A. Proof of Equation (2)

First, for the first term in equation (2), we can derive:

B[Yous (A0, ALT® o ARRE ) H( )
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where the first equation is based on the sequential ignorabil-
ity assumption; The second, the third and the fifth equations
are based on the property of the conditional expectation; The

fourth and the last equations are based on the consistency
assumption. Equation (2) can thus be proved.

B. Proof of Theorem 1

We need to show that under assumptions (3) and (7) :

E

{d(At, Sy) — B(d(Ay, St)|St)}><

{UM - E(Ut+k|St)} = 0.

By the property of conditional expectation, it is trivial to
obtain that:

E[{d(At,St) — E(d(A,, St)|st)} x E(Ut+k\St)]

= (E[{d(At, Si) — E(d(Ar, S0)|S0)} x E(Usr|Sh)

)

FE
E[E{d(At,St)\St} - E{d(At, st)|st)} x E(Ut+k|st)]
0.

Thus Equation (8) is equivalent to: E[{d(At,St) -

E(d(Ay, St)|5’t)} X Ut+k] = 0. By the property of condi-
tional expectation, it is sufficient to show that:

E{{d(At; S¢) — E(d(At,St)‘St)} X Ut+k’5t} =0,

which is equivalent to:

E[d(At, st)Ut+k|st} — E[d(At, St)|St}E[Ut+k|St]
(B.1)

From the definition of Uy, we can obtain that:
Uy = Yigr — Tk(Ata ao, St)-

With consistency assumption, Y1 = Yiik (flt,l, a =
—A —A T

At, A?+1 t, ey A?+k_t1). Thus, Ut+k = th+k(At,1,at =

Ay, A?;TA‘, . ,A‘Z_ﬁf"i) — 71 (As, ag, St). By the consis-

tency assumption , it is trivial to prove that S;(A;_1) = S;.

E(UsslSi, Ar) = E[Ysn(Ai1, a0 = Ay, AT

AT = Tr(Ar, a0, 5[0 ( A1), A

1 ar=A ar=A
= E[K#»k(Atflv ay = Atv Atj»l ta e At.i.k_tl)_

T —A —A
E{Yt+k(At_1,at = At?A?-ti-l t, .. "A?fkkfi)_

K‘H@(Atfh at = ag, Aat:aoa v 7Aat:l10 )

t+1 t+k—1
At}

We first take the conditional expectation with re-
spect to Hi(Ai—1), As. Then the first term and
the second term are both E{Yiir(Ai—1,a =
A, Al AT Hy (A1), A} and can be
canceled. Thus the right side of the above equation is equal
to:

Ht(Atfl%

St(At,1)7At]

B B{Yirr(Aim1,ar = a0, ALT, o, ALY Ho( Arma),
AMS:(Ai), Ar) =

E |:Y;5+k(14t717 at = ao, A?jjao» ceey Afi?aol)‘st(ﬁt71)7 At]

- E[YH;C(/L_l, ar = ap, AT, ... ,Afﬁi“l)wt(ﬁt_l)],

where the last equation is based on assumption (7). There-
fore,

E(Uk|St, Ar) =
B[R r,a0 = a0, AT, AL IS (A )]

Take expectation with respect to .S; for both sides, we obtain
that:

E(Ups|Se) =
B[Yiin(Ai1, 00 = ag, AZT™, ., AT IS (A
- E(Ut+k|5t’ At)



Therefore,

E [d(At, SOUpsn \St]

=E {E{d(At, St)Usrk|St, Ar}

i
= Bla(a,, St)E{UHk\St,At}‘St]
y
- E{d(At,St)|St}E{Ut+k.|St}.

== E|:d(At, St)E{Ut+k‘St}

Thus Equation (B.1) can be proved. Therefore, Theorem 1
is proved.

C. Proof of Theorem 2
First of all,
NG

:[PnLl(H;E,O) . {\/H]P’H{Lz(H;B,C’,ﬁ)—

Ly(H; B,C)o} }

The second part on the right side can be written as:
VP { La(H; B,C, D) — Li(H; B, )6} }
~ Pu{La(H; B,C, D) ~ Li(H; B,C)s}}]
+ v/ |Pu{La(H; B,C, D) = Li(H; B,C)¢7}

— E{L2(H;B,C,D) — Li(H; B, C)qs;;}].

Therefore, to prove Theorem 2, it is enough to show the
following three equations:

P,Li(H;B,C) % E[L.(H;B,C)), (C.1)
Vi [Pu{La(H; B,C, D) = Ly(H; B, C)éi} -

P, {Ls(H; B,C, D) — Ll(H;B,C)qb;;}] = 0p(1) (C2)
Va[Pu{Li(H; B,C)g — La(H; B,C, D)}

~ B{L.(H; B,C)¢i — L»(H; B,C, D)}]

4 N{O,E(d;Z;B,C, D)}. (C.3)

Then with Slutsky’s theorem, we can obtain that \/ﬁ(ngk —
¢r) converges in distribution to a mean zero normal random
vector with variance-covariance matrix given by:

R {Ll(H; B, C)}E(H; ;. B, C, D)E*l{Ll(H; B, C)}

C.1. Proof of Equation (C.1)

First, we can obtain:
P, L\(H; B,C) — E[Ly(H; B, C)]
+{P,L1(H;B,C) — E[L,(H; B,C)]}
The second part on the right is 0, (1) by the law of large
numbers. Therefore, we just need to prove that the first

part is 0,(1). With Taylor expansion and the mean value
theorem, we can obtain:

P, Li(H: B,C) = PuLi(H: B,C)|

_ Pn{aLl(I;éB,C) BB
AP oo}
(P2 oo

for some B’ between B and B, and C’ between C and C.

OL\(H;B,C)| -
o — <

P”{ OB B/(B B)}‘ -
dL,(H;B,C) .

P, || 21612‘3 B‘ (C.4)
Notice that:

aBt B’

b (P A 10 )
|Ct — A¢| f1(St) 0

By assumption 3, we can obtain that E{|C} — A;| fx(S:)} <
oo. Furthermore, E|B,— A?| < E|B;— B;|+E|B;—A?| <
E|B, — By| + E|B; — A2%|. By assumption 3, we can obtain
that E{B; — A?} < co. Thus, If we can prove that:

sup | By(s) — By(s)| = 0,(1), (C.5)

then E‘%@/ < 0o. Since

oL (H; B, C)
OB

dL\(H;B,C)
]Pn p E ) )
~ B,

)

B’ B’

we obtain that:

dL.(H; B, C)

P
" 0B

= 0,(1).

B’



Together with Equation (C.5), we obtain that the right side
of Equation (C.4) is 0,(1). Similarly, if we can prove that:

Ci(s)] = 0p(1), (C.6)

sup |C’t(s) -
S
and we can obtain:

dL1(H; B, C)

Py
ocC

Then we can obtain that:

PuLi(H; B, C) = P L1 (H; B, C)| = 0,(1),

Together with P,, L, (H; B, C) — E[L,(H; B,C)] 2 0 by
the law of large numbers, we can finish the proof for equa-
tion (C.1).

Below, we prove equation (C.6). Proof of equation (C.5)
can be derived similarly. First, let the density of S,

be ps, and pg,(s) = {>i_, Ka(s — Si)}/n. Write

Ci(s) as: Ci(s) = Ci1(s)/ps, (s), where Cy1(s) =
{370 ALK\ (s—S})}/n. Alsolet Cy 1 (s) = Cy(s)ps, (s),
then:
sup |Ci(s) — C(s)| = sup |= G :((;)) thl((j))\ =
sup — Cia( }pSf 5) — Ct1(s) {ﬁst (8) — ps, (5)} ’
s pst (S)pst (S)

M Ctal(s){ﬁst (5) — ps,(s)}

e ) o Fome |

Under the boundedness of C; 1(s) and the assumption that
ps, (s) is uniformly bounded away from 0, it suffices to
show that:

sup |C’t71(s) —Cia(s)| =0 (C.7

sup |ps, (s) — ps,(s)] = 0 (C.8)

We demonstrate the proof for equation (C.7). Equation (C.8)
can be proved similarly. First notice:

sup |CA’t71(s) —Cia(9)] <

E{Cy1(s)} + sup |[E{Ct1(s)} = Ct1(5)]
( (C.9)

sup |é’t1(s) —

We prove the uniform convergence of the two parts on the
right separately. First, we obtain:

E{Ci1(s)} = E{A;Kx(s — S;)}

=/ / at KA (s — 8¢)pa,|s, (at]s:)ps, (st)dsiday
at St

= / Ct(s)\A_1/2|K(A_1/2(s — 5¢))ps, (st)dsy.

Letv = A~Y%(s — s;), then s, = s — AY?v. Let V, =
{v:s— A"Y2y € S}, then the above equation is equal to:
/ Ci(s — AV20)K (v)ps, (s — AY?v)dv
Vs

_ /V {Culs) = o N2C (") K (0) {psi (5)-

vTAY 2pg, (s”)}dv

/K d’U

{Cus)ps. (") + ps, Cu(s))” }A%{ /V VK (v)do,

s

= Cf pSf

where the first equation above is obtained by Taylor expan-
sion; s’ and s” are vectors on the segment connecting s
and S;; for any function ¢(s), §(s) = 9g(s)/ds. From
the assumptlons A — 0asn — oo, thus inf; V, — S.
inf {fv (v)dv} = 1 — O(AY?). qu vK(v)dv <
JsvK (v) = O(1). Thus E{C},1(s)} = Cy1(s)+O(AV2).
Next, we prove the uniform convergence of the first part of
equation (C.9).

sup 1Ci1(s) — E{C;1(s)}]

—sup |1{Z AKA(s — S} — B{AIKA(s — SO}

=sup ‘ /G Ct(st)\A_%|K(A_%(s - st))d{Fn(st)—

F(st)

where F,,(s;) and F(s;) denote the empirical cumulative
distribution and the cumulative distribution of .S;. Then with
integration by part, the above equation is less or equal to:

F)

F(s0) dCi(se) K (A2 (s St))] ’

A7 sup | Cu(s0) K (A (s = 80) { Fu(se) -

/S [{Fn(st) -

1
<& |AT2|sup | Fa(s:) —
st

-+ sup
s

F(st)l,

where £ is a constant and the last inequality can be de-
rived by the assumption for the boundedness of Cy(s:)
and K (). By lemma 2.1 of Schuster (1969), we obtain
that: Ps, {sup,, |Fy,(s¢) — F(s¢)| > €} < & exp(—2ne?).



Then:

P(sup Cr(s) = E{Cra(s)}] > €)

< P(& A7 2| sup |Fy(se) — F(sy)| > e)
= P(sup |Fy,(st) — F(st)] > M)

2
< & exp(— Q"ZQAU

1

Thus, if 2n|A|] — oo as n — oo, then the first part of

equation (C.9) converges to 0. Equation (C.7) is then proved.

With similar proof for equation (C.8), we can obtain formula
(C.6). This ends the proof for formula (C.1).
C.2. Proof of Equation (C.2)
First we write the left side of the equation as:
ViR, [{ Lo(H: B,C, D) — L (H; B,C, D)o | -
{L2(8;B,C,D) - Ly(H; B,C. D)o} }|

T—k+1
> (N Nz — My My} |

t=1

— VP, |
T—kt1 A
Z VP, [{Mt,l(Mt,Z — M, o)+
=1
Mt,Z(Mt,l — M, 1) + (M, — Mt,l)(Mt,2 - Mt,Z)}}
where,
Y _ A% - Bt(St)
Vi = (4, Manioniiis.)
A2 — By(S) .
) @

A —Bt(St)
M ({At ct<st>}fk<st>)
A7 — By(Sy) .
ct<st>}fk<st>) Ok-

Mo = Yier, — Di(S;) — ({A
t

Mt72 = Y;erk - Dt(St) - <{At

Thus, it is sufficient to show that:

VP, My 1 (Mo — My 5) = 0,(1) (C.10)
VP, My o (M) — My 1) = 0,(1) (C.11)

VAP, (Myq — My1)(Mya — Mio) = 0p(1)  (C.12)
We first prove equation (C.10). Let G;1 = A7 — B(S:),

Cft,2 = {At _ACt(St)]:fk(St)a Gt,3 = Yitr — Dt(Sf) and
Gia = A7 —Bi(S:), Gr2 = {Ai—Ci(S0)} fr(Sh), Ges =

Yivr — f)t(St). Then equation (C.10) can be written as:

vies (G) {Gus = G+ (§2 760 i} = ot

Therefore, it is equivalent to show all the following equa-
tions :

VP, Gy 1{Gr 3 — Gz} = 0,(1)
VP, Gt 2{Gis — Gi s} = 0,(1)
VP, Gy 1{Gr1 — Gia} = 0,(1)
VPG o{Gia — Gia} = 0p(1)
VPG 1{Gra — Gia} = 0p(1)
\/H]PnGtQ{ét,l - Gt,l} = Op(l)

We show the proof of the last equation above. The rest of
the equations can be proved similarly. First write it as:

\/ﬁPnGt’g{étJ - Gt,l}
= /NP {A; — Cy(S))HBi(S;) — Bi(S)}

S AL KNS = $)/n. Buals) =
Then B(s) = By 1(s)/ps,(s).

(C.13)

Let Bt,l(s)

By(s)ps, (s)-
obtain that

nler;oVar{\/n|A1/2| (Btl(s) - Bt(s)ﬁgt(s))} < 00,

(C.14)
then from appendix B.1 of Zhu et al. (2020), we obtain that:

under the assumptions: +/7n|A1/2] (Bm (s)—B:(s)ps, (s))
converge in distribution to a mean 0 normal distribution.
Together with equation C.8 and the assumption that pg, (s)
is bounded away from 0, we can obtain that,

If we can

n|A|%{Bt( ) - Bt(st)}
Bt St)pSt(St)
nlAl® { pst (St) }+0p(1)
n|A|z {%Z (S)) K p (S fst)}+op(1)

Jj=1

where Bg( ) ={A7 — E(A7|S; = s)}/ps, (s).

Then:
\/ﬁPnGt,z{ém —Gia}
= VNP {A; — Co(Se) H{B:(S:) —

_ 1 i{Ai—
[\/n|A2 { ZBg SHEA(S] — 89) }+op ]
Z{At Ci(S0) }{ZB] (SHKA(S? = S}

Bi(St)}

+ 0p(1)

VIS { i S} BI(SHEA(SE - D) + 0,(1)

i=1 j=1



The third equation above is based on /n|A2| — oo and

VRS (Ai-C(S))) L N(0, E{Var(4,|S,}). Thus we
just need to prove that the first term is o, (1). The first term
above is a v/n times a U-statistic plus an o0,(1) term when
written as:

S

j=11i<g

Bl (SHEA(S! — SH{AL — Ci(S])}

+ Bi(shEA(S] - si{al - @(Sﬁ')}]

+ —
n

VIS Bisi{ai - OASZ)}]-

The second term above is 0,,(1) because of the law of large
numbers. The expectation of the U-statistics is equal to :

n—1

B|B(shEx(s] - sH{4i - ush ]

_n- 1E{Af — B(A3S, = S))
s, (S)
{4i - B(Als, = 5D}

K J Qi
n A(St St)

n—1

= E(E{{Ai—E(At|5t=S§)}

St 41, 1]

) .
A — BE(A7IS: = 5))
ps, (Sf)

=0.

KA(S] - Sf))

By the properties of U-statistics, the variance of /n times
the U-statistics converge to:

Var{ B[ B (S)KA(S] — ST {4; — Cu(5)}
+ BSDEA(S] = (A} - Cu(sipy|si. 4] }
We can obtain:
E[Bf(sf)KA(S{ _ SH{AL - Ci(S) 1+

Bi(SHEA(S — SH{A] — Cu(S])}

S, Al
= E[BI(SHEA(S] — SH{Ai — Ci(SH}IS!, Al

A} — Ci(SY)

- 2 i 7 _ G819 At
= E[{A}” — Bi(SO}KA(S] — S)IS, Ay ps.(Si)

From calculation in section C.1, we can obtain that:
.2 . 1
sup |[E{A] K(S{ — 5)} — Bi(s)ps,(s)| = O(|Az])

sup |E{KA(S] = 5)} = s, (5)] = O(A3)).

Thus,
.0 . . . . . 1
E[{A" - Bu(SDIKA(S] — 8118, Af] < &la%
for some constant 3. Thus,
Var{ B[ B (S)EA(S] = S){A} - Ci(S)}
+ BiSHEA(S] = si{a] - cush)|si. 4i] }
Ps, (SZ)
Then as long as Var{(A} — C,(S}))/ps,(Si)} < oo, the
variance of the U-statistics converges to 0. Since we as-
sumed that pg, (s) is bounded away from 0 and E(A?|S; =
Stl) < 00, this conditional can be satisfied. Thus, both the
expectation and the variance of the 1/n times the U-statistics
converge to 0, so /7 times the U-statistic converges in prob-
ability to 0. Thus equation (C.13) can be proved. With simi-
lar proof for the other equations above equation (C.13), we
can obtain equation (C.10). Equation (C.11) can be proved
similarly. Equation (C.12) can be proved with similar cal-

culation. We omit the details here due to the length of the
proof. This completes the proof for equation (C.2).

< €2|A | Var{

C.3. Proof for equation C.3

Equation C.3 can be simply obtained with the law of large
numbers. Thus the proof for theorem is completed.

D. Details of the Simulation Setting

D.1. Form for lag k effect under the simulation setting
The true value for the lag 2 effect is:

E(Yiq2|Ar = a,St) — E(Yi42]A: =0,5;) =

—(mim2 + 72 — Bine) (2 + 7'1772)a2+

{91772 + Bo(Tin2 + Tz)}a

+ {(T1772 + 12)(=271m + Bim) + ﬁlnmnz}aXt.
For k > 3: If we have:
E(Yiin-1|A: = a, ) = k11 Xs + ap—1,2X7 +
ak_LgAf + ap—1,4A4¢ + ap—1,54: X¢.
Then
E(Yitk|A: = a,St) = a—1,1 Xe41 + Oékfl,2Xt2+1+
Oékfl,?»AfJ,-l + ap—1,44i+1 + ak—1,5A41+1Xe41
= ak-1,1(M Xt + M2As) + ar—1,2(mX: + 772At)2+
ak71,3{71771Xt + (Tim2 + Tz)At}2
+ ak71,4{7'1771Xt + (1im2 + Tz)Az} + ak—l,S{Tl'r]lXt

+ (Tim2 + TQ)At}(th + n24A4¢)
= k1 Xo + a2 X7+ a3 A7 + ok aAp + ok s A Xy,



where
Qg1 = {Oék—1,1 + Oék—l,47'1}?71,
Qg2 = {Oék71,2 + Oék—l,37'12 + Olk—l,STl}"ﬁa
g3 = {Olkfl,Q"]% + ak—1,3(mim2 + 7'2)2 + ak—1,5(T11m2
+ ‘1'2)772}7
ka4 = {akq,mz + ag—1,a(T1m2 + TQ)},
Qg5 = {2771772ak—1,2 + ak—1,321m1(Tin2 + T2)+
ak—1,5 [7'1771772 + m(mn2 + 7'2)] }
Then lag k effect is:
g 3A? + ap 4 Ar + an s A X
D.2. Proof of Assumption (7) under the Simulation
Setting

According to the data generation model for our simulation
setting,

Y—t+1(121t71aat = ) =
91Xt + 92At_1 — CL(CL — 50 — 51Xt) —+ €t41-
Ay ~ Normal(m Xy + 10 A¢—1).
When 65 = 0,

Vi1 (Ai—1, a0 = a) = 01X — ala — Bo — B1Xt) + €141

is independent of A; given S; = X;. Thus assumption (7) is
satisfied for k£ = 1. However, when 6, # 0, this assumption
is not satisfied for k = 1.

For k = 2, first since X;,1(A;_1,a; = 2) ~ Normal(n; X;
+n9 Ay, 0?), it is trivial to see that:

Xiv1(Ai_1,a0 = a) L A4 X, (D.1)
Since
At—&-l(;lt—lyat =a)~
Normal (TlXtH(fL,l, a; = a) + maay, 02),
we can obtain that
Ap1(Ar_1 a0 = a) L A X, (D.2)

Therefore,

}/t+2(121t717at = aaA?jja) =
91Xt+1(At_1, ay = (l) + fa—

At—&-l([lt—lyat = a){At—i-l(At—la at = a)

—Bo — BlXt+1(z‘_1t71,at = a)} + €142

is independent of A; given X; based on Equation (D.1) and
(D.2). This is true even when 65 # 0.

Using _induction, we can also prove that for any k£ > 3,
Yiir(Ai1,00 = a, Apyr, oo A1) L Ag| Xy

D.3. Additional Simulation Results

The true parameters for & = 2,3 when 6, = —0.1 are :
(a2, B2,0, B2,1) = (—0.21,0.06, —0.08); (a3, 83,0, f3,1) =
(—0.0125,—0.05,—0.03). Table 1 presents the result for
the estimated parameters when S; = X;. As shown in the
table, the estimated parameters appeared to be unbiased.



Table 1. Simulation results from 200 replicates when 2 = —0.1.

g Br,0 B
k| n | Bias! SD' SE' CP | Bias! SD!' SE! CP | Bias'! SD! SE! CP
2 1 100 1.9 314 292 915 -1.2 234 224 935 -47 79.1 683 93.0
200 -1.0 238 209 0915 -0.1 16.6 158 93.0 3.6 563 479 90.5
400 -1.1 14.8 148 955 1.0 119 11.1 935 1.0 33.6 332 950
3 | 100 2.0 322 26.8 88.5 4.2 222 21.1 940 2.9 75.1 67.1 90.5
200 | -3.1 19.5 18.8 93.0 0.6 156 147 91.5 5.3 50.8 457 92.0
400 1.1 157 13.3 89.5 0.7 108 103 94.0 -2.5 36.7 31.5 92.0

! Note: These columns are in 1072 scale

% Note: SD refers to the standard deviation of the estimated parameters from 200 replicates, SE refers to the mean
of the estimated standard errors calculated by our covariance function, CP refers to the coverage probability of
the 95% confidence intervals calculated using the estimated standard errors.

3 Note: The worst case Monte Carlo standard error for proportions is 2.3%.

Table 2. Simulation results from 200 replicates when 02 = —0.1.
k n Parameter | Bias' SD! SE! CP
1 | 100 ag 183 234 21.8 835

Br,0 11.7 159 148 82.0
Br -20.5 593 545 915
Br,2 128 329 312 905
200 Qg 9.2 13.8 150 925
Br,0 6.6 122 103 855
Br1 -52 355 375 970
Br,2 4.6 21.1 213 955
400 Qg 5.3 11.0 105 92.0
Br,0 34 8.1 73 88.0
Br 1 2.6 284 261 93.0
B2 1.7 145 149 96.0

! Note: These columns are in 102 scale

2 Note: SD refers to the standard deviation of the es-
timated parameters from 200 replicates, SE refers to
the mean of the estimated standard errors calculated
by our covariance function, CP refers to the coverage
probability of the 95% confidence intervals calculated
using the estimated standard errors.

3 Note: The worst case Monte Carlo standard error for
proportions is 2.3%.

For £ = 1, we can correct the bias by estimating
the parameters with S; = (X, A;—1). The model
for the lag 1 treatment effect is thus: 7,7 = ara® +

(81,06 + B11X¢ + B1.2A1—1)a. The true parameters are:
(0417 ﬁ1707 ,81,17 ,8172) = (—1, 0,2, O) Since the dimen-
sion of S; has increased, we use the bandwidth \; =
n~1/4sd(S;, ;j)- The estimated parameters are presented in
Table 2. From the results we see that the estimated pa-
rameters appeared to be unbiased. However, the estimated
standard deviation was smaller than the actual standard de-
viation, leading to lower coverage probability when sample
size was small. This implies that when the dimension of
covariates increases, the estimated standard error converges
slower to the actual standard deviation.

E. Additional Results for Ohio Type 1
Diabetes Dataset

We applied the proposed method for the Ohio Type 1 Dia-
betes Dataset. The dataset consists of data from 6 patients.
The result for patient 6 has been presented in the article.
In Table 3, we present the additional results from all the
patients. It is likely that the decision process for insulin
dosage is different for each patient. Thus using the same set
of S; for all patients might not be the optimal choice.
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Table 3. Estimated variables with the Ohio type 1 diabetes dataset

Patient 1
k 1 2 3 4 Weighted
Qg 17(7.6) 21.8(10.6) 16.6(10.6) 10.9(12.7) 16(9.1)
B0 -172.3(73.1) -92.3(103.9) -11(112.4) -50(116.4) -63.2(86.3)
Br,1 1.4(0.7) 3.1(1.4) 3.6(1.6) 3.3(1.7) 3.1(1.3)
B2 -0.83.1) 2.1(4.7) 5.9(4.8) 3.9(5.9) 2.9(3.6)
B3 -9.1(51.5) -104.4(80.4) -93.7(88.3) 34.9(66.7) -59.6(56.9)
Br,4 12.9(8.9) 2.6(19.2) -11.6(23) -170(35.2) -110.4(33.6)
Patient 2
k 1 2 3 4 Weighted
g 0.2(0.7) 0.5(0.8) 0.6(1) -0.8(1.1) 0.1(0.8)
B0 -8.8(11.1) 14.1(18) 18(22.6) 14.7(24.2) 10.7(17.8)
Br,1 0.6(0.3) -0.2(0.2) 0(0.2) -0.1(0.5) 0.1(0.2)
B2 0.4(0.1) 0.2(0.3) 0.1(0.3) 0.3(0.3) 0.3(0.2)
Br.,3 -2.6(6.8) -19.1(16.1) -22.2(22.5) -5.3(23.8) -13.1(16.9)
B4 -2.1(2.2) -34) -4.6(4.5) -6.3(5.2) -4.2(4)
Patient 3
k 1 2 3 4 Weighted
Qg 0.6(1) -2.2(1.8) -5(2.6) -4.6(2.9) -2.9(1.9)
B0 -14(39.7) 69.2(57.3) 159.8(81.9) 173.5(88.3) 98.8(63.9)
Br,1 0.1(0.1) 0.4(0.3) 0.6(0.4) 0.7(0.4) 0.4(0.3)
B2 0.1(0.1) 0.2(0.2) 0.4(0.3) 0.3(0.3) 0.3(0.2)
Br,3 -11.2(46.6) -78.1(67.3) -148.4(93.1) -166(98.1) -103.3(74.8)
Bk, 2.3(2.5) 3.42.9) 5.9(3.3) 7.5(3.2) 4.8(2.7)
Patient 4
k 1 2 3 4 Weighted
Qg -1.2(5.1) -7.4(5.9) -6.5(4.8) -5.8(4.6) -6.2(4.4)
Br,0 -129(138.1) 162.5(95.5) 154.2(124.4) 167.4(104.2) 97.8(72.4)
Br,1 0.2(0.4) 0.1(0.5) -0.8(0.7) -0.4(1) -0.1(0.5)
B2 0.4(0.5) 1.3(0.9) 1.2(0.8) 1.2(0.8) 0.7(0.6)
B3 130.6(169.5) -173.4(130.2)  -146.4(162.6) -182.3(143.9) -96(97)
B4 1.2(3.5) -8.2(10.1) -13.9(12.3) -21.2(9.7) -10.3(7.7)
Patient 5
k 1 2 3 4 Weighted
Qg 2.7(2.9) 6.7(4.4) 6.6(4.9) 2.7(5.2) 3.93.7)
Br,0 -271(110.8) -514.8(139.1)  -321(160.8) -110.6(151.9)  -303.4(127.8)
Br.1 0.4(0.3) 1.2(0.7) 0.1(0.7) -0.6(0.8) 0.3(0.6)
B2 0.6(0.3) 0.5(0.6) 0.5(0.7) 0.8(0.7) 0.6(0.5)
B3 173.1(87.1) 324.2(119.8) 201.9(134.1) 78.7(125.6) 198.1(103.7)
Bi,a 28.8(13) 12.4(10.8) -5.1(6) -1.6(13.2) 8.4(7.8)

' Note: These columns are in 10~ scale .
% Note: The numbers in the parenthesis are the estimated standard errors calculated by the
covariance formula.
3 Note: The last column presents the estimated parameters for the lag 4 weighted advantage
with w1 = w2 = w3 = wy = 1/4.
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