
∣∣ ‖w‖2 = 1}.

LetH = {h : Z → Y} be the set of non-trivial downstream classifiers.6 Given ε ≥ 0, for any g ∈ Gbin, we have∫ 1
2

1
2−AGε(f∗)

H′2(θ)dθ ≤ RVε(g) ≤
∫ 1

2

1
2−

1
2 AGε(f∗)

H′2(θ)dθ,

where f∗ = argminh∈HAdvRiskε(h ◦ g) is the optimal classifier based on g, H2(θ) = −θ log θ − (1− θ) log(1− θ) is
the binary entropy function and H′2 denotes its derivative.

Proof. Let µXY be the underlying joint probability distribution of the examples according to (3.1) and µX be corresponding
the marginal distribution ofX . To begin with, we compute the explicit formulation for the defined representation vulnerability
in Definition 3.1. Note that I(U ;V) = H(U)−H(U |V) = H(V)−H(V |U). Thus, for any gw ∈ G we have

RVε(gw) = H(gw(X))− inf
µX′∈BW∞ (µX ,ε)

H(gw(X ′))

= 1− inf
µX′∈BW∞ (µX ,ε)

(
− Pr
x′∼µX′

(w>x′ ≥ 0) · log
[

Pr
x′∼µX′

(w>x′ ≥ 0)
]

− Pr
x′∼µX′

(w>x′ < 0) · log
[

Pr
x′∼µX′

(w>x′ < 0)
])
,

6To be more specific, we do not consider the case where h is a constant function. Under our problem setting, there are two elements in
H, namely h1(z) = z, h2(z) = −z, for any z ∈ Z .

where the first equality holds because H(gw(U) | U) = 0 for any random variable U , and the second equality is due
to the fact that the distribution of X is symmetric with respect to w>x = 0. Note that the binary entropy function
H2(θ) = −θ log θ−(1−θ) log(1−θ) is monotonically increasing with respect to θ in [0, 1/2) and monotonically decreasing
in (1/2, 1]. Therefore, the optimal value of RVε(gw) is achieved when µX′ either minimizes Prx′∼µX′ (w

>x′ ≥ 0) or
maximizes Prx′∼µX′ (w

>x′ ≥ 0).

According to the Hölder’s inequality, we have |〈a, b〉| ≤ ‖a‖p · ‖b‖q for any a, b ∈ Rd, where 1/p + 1/q = 1. By the
alternative definition of∞-Wasserstein distance, for any µX′ that satisfies W∞(µX′ , µX) ≤ ε, it induces a transport map
T : X → X such that µ′X = T#(µX) and ‖∆(T (X), X)‖p ≤ ε holds almost surely with respect to the randomness of X
and T . Thus, we have

Pr
x∼µX

[
− ε · ‖w‖q ≤ w>(T (x)− x) ≤ ε · ‖w‖q

]
≥ Pr
x∼µX

[
‖T (x)− x‖p ≤ ε

]
= 1,

which implies

Pr
x∼µX

(
w>x− ε · ‖w‖q ≥ 0

)
≤ Pr
x′∼µX′

(w>x′ ≥ 0) ≤ Pr
x∼µX

(
w>x+ ε · ‖w‖q ≥ 0

)
.

We remark that the equality can be achieved when the the transport map T is constructed by perturbing the i-th element
of any sampled x ∼ µX by ε · (wqi /

∑
i wi

q)1/p, for any i = 1, 2, . . . , d. In addition, according to the assumed Gaussian
Mixture model (3.1), we have

Pr
x∼µX

(
w>x− ε · ‖w‖q ≥ 0

)
=

1

2
Pr

x∼N (θ∗,Σ∗)

[
w>x ≥ ε · ‖w‖q

]
+

1

2
Pr

x∼N (−θ∗,Σ∗)

[
w>x ≥ ε · ‖w‖q

]
=

1

2
− 1

2
Pr

Z∼N (0,1)

[
−ε · ‖w‖q +w>θ∗√

w>Σ∗w
≤ Z ≤ ε · ‖w‖q +w>θ∗√

w>Σ∗w

]
.

Similarly, we have

Pr
x∼µX

(
w>x+ ε · ‖w‖q ≥ 0

)
=

1

2
+

1

2
Pr

Z∼N (0,1)

[
−ε · ‖w‖q +w>θ∗√

w>Σ∗w
≤ Z ≤ ε · ‖w‖q +w>θ∗√

w>Σ∗w

]
.

Therefore, we derive the explicit formulation for RVε(gw)

RVε(gw) = H2

(
1

2

)
−H2

(
1

2
− Pr
Z∼N (0,1)

[
w>θ∗ − ε · ‖w‖q√

w>Σ∗w
≤ Z ≤ w

>θ∗ + ε · ‖w‖q√
w>Σ∗w

])
, (A.1)

where H2(·) is denotes binary entropy function.

Next, given gw ∈ Gbin, we are going to compute the adversarial gap of f ◦ gw for each h ∈ H. To begin with, we consider
the first case h1(z) = z for any z ∈ Z . According to the definition of adversarial risk, we have

AdvRiskε(h1 ◦ gw) = Pr
(x,y)∼µXY

[
∃ x′ ∈ B(x, ε) s.t. sgn(w>x′) 6= y

]
= Pr

(x,y)∼µXY

[
min

x′∈B(x,ε)
y ·w>x′ ≤ 0

]
= Pr

(x,y)∼µXY

[
y ·w>x ≤ − min

∆∈B(0,ε)
w>∆

]
= Pr
Z∼N (0,1)

[
Z ≤ ε‖w‖q −w>θ∗√

w>Σ∗w

]
,

where the equality is due to the fact that B(0, ε) is symmetric with respect to 0, and the last equality holds because
of the Hölder’s inequality: for any a, b ∈ Rn, it holds that a>b ≥ −‖a‖p · ‖b‖q and the equality is achieved when
(ai/‖a‖p)p = (bi/‖b‖q)q for any i ∈ {1, 2, . . . , d}.

Similarly, the standard risk can be computed as:

Risk(h1 ◦ gw) = Pr
(x,y)∼D

[
sgn(w>x) 6= y

]
= Pr

(x,y)∼D

[
y ·w>x ≤ 0

]
= Pr
Z∼N (0,1)

[
Z ≤ −w>θ∗√

w>Σ∗w

]
.

Thus, we derive the gap between standard and adversarial risk with respect to h1 ◦ gw:

AGε(h1 ◦ gw) = Pr
Z∼N (0,1)

[
w>θ∗ − ε‖w‖q√

w>Σ∗w
≤ Z ≤ w>θ∗√

w>Σ∗w

]
.

For the other case where h2(z) = −z for any z ∈ Z , note that h1 ◦ gw = h2 ◦ g−w for any gw ∈ Gbin. Thus, a similar proof
technique can be applied to compute the adversarial risk,

AdvRiskε(h2 ◦ gw) = Pr
Z∼N (0,1)

[
Z ≤ ε‖w‖q +w>θ∗√

w>Σ∗w

]
,

and the adversarial gap,

AGε(h2 ◦ gw) = Pr
Z∼N (0,1)

[
w>θ∗√
w>Σ∗w

≤ Z ≤ w
>θ∗ + ε‖w‖q√
w>Σ∗w

]
.

Note that f∗ : X → Y is the optimal classifier based on gw that minimizes the adversarial risk of h ◦ gw for any h ∈ H. By
comparing the adversarial risk of h1 ◦ gw and h2 ◦ gw, we have f∗ = h1 ◦ gw, if w>θ∗ ≥ 0; f∗ = h2 ◦ gw, otherwise.
Thus, we derive the adversarial gap with respect to f∗ as follows

AGε(f
∗) =

 PrZ∼N (0,1)

(
w>θ∗−ε‖w‖q√

w>Σ∗w
≤ Z ≤ w>θ∗√

w>Σ∗w

)
, ifw>θ∗ ≥ 0;

PrZ∼N (0,1)

(
w>θ∗√
w>Σ∗w

≤ Z ≤ w>θ∗+ε‖w‖q√
w>Σ∗w

)
, otherwise.

(A.2)

Based on (A.2), we further obtain the following inequality

AGε(f
∗) ≤ Pr

Z∼N (0,1)

[
w>θ∗ − ε · ‖w‖q√

w>Σ∗w
≤ Z ≤ w

>θ∗ + ε · ‖w‖q√
w>Σ∗w

]
≤ 2 ·AGε(f

∗).

Finally, according to the formulation of representation vulnerability (A.1), we have∫ 1
2

1
2−AGε(f∗◦gw)

H′2(θ)dθ ≤ RVε(gw) ≤
∫ 1

2

1
2−

1
2 AGε(f∗◦gw)

H′2(θ)dθ,

which completes the proof.

A.2. Proof of Lemma 3.3

Lemma 3.3, restated below, connects adversarial risk and input distribution perturbations bounded in an∞-Wasserstein ball.

Lemma 3.3. Let (X ,∆) be the input metric space and Y be the set of labels. Assume all the examples are generated from a
joint probability distribution (X,Y) ∼ µXY . Let µX be the marginal distribution of X . Then, for any classifier f : X → Y
and ε ≥ 0, we have

AdvRiskε(f) = sup
µX′∈BW∞ (µX ,ε)

Pr
[
f(X ′) 6= Y

]
,

where X ′ denotes the random variable that follows µX′ .

Proof. Our proof proves the equality by proving ≤ inequalities in both directions. First, we prove

AdvRiskε(f) ≤ sup
µX′∈BW∞ (µX ,ε)

Pr
[
f(X ′) 6= Y

]
. (A.3)

For any classifier f : X → Y , according to Definition 2.3, we have

AdvRiskε(f) = Pr
(x,y)∼µXY

[
∃ x′ ∈ B(x, ε) s.t. f(x′) 6= y

]
.

Since f is a given deterministic function, the optimal perturbation scheme that achieves AdvRiskε(f) essentially defines a
transport map T : X → X . More specifically, let Cy(f) = {x ∈ X : f(x) 6= y}. Then, for any sampled pair (x, y) ∼ µXY ,
we can construct T such that

T (x) =

{
argminx′∈Cy(f) ∆(x′,x), if Cy(f) ∩ B(x, ε) 6= ∅;

x, otherwise.

Let (X,Y) be the random variable that follows µXY . By construction, it can be easily verified that T#(µX) ∈ BW∞(µX , ε)
and AdvRiskε(f) = Pr

[
f(T (X)) 6= Y

]
. Therefore, we have proven (A.3).

It remains to prove the other direction of the inequality:

AdvRiskε(f) ≥ sup
µX′∈BW∞ (µX ,ε)

Pr
[
f(X ′) 6= Y

]
. (A.4)

According to the alternative definition of∞-Wasserstein distance, the optimal solution µ∗X′ that achieves the supremum of the
right hand side of (A.4) can be captured by a transport map T ∗ : X → X such that µ∗X′ = T ∗#(µX) and ∆(T ∗(X), X) ≤ ε
holds almost surely with respect to the randomness of X and T ∗. Thus, we have

Pr
[
f(T ∗(X)) 6= Y

]
= Pr

(x,y)∼µXY

[
f(T ∗(x)) 6= y

]
= Pr

(x,y)∼µXY

[
∆(T ∗(x),x) ≤ ε and f(T ∗(x)) 6= y

]
≤ 1− Pr

(x,y)∼µXY

[
∀ x′ ∈ B(x, ε) s.t. f(x′) = y

]
= AdvRiskε(f).

Therefore, we have proven the second direction and completed the proof.

A.3. Proof of Theorem 3.4

Theorem 3.4, restated below, gives a lower bound for the adversarial risk for any downstream classifier in terms of the
worst-case mutual information between the representation’s input and output distributions.

Theorem 3.4. Let (X ,∆) be the input metric space, Y be the set of labels and µXY be the underlying joint probability
distribution. Assume the marginal distribution of labels µY is a uniform distribution over Y . Consider the feature space Z
and the set of downstream classifiersH = {h : Z → Y}. Given ε ≥ 0, for any g : X → Z , we have

inf
h∈H

AdvRiskε(h ◦ g) ≥ 1− I(X;Z)− RVε(g) + log 2

log |Y|
,

where X is the random variable that follows the marginal distribution of inputs µX and Z = g(X).

Before starting the proof, we state two useful lemmas on Markov chains. A Markov chain is defined to be a collection
of random variables {Xt}t∈Z with the property that given the present, the future is conditionally independent of the past.
Namely,

Pr(Xt = j|X0 = i0, X1 = i1, ..., X(t−1) = i(t−1)) = Pr(Xt = j|X(t−1) = i(t−1)).

Lemma A.1 (Fano’s Inequality). Let X be a random variable uniformly distributed over a finite set of outcomes X . For any
estimator X̂ such that X → Y → X̂ forms a Markov chain, we have

Pr(X̂ 6= X) ≥ 1− I(X; X̂)− log 2

log |X |
.

Lemma A.2 (Data-Processing Inequality). For any Markov chain X → Y → Z, we have

I(X;Y) ≥ I(X;Z) and I(Y ;Z) ≥ I(X;Z).

Chapter 2 in Cover & Thomas (2012) provides proofs of Lemmas A.1 and A.2.

Proof of Theorem 3.4. For any classifier h : Z → Y , according to Lemma 3.3, we have

AdvRiskε(h ◦ g) = sup
µX′∈BW∞ (µX ,ε)

Pr
[
h(g(X ′)) 6= Y

]
. (A.5)

Let µX′ ∈ BW∞(µX , ε) be a probability measure over (X ,∆). According to the alternative definition of∞-Wasserstein
distance using optimal transport, µX′ corresponds to a transport map T : X → X such that µX′ = T#(µX). Thus, for any
given µX′ ∈ BW∞(µX , ε) and h ∈ H, we have the Markov chain

Y →X T−→ X ′
g−→ g(X ′)

h−→ (h ◦ g)(X ′).

where X,Y are random variables for input and label distributions respectively. The first Markov chain Y → X can be
understood as a generative model for generating inputs according to the conditional probability distribution µX|Y . Therefore,
applying Lemmas A.1 and A.2, we obtain the inequality,

Pr
[
h(g(X ′)) 6= Y

]
≥ 1−

I
(
Y ; (h ◦ g)(X ′)

)
+ log 2

log |Y|
≥ 1−

I
(
X ′; g(X ′)

)
+ log 2

log |Y|
. (A.6)

Taking the supremum over the distribution of X ′ in BW∞(µX , ε) and infimum over h ∈ H on both sides of (A.6) yields

inf
h∈H

[
AdvRiskε(h ◦ g)

]
= inf
h∈H

sup
µX′∈BW∞ (µX ,ε)

Pr
[
h(g(X ′)) 6= Y

]
≥ 1−

infµX′∈BW∞ (µX ,ε) I
(
X ′; g(X ′)

)
+ log 2

log |Y|

= 1− I(X; g(X))− RVε(g) + log 2

log |Y|
,

where the first equality is due to (A.5) and the inequality holds because of (A.6). Thus, we completed the proof.

B. Algorithm for Estimating the Worst-Case Mutual Information
This section presents the pseudocode of our heuristic algorithm for solving the empirical estimation problem (4.3). More
specifically, given a training sample set Strain, our algorithm alternatively optimizes for the worst-case input perturbations
using projected gradient descent (Algorithm 1) and conducts gradient ascent for the network parameters θ (training phase in
Algorithm 2). Based on the best parameter θopt selected from the training phase, our algorithm then estimates the worst-case
mutual information with respect to the given representation g using a testing sample set Stest (testing phase in Algorithm 2).
Since we only have assess to a finite set of data sampled from µX , we use an additional testing phase in Algorithm 2 to
minimize the overfitting effect of the training samples on the optimal network parameter θopt for mutual information neural
estimation (MINE).

Moreover, we adopt the negative sampling scheme (Hjelm et al., 2018) to estimate the expectation term with respect
to µ̂(m)

X ⊗ µ̂
(m)
Z in mutual information neural estimation for better performance. Here, the pairing scheme defines a

correspondence from each input to a set of inputs for a given sample set. To be more specific, given a set of samples
{xi}i∈[B], a pairing scheme with negative sampling size N ≤ B corresponds to a set of vectors {πi}i∈[B] such that each πi
is a randomly selected subset from {1, 2, . . . , B} with size N , and πij denotes the j-th element of πi. Compared with the
algorithm in Hjelm et al. (2018) for estimating standard mutual information, Algorithm 2 requires additional B · S steps of
forward and backward propagations with respect to the input for finding the worst-case input perturbations in each iteration.

C. Worst-case Mutual Information for Individual Neuron Features
The following tensorization inequality (Scarlett & Cevher, 2019) characterizes the connection between the mutual information
of individual neuron features and that of the whole representation. According to Theorem 3.4, such connection suggests the
necessity of enough worst-case mutual information for each individual neuron.

Algorithm 1 Heuristic Search for Worst-Case Input Perturbations
Input: samples {xi}i∈[B], representation g, MINE estimator Tθ, paring scheme {πi}i∈[B], perturbation strength ε in `p
Hyperparameters: negative sampling size N , number of iterations S, step size ηa

1: Initialize {x′i}i∈[B] ← {xi}i∈[B]

2: for s = 1, 2, . . . , S do
3: J(x′1, . . . ,x

′
B , θ)← 1

B

∑B
i=1 Tθ

(
x′i, g(x′i)

)
− log

(
1
BN

∑B
i=1

∑N
j=1 exp

[
Tθ
(
x′i, g(x′πij)

)])
4: for i = 1, 2, . . . , B do
5: x′i ← PB(xi,ε)

[
x′i − ηa · ∇x′iJ(x′1, . . . ,x

′
B , θ)

]
// PB(xi,ε) denotes the projection operator onto B(xi, ε)

6: end for
7: end for
8: V1 ← J(x′1, . . . ,x

′
B , θ)

9: V2 ← ∇θJ(x′1, . . . ,x
′
B , θ)

Output: {V1, V2}

Algorithm 2 Empirical Estimation of Worst-Case Mutual Information
Input: training and testing sample sets (Strain,Stest) sampled from µX , representation g, perturbation strength ε in `p
Hyperparameters: number of training epochs T , step size ηe, number of testing mini-batches K

1: // Training Phase
2: θ1 ← initialize network parameter for MINE estimator
3: for t = 1, 2, . . . , T do
4: {xi}i∈[B], {πi}i∈[B] ← randomly generate a batch of B training samples and a pairing scheme
5: {V1(t), V2(t)} ← Algorithm 1

(
{xi}i∈[B], g, Tθt , {πi}i∈[B], ε

)
6: θt+1 ← θt + ηe · V2(t)
7: end for
8: θopt ← argmax

{
t ∈ [T] : V1(t)

}
// choose the best parameter θopt based on history

9: // Testing Phase
10: Randomly split the testing set Stest into K mini-batches {S1, . . . ,SK} with equal size
11: for k = 1, 2, . . . ,K do
12: {π(x)}x∈Sk ← randomly generate a pairing scheme with respect to Sk
13: {V1(k), V2(k)} ← Algorithm 1

(
Sk, g, Tθopt , {π(x)}x∈Sk , ε

)
14: end for
15: Îworst ← 1

K

∑K
k=1 V1(k)

Output: Îworst

Lemma C.1 (Tensorization of Mutual Information). Let Z = (Z1, ..., Zn) be a product distributions over random variables.
If Z1, ..., Zn are mutually independent conditioned on X , then

I(X;Z) ≤
n∑
i=1

I(X;Zi)

Suppose neurons within a single layer have no interconnection, then each neuron’s output is mutually independent conditioned
on the model input. If a perturbation imposed on the input distribution makes the perturbed mutual information I(X ′;Z ′i)
relatively low for each neuron, then the perturbed mutual information with respect to the entire layer I(X ′;Z ′) will also be
low, which further implies a low adversarial accuracy for any downstream classifier based on Theorem 3.4.

D. Experiments
D.1. Implementation Details

Here, we provide additional implementation details of our experiments presented in Section 6.

Model architectures. For all experiments, we follow Hjelm et al. (2018) in implementing the MINE estimator. We adopt the
encode-and-dot-product model architecture in Hjelm et al. (2018) which maps x and z respectively to two high-dimensional
vectors and then takes the dot-product to calculate the output. The basic modules used in our experiments are listed in Table
2. A slight difference in training the feature (encoder) is that Hjelm et al. (2018) shares parameters between parts of the
mutual information estimator and the encoder, while we separate the two parts completely to be consistent with our mutual
information estimation experiments.

Module Structure

Feature Extractor Conv(64, 4× 4, 2)→ Conv(128, 4× 4, 2)→ Conv(256, 4× 4, 2)→ FC(1024)→ FC(64)
Top Classifier (MLP) FC(200)→ FC(10)
Top Classifier (Linear) FC(10)
Baseline-H Feature Extractor→ Top Classifier (MLP)

Estimator Part 1 Conv(64, 4× 4, 2)→ Conv(128, 4× 4, 2)→ Conv(256, 4× 4, 2)
Estimator Part 2 Conv(2048, 1× 1, 1)→ Conv(2048, 1× 1, 1)
Estimator (x→ Estimator Part 1→ Estimator Part 2) · (z→ Estimator Part 2)

Table 2. Basic model structures used in our experiments. Batch-normalization and ReLU activation are used between layers (not including
the output of each module). Shortcut-connection is omitted for Estimator Part 2. For scalar feature z, Estimator Part 2 is replaced by an
identity mapping. Average operation is needed in the dot-product operation of Estimator. For more details, see Hjelm et al. (2018)

Hyperparameters. We use simple hyperparameter settings to control their effect on our various ablation experiments. We
use l∞ constrained perturbations and PGD attack (Mądry et al., 2018) on all datasets. For CIFAR-10, we set the radius
ε = 8/255 and use 7 attack steps with step size 0.01. For MNIST, we set the radius ε = 0.3 and use 10 attack steps with
step size 0.1. For Fashion-MNIST, we set the radius ε = 0.1 and use 10 attack steps with step size 0.02. For SVHN, we set
the radius ε = 4/255 and use 10 attack steps with step size 0.005. The batch size is set as 128 for both datasets, and our
results are consistent with different batch sizes between 128 to 512 (we did not test other sizes). A total training epochs
of 200 is set for VGG, ResNet, and DenseNet, with an initial learning rate of 0.1 which decays by a factor of 10 every 50
epochs. For the Baseline-H model and the similar mutual information estimator, we set the training epoch to 300 and use a
fixed learning rate of 0.0001 as in Hjelm et al. (2018).

D.2. Additional Results

Results for MNIST, Fashion-MNIST, and SVHN. We present the downstream classification results for MNIST, Fashion-
MNIST, and SVHN in Table 3, 4, 5. These results support similar conclusions as those drawn from CIFAR-10 dataset in
Table 1. That is, our training principle always produces representations that have significantly better adversarial accuracy for
downstream adversarial classification. In many cases, our training principle also produces representations that have better
natural accuracy, despite the worst-case situation that our training principle considers.

Saliency maps of internal features. In section 6.1, we evaluated the internal feature vulnerability of all the convolutional
kernels in the second layer of Baseline-H. Here, we further visualize the saliency maps of the those internal features to
evaluate the underlying correlations. As shown in Figure 5, features in robust model have less noisy saliency maps, which is
consistent with the observations of lower representation vulnerability shown in Figure 3.

Saliency maps of learned representations. More comparison results of saliency maps are given in Figure 6. The saliency
maps of representations learned using our unsupervised training method shows comparable interpretability results to the
models learned using fully-supervised adversarial training. Saliency maps computed by different losses also show consistent
interpretability results. This indicates that our training principle indeed produces adversarially robust representations.

MLP h Linear h
Representation (g) Classifier (h) Natural Adversarial Natural Adversarial

Hjelm et al. (2018) Standard 96.96 ± 0.35 0.00± 0.00 84.88 ± 1.11 0.00± 0.00
Hjelm et al. (2018) Robust 44.99± 14.49 16.70± 2.22 11.35± 0.00 11.35± 0.00

Ours Standard 96.67± 0.12 9.97± 1.88 82.10± 0.37 3.69± 0.55
Ours Standard (E.S.) 94.68± 0.93 12.79± 2.24 77.72± 2.47 4.73± 1.29
Ours Robust 95.05± 0.19 60.64 ± 1.82 73.99± 1.16 30.55 ± 1.34

Fully-Supervised Standard 99.13± 0.23 0.45± 0.33 99.13± 0.04 0.00± 0.00
Fully-Supervised Robust 99.25± 0.05 95.73± 0.09 99.21± 0.06 95.29± 0.18

Table 3. Comparisons of different representation learning methods for downstream classification on MNIST. E.S. denotes early stopping
under the criterion of the best adversarial accuracy. We present the mean accuracy and the standard deviation over 4 repeated trials.

MLP h Linear h
Representation (g) Classifier (h) Natural Adversarial Natural Adversarial

Hjelm et al. (2018) Standard 89.58± 0.13 0.00± 0.00 85.93± 0.26 0.00± 0.00
Hjelm et al. (2018) Robust 48.61± 4.96 14.95± 0.79 10.00± 0.00 10.00± 0.00

Ours Standard 90.45 ± 0.19 5.38± 1.00 87.37 ± 0.10 18.20± 2.87
Ours Standard (E.S.) 81.66± 0.18 29.71± 2.00 86.27± 0.64 23.40± 2.65
Ours Robust 84.31± 0.29 70.44 ± 3.62 81.05± 0.30 61.33 ± 0.49

Fully-Supervised Standard 92.09± 0.23 0.00± 0.00 85.93± 0.26 0.00± 0.00
Fully-Supervised Robust 87.94± 0.18 77.59± 0.38 88.05± 0.46 77.15± 0.24

Table 4. Comparisons of different representation learning methods for downstream classification on Fashion-MNIST. E.S. denotes early
stopping under the criterion of the best adversarial accuracy. We present the mean accuracy and the standard deviation over 4 repeated
trials.

MLP h Linear h
Representation (g) Classifier (h) Natural Adversarial Natural Adversarial

Hjelm et al. (2018) Standard 50.15± 0.89 0.00± 0.00 38.94± 1.52 0.00± 0.00
Hjelm et al. (2018) Robust 19.59± 0.00 19.59± 0.00 19.59± 0.00 19.59± 0.00

Ours Standard 74.32 ± 0.49 26.29± 1.41 58.37 ± 0.54 21.62± 0.91
Ours Standard (E.S.) 71.85± 0.59 29.59± 0.83 54.76± 0.86 25.00± 0.53
Ours Robust 68.25± 0.83 40.23 ± 0.83 49.04± 0.79 30.56 ± 0.38

Fully-Supervised Standard 91.97± 0.13 9.77± 1.58 91.33± 0.15 9.29± 1.73
Fully-Supervised Robust 90.14± 0.83 65.35± 0.44 89.60± 0.54 64.48± 1.06

Table 5. Comparisons of different representation learning methods for downstream classification on SVHN. E.S. denotes early stopping
under the criterion of the best adversarial accuracy. We present the mean accuracy and the standard deviation over 4 repeated trials.

Figure 5. Saliency maps of four arbitrarily selected features in the
second convolutional layer of Baseline-H. The feature saliency
map is computed by the gradient of a kernel’s averaged activation
over a input image. Each row presents saliency maps of a specific
convolutional kernel.

Figure 6. Saliency maps of different models on CIFAR-10: (a)
original images (b) fully-supervised standard model (c) fully-
supervised robust model (d) representations learned using Hjelm
et al. (2018) with cross-entropy loss (e) representations learned us-
ing Hjelm et al. (2018) with mutual information maximization loss
(f) representations learned using our method with cross-entropy
loss (g) representations learned using our method with mutual
information maximization loss.

