Thompson Sampling Algorithms for Mean-Variance Bandits

Supplementary Material

S-1. Proof of Lemma 1

We first derive an upper bound for the expected cumulative regret. We use 7(¢) to denote the arm that is pulled in period ¢
and 7; ; is the number of times that arm ¢ is pulled during first j periods. The time horizon n will be fixed in the following
proof. Given the definition of the empirical mean-variance in (3), we rewrite the empirical mean as follows,
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‘We can further bound the second term as follows,
K

K
1 . R 1 R R
n ;Tz,n (Ni,T,z,n - ﬂn(ﬂ))z < n ; ;Ti,nTj,n (Mz‘,Tim, — ,uj,Tj,n)Q .

Then

K K
— 1 ~ ~ 2
W) S Zn’n (MVl B MVi’Ti’n) + E ZZTL”]}J’ ('u“iaTi,n - 'ujvTjﬂL) :
1=2 i=1 j#i
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This completes the proof of Lemma 1.

S-2. Figures and more numerical results

In this section, we show more numerical results to validate our theoretical results in the main paper.

In Figures S-1, S-2 and S-3, we report the expected regret of BMVTS with different p. Here the arm distributions are
Bernoulli’s with success probabilities (0.1,0.2,0.23,0.27,0.32,0.32,0.34,0.41,0.43,0.54,0.55,0.56,0.67,0.71,0.79).
The regret is averaged over 500 runs with a fixed time horizon n = 30000. These figures clearly show that BMVTS
outperform LCB algorithm.
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S-3. Proof of Theorem 3

Since Theorem 3 is the most involved, we present it before Theorems 1 and 2. The proofs of the latter two theorems reuse
several calculations that are done for the proof of Theorem 3.

S-3.1. Notations

We remind the reader of the definitions of the event E;(¢) and the probability G;, as follows:

E; (t) = {Wt <MV, —(1+ p)s}, Gis =Py (B (1)°| Ty = s) .

According to Lemma 2, we need to provide an upper bound for E[T; ,,].

S-3.2. Proofs of the lemmas

Before we get into the details of the proofs, let us present the proof of the lemmas in the main text and some other useful
lemmas.

Lemma S-1 (Lemma 4 in the main text) For a Gamma random variable X ~ Gamma («, 3) with shape o > 2 and rate
B > 0, we have the following lower bound on the complementary cumulative distribution function

P(X >z)> exp (—Bz) (1 + Bz)* ", forz > 0.
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Proof: Let Y be an exponential random variable with rate 3. Consider,
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where (S-1) follows from Jensen’s inequality and the convexity of z — 2! (recall that o« > 2).

Lemma S-2 (Harremoés (2016)) Under the same setting as Lemma S-1,

P(X >z) <exp (2ah (m>> , forax > %.

a
where h(z) = (x — 1 —logz)/2.

In the proofs of the following two lemmas, we use the following fact: Given T} ; = s, li; s = p < pi1, Ezs =02 > 0%, 0; 1
and 7; ; are independent because we sample them from different distributions independently.

Lemma S-3 (Tail Upper Bound) We have
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Proof: We can compute this probability directly,
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The last inequality follows from Lemma S-2. The bound in Lemma S-3 is crucial for proving an upper bound of G, which
is presented in Section S-3.4.

Lemma S-4 (Lemma 3 in the main text) We have
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Proof: Consider the following set of equalities and inequality,
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Then the lemma is proved by the inequality in (S-3), and

1 .
Py (01,0 — 1 > —¢) > 3 it u>m (S-4)
and
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Note that (S-4) and (S-5) can be established by using the properties of the median of Gaussian and Gamma distributions
respectively.

Lemma S-4 provides us with a lower bound on (15, which is useful when we prove an upper bound of E [é — 1} in
Section S-3.3.

S-3.3. Bounding the first term of (16)

‘We now provide a bound for the first term of (16) in Lemma 2.

Letc; = 1/\/2m0%,c0 = W’ 7 = s(0} +¢) and fix ¢ > 0. We define the conditional version of G as
éls = G1s|ﬁ1,s:%a§,5:ﬁ =P (Mvz‘,t >MV; — (1+p)e | fis = Haa%,s = 5)

which is the left-hand-side of (S-2) in Lemma S-4. Then we calculate the expectation E {é — 1} by conditioning on

various values of [i; ; and & o2 ,. Note that we assumed that 07 < 1 forall i = 1,..., K. For clarity, we partition the
parameter space (3, i) € [0, oo) X (—00, 00) into four parts as follows

[0,00] X (—00,00) =AUBUCUD
where

A [ ) [Ml -5 OO) B = [077—) X (—oo,,u1 _E]’
C=|[r,00) X [ —€,00), D =[r,00)x (—00,u1 —eJ.

Then the expectation of (1/G15) — 1 can be partitioned into four parts as follows,
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Part A: Using the fourth case in Lemma S-4, we have
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where (S-7) follows from using tail upper bounds on the Gaussian and Gamma distributions. Here, and in the following, we
use the notation C}, i € N to denote constants.

Part B: Using the third case in Lemma S-4, we have
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For (S-9), we use the following well-known lower bound for the tail of Gaussian distribution (see for example, Formula 7.1.13

in Abramowitz & Stegun (1965)). Namely, for a Gaussian random variable X with mean y and variance o', we have
P(X > ji+ oz) > 1] 2 ! ( ”32) Yz >0
ox - ————exp | —— |, x> 0.
> B /=y B
For (S-10), we used integration by parts.
Part C: Use the second case in Lemma S-4, we have
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where (S-11) follows from Lemma S-1.

Part D: Use the first case in Lemma S-4, we have
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Then
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For (S-12), we can reuse the integrations in Part B and Part C.

Combine these four parts, we obtain an upper bound of (S-6) as follows,
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Summing over s, we have
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S-3.4. Bounding the second term of (16)

Following from Lemma S-3, we have the following inclusions:
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Summing over s,

= & se? g2
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Combining the two previous bounds, we have the following lemma,

Lemma S-5 We have

2log(2 log(2 C C
o) togCm) | G Cr
(i —2¢)" h(Z) € €

pi
77

E[T;,] <1+ max

The finite-time regret bound for MVTS follows from Lemma S-5 and equation (10) in main text.

Theorem S-1 The finite-time expected regret of MVTS for mean-variance Gaussian bandits satisfies

B K 2log(2n log(2n
B[R MVIS)] <) (l " max{ (T, - 2<T§g(n>)—1/4)2’ (f(())}

+ Cs (log n)1/2 + C7 (log n)1/4 + Cs) (A + 2F12,max) .

Let e = (logn)~% and n — +oo, the regret bound in Theorem 3 follows from Theorem S-1.

S-4. Proof of Theorem 1

The proof is similar to that for proof of Theorem 3. For Theorem 1 (MTS), we define following event and conditional
probability,

E; (t) = {mt =iy —Gig, <MVy—(1+ p)s} . Gis =P (Ei(t)°|Tsy = )

Lemma S-6 we have

_ MV — ppu— (1 2
Pt<MVi,t2MV1(1+P)5‘ﬂi_N»Ti,t_S>§exp<8( Vi —pp (+P)6)>

22

Proof: Consider,

Py (mz‘,t > MV — (1+p)e ‘ fri = p, Ty p = 8)
=Py (pbis — 57y > pur — 07 — (L4 p)e | fri = p, Tiy = )
<Py (pbii > ppa — 0F — (L+pe | s = p, Tiy = 5)
2
< exp (_8 (MVy — pp— (1 + p)e) )

22

This lemma is used to bound the second term of (16) in Lemma 2. We also need a lower bound of GG15 to bound the first
term of (16) in Lemma 2.
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Lemma S-7 We have

—— P01 >y —elpsi = p, Th s = if 11 ¢ <
P, (le’t >MVy — (14 pe | = p, Ths :8) > )2 (010 > 1 —eljti = p, Tr g = 5) if flis < g1
1 if Hi,s > 1
Proof: By direct calculation,
P, (1\71?/17,5 > MV, — (1 + p)€ ‘ /ll = /.L,Tl’t = 8)
=P (011 — 01 5 > p1 — 0f — (L+ple| i = p, Thp = s)
> Py (01> m —e|fn = p,Tie=s) P (07, < of +¢)
1 .
> 5P (0re = — | fui = 1, Ty = 5) (S-13)

Then Lemma S-7 is proved by the inequality in (S-13) and the following fact: For X being an Gaussian random variable
with mean y and variance o2, if 2’ < p

Pr(X > ') >

N | =

S-4.1. Bounding the first term of (16)
With Lemma S-6, Lemma S-7, we can now prove Theorem 1.

Let c = 1/4/2m0? and fix € > 0. We will condition on fi; s and use the same proof technique as that for Theorem 3. The
parameter space (—oo, 0o) will be divided into two parts, (—oo, 00) = A U B where

A= (—oco,u1 —¢), and B=][u —e,00).

We define the conditional version of G, as

Gis = Gls|ﬁ115:u,3%3:3 =P (mi,t > MV, — (1+p)e ’ s = M)

Consider,

1 1 -G s(p— pn)?
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8(#*#1)2)

< 4c/ (1 — 615) exp (-W) dp + 20/ P <_ ?U% dp
A 207 B P (01> —e|fui=pTie=s)

< Cgexp (—se?/2)

We have computed the same integration in (S-10) and (S-9). Summing over s, we have

> 1 40,
E 1] < =2,
>Elg, Y=

S-4.2. Bounding the second term of (16)

{ﬂwﬂ/mogn < MVl_(Hp)g} Q{Giss 1}
s p n

Following Lemma S-6,
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2p° 1
%’ we have
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2
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2
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Hence for s > u =

<exp | —

Summing over s,

2
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P V s

2
20;

n n S (Fl
SO (G = 1/m) <ut S exp | -
=1 s=Tu]

20%1 202
<1+ p_logn + i 5 (q/mrflogn—&—l)
2 (+p)€)

2
(pLi —0f = (1 + p)e) (rif‘”r

Combining the two previous bounds, we have the following lemma.

2
1

Lemma S-8 pr>max{%,i:1,2,-~ ,K}, we have

2p%logn 2 5 4CYy
E[T; (n)] < + EYTER,: (\/7701 logn+1 )+ — +2

ot T o )

The finite-time regret bound follows from Lemma S-8 and equation (10) in main text.

Theorem S-2 The finite-time expected regret of MVTS for mean-variance Gaussian bandits satisfies

E[ﬁ (MVTS) ] < i ( 2p°logn + 4Cy(logn)'/? + 2) (A +2r2, ).
s (Pri — 0?2 — (1+ p)(log 71)*1/4)2 i,max

Let ¢ = (logn)~4 and n — oo, the regret bound in Theorem 1 follows from Theorem S-2.

S-5. Proof of Theorem 2

This is also similar to the proof of Theorem 3. For Theorem 2 (VTS), we define following event and conditional probability,

— ~ 1
Ei (t) = {MVM = PHi,s — 7_7 S MV1 - (1 + p)E} , Gis = ]P)t (E,L(t)c|Tl’t = S) .

it

2

Lemma S-9 Given 67 = o? and T = s such that

202 log(2n)

> )
° (T —¢)?

we have

_ X 1 o?
Py (MV“ 2 MVy— (14|67, =01, Tie = 8) =g TP <_Sh (of +s>>



Thompson Sampling Algorithms for Mean-Variance Bandits

Proof: Consider,

Py (mzt >MVy —(1+p)e ‘ 6@‘2,5 = 0% Ty = 3)

5 1 A
=P, (pui,s 2 ot — (1 +p)e ‘ 57, =0Ty = 8)

7,t

- 1 .
< Py (plti,s > ppa — pe) + Py ( <oi+e ‘ ors =0T = s)

Tit
< 1 n L o?
— xXp | — .
T o?+e

This lemma is used to bound the second term of (16) in Lemma 2. We need also a lower bound of (G;, to bound the first
term of (16) in Lemma 2.

Lemma S-10 Given (i1 s = ppand Th + = s, we have

Pt (ml,t > le — (1 +p)€‘&is = 0‘2,Ti,t = ) > {

Proof: By direct calculation,

Py (mm > MV, — (1+p)e ‘ 1 =p, T = S)

. 1 R
=P (pm,s — 2 ot —(1+pe|6i,=0"Tis= 8)
1.t

1 X .
> P (T < 0?+8‘Uﬁs =0% Ty =S> Py (fir,s > p1 — €)
1t
1 1
> 2P, ( <o?te ’ 62, =02 Ty, = s> . (S-14)
2 T1,t ?

Then Lemma S-10 is proved by the inequality in (S-14) and the following fact: If X is an inverse-Gamma random variable
with shape « and rate 3, if x > P

Pr(X <z)>

N

S-5.1. Bounding the first term of (16)

—and 7 = s(a% + ¢) for some fixed € > 0. To calculate the expectation conditioned on o2 we will

1
25/2T(s/2)o} 1,8’
use the same proof technique as the proof of Theorem 3. In particular, the parameter space (0, co) will be divided into two
parts, i.e., (0,00) = AU B where

Letc =

A=(0,7), and B =][r,00).

We define the conditional version of G+ as

Gie = G s =P, (1\71?71-,,5 > MV, — (14 p)e|d2, = [3)
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Then
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We omit the details because the same integrations have been computed in (S-11) and (S-12). Summing from s = 0 to co

shows that
4C 20
Z E 1 10 1
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S-5.2. Bounding the second term of (16)

Hence, similar to the analysis of MVTS,
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Hence

Lemma S-11 The number of times that VTS pulls arm i is bounded as

log(Zn) T 4010 2011
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The finite-time regret bound follows from Lemma S-11 and equation (10) in main text,

Theorem S-3 The finite-time expected regret of MVTS for mean-variance Gaussian bandits satisfies
log(2n)

- (5)

Let ¢ = (log n)*i and n — 400, the regret bound in Theorem 2 follows from Theorem S-3.

+ 4010(10g n)1/2 + 2011(10g n)1/4 =+ Clg (Az =+ 2F%,max) .

K
E[R, (MVTS)] <>

S-6. Proof of Theorem 4

We provide following useful lemmas before we process to prove the theorem.

Lemma S-12 (Chernoff-Hoeffding bound I) Let X1,...,X,, be independent {0, 1}-valued random variables (i.e.,
Bernoulli random variables) with E[X;] = p;. Let X = 2 3" | X;, p =E[X] = 2 3" | p;. Then, forany 0 < A < 1—y,

P(X > p+ A) < exp(—nd(u+ A, 1))

and, for any 0 < A < p,
P(X < p—A) < exp(—nd(p — A, 1))

where d(a,b) = alog ¢ + (1 — a)log 1=%.

Lemma S-13 (Chernoff-Hoeffding bound II) Ler X1, -- , X,, be random variables with common range [0, 1] and such
that B[ X¢|X1,..., X¢e—1] = p Let S,, = X1+ ... + X,. Thenforall a > 0,

P(S, >nu+a) < e_2a2/",
P(S, <np—a)< e=2a%/n,
Lemma S-14 (Relationship between Beta distribution and Binomial distribution) For all positive integers ., [3,
Foi™(y) =1 - Fiip_1,(a—1).

Lemma S-15 If M is a Binomial random variable with s trials and probability of success p, then

P (d@—aM/s) < l"gf’”) < exp <—zs(ﬁ_p_gi bg@m)?) ,

S
where the = is taken so that the exponent is minimized.

Proof: Let us define

b, =P (d(ﬁ — VEMs) < lg@”)) .

Clearly by the law of large numbers p;, — 0 as s — co. We can write

psi=P (d(ﬁ — V5 % ZX) < logfn)> 7
i=1

where X; are i.i.d. Bernoulli random variables with probability of success p.

Now by a slightly strengthened form of Sanov’s theorem (Csiszar & Korner, 2011, Problem 2.12(c)), we have the large
deviations bound
s < exp (—s min (q,p1)>

gqEAS
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where

A, {qe 0,1 : d(p1 — V3, ) < 21‘5@”)}

S

By Pinsker’s inequality d(p, ¢) > 2(p — q)? (assuming natural logs) so

As C A, = {q €[0,1]: (p1 —vVe—¢q)* < log(szn)}.

Hence, one has

log(2
ps < exp <—8 min d(q,p1)> = exp <—sd(p1 —Vex Ogi ") ,p1)> :
q s

The lemma is proven by applying Pinsker’s inequality again.

Lemma S-16 (Tail Upper Bound) We have

P, (m“ > MV, —¢ ’ Tit=s,a;¢ = m) < exp (*Sd (I — /e, %)) + exp (*Sd (y + Ve, %)) .

Proof: Let v = (l—p)+|12—p—2p1\ Y= (1—0)—\12—p—2p1| , then

P, (1\//5/@3 EMV1—€’T¢¢=8,%¢=m)

=P (,097f zt(l *911‘) > pp1 —p1(1 —p1) *GlTi,f, = 8,04t = m)
=Py (

(07, —pt — (1 =p)(0is —p1) > —€| Tiy = 5,01 = m)
_ 1— 2 4 2 1= —
Py <9i,t > p)+ V(1 -p) "; (Pt —p1(1—p) 5))

; <0i,t U= l _p)224(p? —n(l-p) —5)>

1—p)+[l—p—2 1—p)—|l—p—2
g[@t<9m2( p)+\2 p pll_ﬁ)+Pt(9i)t§( p) |2 p p1+\/g>

< exp (—sd (a: — Ve, T)) + exp (—Sd (y + /e, T)) .
S S
The last inequality follows from Chernoff-Hoeffding bound (Lemma S-12).

Lemma S-17 (Tail Lower Bound) We have

F§+1y(m) ifl—p—2p; <0

P, (MV, . >MVy —e|Tis =s,ip =m) > .
t( 5 2 1—¢€ i =8,y m)—{l FPy 4(m) if1—p—2p >0

where

—p)+ VA =p?2+4(p} —pi(1—p) —¢) (1—p) = /(1 =p2+4(pF —p1(1—p) —¢)

S

2 Y= 2

and F? (-) is the cumulative distribution function of the Binomial distribution.
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Proof: Consider,

P, (mzs >MV; —¢ ’ Ty = s, = m)
=P4Mu—&ﬂl—%0Zmn—mﬂ—pﬁ—4ﬂ¢=&m¢=m)
=Pe(67, —pf — (1 —p)(0ir — p1) > —¢

_]Pt<9't>(1_p)+\/(1_p)2+4(p%_p1(1_p)_8)’T't_s Oz-t—m>
bt = 2 it — 9 Qg t —

Tit = 5,01 =m)

_ — — p)2 2 _ _ —
i, <9 RV LR BT ”]Ti,ts,ai,tm)

= Fis(m) + 1= FZy 5(m).

Then we have following lower bound,

. FB | . if1—p—2p1 <0
By (Vo = MV) — e[ T = 5,5, = m) >  Toalm) =2 =20 <0,
1—Fg, 5(m) ifl1—p—2p; >0

S-6.1. Bounding the first term of (16)
With Lemma S-16, Lemma S-17, we can now prove Theorem 4.

Fix € > 0. We will condition on S; s and use the same proof technique as the proof of Theorem 3.

Consider,

1 - 1 s “m
E[G —1] < — ( )pl”(l—pl)s :
19 o P (MVis = MV — | Tip = 5,850 = m ) \

Case I: If 1 — p — 2p; > 0,

1 u 1 s _
SN (-
1s o Py (MVig = MVy = 2| iy = 5,550 = m) \I?

<> 1_1(m) (;)pin(l —p)"

B
m=0 ES—‘,—LQ

LySJ S S —
m s—m w)PT = p1)*"
S P e

m=0 m=|gs]+1 ( m )gjm(l —g)stiem

2(Lgs] — sp1)? 1 ~ P (l—p)"
<2 - E —_—
< eXp( s )+ 1733 - gm(lig)s—m

m=|gs|+1

- p -
< 2exp(=2s(5 = p1)*) + 5 _1y exp(—sd(J,p1))-

The first part follows from Lemma S-13, the second part is by direct computation.
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Case2:If 1 — p —2p; <0,

?|

1
Gls

1}§

M

o Kmﬁmrﬂm*m

1 S m sS—m
— Pl (1 —p1)
o Py (Mvi_s > MV = 2| oo = 5,800 = m) \7

m=0
I_.zéj (8) m s—m S
pi'(1—p1) ( S) -
< o + o> 2 e ep)
s+1\ =m 7)s+1—m
m=0 ( m ).’E (1 o .T) i m=|Zs]+1 m
_1 R ppapy s+ 1)’y

+2exp(f

L= £= gm(l—z)*m 5

2(|@s| + 1 — sp1)?

IN

1p_1j exp(—sd(Z,p1)) + 2exp ( -

S

The first part follows from Lemma S-13, the second part is by direct computation.

Summing over s, we have

Case I:

Case 2:

Cis Cia
ZFL%‘@ G—p)?  dGp)

s=1
i 1 Cis Cie

E -1 < — + — .
; [Gls } (@ —p1)?  d@ p)

S-6.2. Bounding the second term of (16)

Follow from Lemma S-16, we have the following inclusions:

and

Hence for

we have

{d (e-va ™) > log(jn)} c {exp (<o (e - va ™))

fo 2 ) = 2 € fo (a2 7))

IN

).

)
)

log(2n) log(2n) i }
Yol

s>u:max{ 5
2(0i —ve)” 2(1=p—p1—pi —

(G > 1) < (a(o- Ve ) < 252

<<y+\f ) < log2n)

(S-15)

(S-16)

(S-17)

Case I: If1 — p—2p; > 0,thenx =1 — p— p; > p1,y = p1, then, the first term of (S-17) can be bounded by applying

Lemma S-15,

Py (d(x—\@zb) <10g(2"))

S

P, (d(1pp1@’:) glOg(Qn)>

S

exp (—25(1—p—p1 —Ve+ log(2n )) >

IN

2s
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The second term of (S-17) is bounded as follows,

P, (d (v+ve ™) < 10g(82n)>

—P, <d (1 - vE, T:) < log(2n)>

< exp (25(271 —pi—Vex log(2n))2> :

2s

Case2: If1 —p—2p; <O0,thenx =p1,y =1— p—p1 < p1, we then apply Lemma S-15 again,

Pt<d<$\/5,n;)gbg(2m>

S

Py (d (m-ve ™)< bg(QTL))

S

exp <2s(p1 —Ve+ log(Qn)) )

2s

IN

The second term of (S-17) is bounded as follows,

((y+ ) < 1og(52n))

=P, (d(1—p_p1_\@’:‘) <10g(2")>

S

< exp <—25(1—p—p1 —Vex logQ(S )) >

Combining the two cases, we have

P, (G > i) <P, (d (w _ e ﬂ;) - log(s2n)) P (d (y+ vz %) - log(2n)>

S

< exp (‘23(171 —pi—Vex 10g2(§”))2> +exp <_28(1 TPTPLTpim Ve 1Og(2”))2> '

2s

Summing over s,

ZIP’t (Gis > 1/n) <u-+ Z exp (23<P1p1‘\£:|: 10g(2n))2>

2s
s=[u]

2s

Smax{ log(2n) log(2n) 2}+C;7+018. (S-18)
2T =vE)” 2(1=p—p1—pi—Ve) € <

+ exp <—2s(1 —p—p1—pi—Vex log(2n)) >

Lemma S-18 The expected number of times that BMVTS pulls arm 1 is bounded as

E[T;,n] < max{ log(2n) 3 log(2n) 3 } + 07129 %.
2T =ve)” 2(1=p—p1—pi—Ve) < €
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Proof: This lemma follows from equations (S-15), (S-16), (S-18), and notice that as e — 07,

1 1 1 1 1 1 1 1
L e(d), L se(d), b —e(d) L —e(d)
(T —p1)? g2 (¥ —p1)? €2 d(Z,p1) g2 d(7,p1) g
The finite-time regret bound follows from Lemma S-18 and equation (10) in the main text,

Theorem S-4 The finite-time expected regret of BMVTS for mean-variance Bernoulli bandits satisfies

K
~ - log(2n) log(2n) Cig | O _ 2
Bl (BMVIS)] < Zﬁ < {2(&- Ve 21— p—p1—pi— e } B ) (844 M)

Let ¢ = (log n)*i and n — 400, the regret bound in Theorem 4 follows from Theorem S-4.



