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This supplementary document contains the technical proofs of convergence results and some additional numerical
results of the paper entitled “Hybrid Stochastic-Deterministic Minibatch Proximal Gradient: Less-Than-Single-
Pass Optimization with Nearly Optimal Generalization”. It is structured as follows. Appendix A first present
several auxiliary lemmas which will be used for subsequent analysis and whose proofs are deferred to Appendix D.
Then Appendix B gives the proofs of the main results in Sec. 3.1, including Theorem 1 which analyzes convergence
rate of HSDMPG and Corollaries 1 and 2 which analyze the IFO complexity of HSDMPG on the quadratic
problems. Next, Appendix C provides the proofs of the results in Sec. 3.2, including Theorem 2 which proves the
convergence rate of HSDMPG and analyzes its IFO complexity for generic problems, and Corollary 3 which
gives the IFO complexity of HSDMPG to achieve the intrinsic excess error bound. Then in Appendix D we
present the proofs of auxiliary lemmas in Appendix A, including Lemmas 1 ∼ 3. Finally, more details of the
testing datasets used in the manuscript are presented in Appendix D.4.

A. Some Auxiliary Lemmas
Here we introduce auxiliary lemmas which will be used for proving the results in the manuscript. For the sake of readability,
we defer the proofs of some lemmas into Appendix D. The following elementary lemma will be used frequently throughout
our analysis.
Lemma 1. Assume that the loss F (θ) is a µ-strongly convex loss, supθ

1
n

∑n
i=1 ‖H−1/2(∇F (θ) − ∇`i(θ))‖22 ≤ ν2.

Suppose rt−1 = ∇F (θt−1)− gt−1 where gt−1 = ∇FSt(θt−1). Then by setting

|St| =
16ν2(µ+ 2γ)2

µ2
exp

(
µt

µ+ 2γ

)∧
n,

we have

E
[
‖H−1/2rt‖2

]
≤ µ2

16(µ+2γ)2
exp

(
− µt

µ+2γ

)
, E

[
‖H−1/2rt‖

]
≤ µ

4(µ+2γ)
exp

(
− µt

2(µ+2γ)

)
.

See its proof in Appendix D.1.
Lemma 2. SupposeH andHS respectively denote the Hessian matrix of F (θ) and FS(θ) in problem (1). w.l.o.g., suppose
‖xi‖ ≤ r (i = 1, · · · , n) and `(θ>x,y) is L-smooth w.r.t. θ>x. Then we have

ES
[
‖HS −H‖2

]
≤

(
√

log(d) +
√

2)2L2r4

s
and ES [‖HS −H‖] ≤

(
√

log(d) +
√

2)Lr2√
s

,

where s is the size of S.

see its proof in Appendix D.2
Lemma 3. LetA andB be two symmetric and positive definite matrices andB � µI for some µ > 0. If ‖A−B‖ ≤ γ,
then (A+ γI)−1B is diagonalizable and

µ

µ+ 2γ
≤
∥∥∥B1/2(A+ γI)−1B1/2

∥∥∥ ≤ 1.

Moreover, the following spectral norm bound holds:

‖I −B1/2(A+ γI)−1B1/2‖ ≤ 2γ

µ+ 2γ
.

See its proof in Appendix D.3.
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B. Proofs for the Results in Section 3.1
We collect in this appendix section the technical proofs of the results in Section 3.1 of the main paper.

B.1. Proof of Theorem 1

Proof. This proof has four steps. To begin with, for brevity, let ut = H1/2(θt − θ∗). In the first step, we establish the
relation between ut and ut−1 which will be widely used for subsequent proof. Since for quadratic problems, we have
E[F (θt)−F (θ∗)] = 1

2E[‖θt− θ∗‖2H ]. So here we aim to upper bound E[‖θt− θ∗‖2H ] first, and then use it to upper bound
E[F (θt) − F (θ∗)]. To bound the second-order moment E[‖θt − θ∗‖2H ], we need to first bound its first-order moment
E[‖θt − θ∗‖H ]. So in the second step, we use the result in the first step to upper bound E[‖θt − θ∗‖H ]. Then in the third
step, we upper bound E[‖θt − θ∗‖2H ]. Finally, we can use above result to upper bound the loss. Please see the proof steps
below.

Step 1. Establish the relation between ut and ut−1.
Since the objective function F is quadratic, namely F (θ) = 1

2 (θ − θ∗)TH(θ − θ∗), for any θt−1 the optimal solution
θ∗ = argminθ F (θ) can always be expressed as

θ∗ = θt−1 −H−1∇F (θt−1). (6)

Then computing the gradient of Pt−1 yields

∇Pt−1(θt) = gt−1 +∇FS(θt)−∇FS(θt−1) + γ(θt − θt−1),

where gt−1 = ∇FSt(θt−1). LetHS denotes the Hessian matrix of the loss on minibatch S. ConsideringHS(θt) ≡HS
holds in the quadratic case, we can obtain ∇FS(θt) − ∇FS(θt−1) = HS(θt − θt−1). Thus plugging this results into
∇Pt−1(θt) further yields

θt =θt−1 − (HS + γI)−1gt−1 + (HS + γI)−1∇Pt−1(θt)

=θt−1 − (HS + γI)−1∇F (θt−1) + (HS + γI)−1∇Pt−1(θt) + (HS + γI)−1rt−1,

where rt−1 = ∇F (θt−1)− gt−1. Next plugging Eqn. (6) into the above equation, it establishes

θt − θ∗ = (I − (HS + γI)−1H)(θt−1 − θ∗) + (HS + γI)−1∇Pt−1(θt) + (HS + γI)−1rt−1.

By multiplyingH1/2 on both sides of the above recurrent form we have

H1/2(θt − θ∗) =(I−H1/2(HS+γI)−1H1/2)H1/2(θt−1−θ∗)
+H1/2(HS+γI)−1∇Pt−1(θt)+H1/2(HS+γI)−1rt−1.

Since ut = H1/2(θt − θ∗), we have

ut =(I−H1/2(HS + γI)−1H1/2)ut +H1/2(HS + γI)−1∇Pt−1(θt)+H1/2(HS + γI)−1rt−1. (7)

Step 2. Upper bound E[‖ut‖].
Conditioned on θt−1 and based on the basic inequality ‖Tx‖ ≤ ‖T ‖‖x‖ we get

E[‖ut‖] ≤E
[
‖I−H1/2(HS+γI)−1H1/2‖‖ut−1‖+‖H1/2(HS+γI)−1H1/2‖‖H−1/2∇Pt−1(θt)‖

]
+ E

[
‖H1/2(HS + γI)−1H1/2‖E[‖H−1/2rt−1‖].

] (8)

From Lemma 1, we know that by setting |St| = 16ν2(µ+2γ)2

µ2 exp
(

µt
µ+2γ

)∧
n, then the inequality always holds

E
[
‖H−1/2rt‖

]
≤ µ

4(µ+ 2γ)
exp

(
− µt

2(µ+ 2γ)

)
.
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Suppose ‖xi‖ ≤ r (i = 1, · · · , n) and `(θ>x,y) is L-smooth w.r.t. θ>x. Then by using Lemma 2 we have

E [‖HS −H‖] ≤ γ =
(
√

log(d) +
√

2)Lr2√
s

,

where s is the size of S. In this way, by using Lemma 3, we can further establish

µ

µ+ 2γ
≤
∥∥∥H1/2(HS + γI)−1H1/2

∥∥∥ ≤ 1 and
∥∥∥I −H1/2(HS + γI)−1H1/2

∥∥∥ ≤ 2γ

µ+ 2γ
. (9)

Similarly, we have ‖H−1/2∇Pt−1(θt)‖ ≤ 1√
µ‖∇Pt−1(θt)‖ ≤ εt√

µ . Now we plug the above results into Eqn. (8) and
establish

E[‖ut‖]
¬
≤ 2γ

µ+ 2γ
‖ut−1‖+

εt√
µ

+ E[‖H−1/2rt−1‖]

­
≤
(

1− µ

µ+ 2γ

)
‖ut−1‖+

µ

4(µ+ 2γ)
exp

(
− µ(t− 1)

2(µ+ 2γ)

)
+

µ

4(µ+ 2γ)
exp

(
− µ(t− 1)

2(µ+ 2γ)

)
=

(
1− µ

µ+ 2γ

)
‖ut−1‖+

µ

2(µ+ 2γ)
exp

(
− µ(t− 1)

2(µ+ 2γ)

)
,

where in the inequality ¬ we have usedH � µI , ­ follows from the condition εt ≤ µ1.5

4(µ+2γ) exp
(
− µ(t−1)

2(µ+2γ)

)
.

By taking expectation with respect to θt−1 we arrive at

E[‖ut‖] ≤
(

1− µ

µ+ 2γ

)
E[‖ut−1‖] +

µ

2(µ+ 2γ)
exp

(
− µ(t− 1)

2(µ+ 2γ)

)
.

By using induction and the basic fact (1− a) ≤ exp(−a),∀a > 0 and for brevity let a = µ
2(µ+2γ) , the previous inequality

then leads to

E[‖θt − θ∗‖H ] = E[‖ut‖] ≤ (1− 2a)E[‖ut−1‖] + a exp (−a(t− 1))

= (1− 2a)
t E[‖u0‖] + a

t−1∑
i=0

(1− 2a)t−1−i exp (−ai)

≤
(

1− 2a

1− a

)t
E[‖u0‖] exp(−at) + a

t−1∑
i=0

(
1− 2a

1− a

)t−1−i
exp (−a(t− 1))

≤
(

1− 2a

1− a

)t
E[‖u0‖] exp(−at) + (1− a) exp (−a(t− 1))

≤ (‖θ0 − θ∗‖H + (1− a) exp(a)) exp (−at)
≤ (‖θ0 − θ∗‖H + exp(2a)) exp (−at)

≤ (‖θ0 − θ∗‖H + e) exp

(
− µt

2(µ+ 2γ)

)
.

This means that for all ut, we have

E[‖ut‖] ≤ (‖θ0 − θ∗‖H + e) exp

(
− µt

2(µ+ 2γ)

)
.

Step 3. Upper bound E[‖ut‖2].
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From Eqn. (7), we can upper bound E[‖ut‖2] as

E[‖ut‖2] =E
[
‖(I−H1/2(HS+γI)−1H1/2)ut−1‖2

+‖H1/2(HS+γI)−1∇Pt−1(θt)‖2+‖H1/2(HS+γI)−1rt−1‖2
]

+ 2E
[
〈(I −H1/2(HS + γI)−1H1/2)ut−1,H

1/2(HS + γI)−1∇Pt−1(θt)〉
]

+ 2E
[
〈(I −H1/2(HS + γI)−1H1/2)ut−1,H

1/2(HS + γI)−1rt−1〉
]

+ 2E
[
〈H1/2(HS + γI)−1∇Pt−1(θt),H

1/2(HS + γI)−1rt−1〉
]
.

Since ESt−1 [rt−1] = 0, it is easy to obtain

E
[
〈(I −H1/2(HS + γI)−1H1/2)ut−1,H

1/2(HS + γI)−1rt−1〉
]

=ESESt−1

[
〈(I −H1/2(HS + γI)−1H1/2)ut−1,H

1/2(HS + γI)−1rt−1〉
]

=ES
[
〈(I −H1/2(HS + γI)−1H1/2)ut−1,H

1/2(HS + γI)−1ESt−1rt−1〉
]

= 0.

Conditioned on θt−1 and based on the basic inequality ‖Tx‖ ≤ ‖T ‖‖x‖, we get

E[‖ut‖2]

≤E
[
‖(I −H1/2(HS+γI)−1H1/2)‖2‖ut−1‖2+‖H1/2(HS+γI)−1H1/2‖2‖H−1/2∇Pt−1(θt)‖2

]
+ E

[
‖H1/2(HS + γI)−1H1/2‖2‖H−1/2rt−1‖2

]
+2E

[
‖(I−H1/2(HS+γI)−1H1/2)‖·‖ut−1‖·‖H1/2(HS+γI)−1H1/2‖·‖H−1/2∇Pt−1(θt)‖

]
+ 2E

[
‖H1/2(HS + γI)−1H1/2‖2 · ‖H−1/2∇Pt−1(θt)‖ · ‖H−1/2rt−1‖

]
.

(10)

From Lemma 1, we know that by setting |St| = 16ν2(µ+2γ)2

µ2 exp
(

µt
µ+2γ

)∧
n, then the inequality always holds

E
[
‖H−1/2rt‖2

]
≤ µ2

16(µ+ 2γ)2
exp

(
− µt

µ+ 2γ

)
.

Suppose ‖xi‖ ≤ r (i = 1, · · · , n) and `(θ>x,y) is L-smooth w.r.t. θ>x. Then by using Lemma 2 we have

E
[
‖HS −H‖2

]
≤ γ2 =

(
√

log(d) +
√

2)2L2r4

s
,

where s is the size of S. In this way, by using Lemma 3, we can further establish

µ2

(µ+ 2γ)2
≤
∥∥∥H1/2(HS + γI)−1H1/2

∥∥∥2≤1 and
∥∥∥I −H1/2(HS + γI)−1H1/2

∥∥∥2≤ 4γ2

(µ+ 2γ)2
.

Similarly, we have ‖H−1/2∇Pt−1(θt)‖ ≤ 1√
µ‖∇Pt−1(θt)‖ ≤ εt√

µ . Now we plug the above results and Eqn. (9)
into Eqn. (10) and establish

E[‖ut‖2] ≤ 4γ2

(µ+ 2γ)2
E[‖ut−1‖2] +

ε2t
µ

+
µ2

16(µ+ 2γ)2
exp

(
− µt

µ+ 2γ

)
+

8γ

µ+ 2γ

εt√
µ
E [‖ut−1‖]

+
εt√
µ

µ

2(µ+ 2γ)
exp

(
− µt

2(µ+ 2γ)

)
.
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Finally, by using E[‖ut‖] ≤ (‖θ0 − θ∗‖H + e) exp
(
− µt
µ+2γ

)
and εt ≤ µ1.5

4(µ+2γ) exp
(
− µ(t−1)

2(µ+2γ)

)
, we can obtain

E[‖ut‖2]

≤ 4γ2

(µ+ 2γ)2
E[‖ut−1‖2]+

µ2

8(µ+ 2γ)2

(
1

2

(
1+exp

(
µ

µ+ 2γ

))
+exp

(
µ

2(µ+ 2γ)

))
exp

(
− µt

µ+ 2γ

)
+

2µγb

(µ+ 2γ)2
exp

(
µ

2(µ+ 2γ)

)
exp

(
− µt

µ+ 2γ

)
¬
≤ 4γ2

(µ+ 2γ)2
E[‖ut−1‖2] + 2a2 exp (−2at) +

4bγa2

µ
exp (−2at)

=
4γ2

(µ+ 2γ)2
E[‖ut−1‖2] + 2a2

(
1 +

2bγ

µ

)
exp (−2at) ,

where a = µ
2(µ+2γ) and b = (‖θ0 − θ∗‖H + e). ¬ uses 1

2

(
1 + exp

(
µ

µ+2γ

))
+exp

(
µ

2(µ+2γ)

)
≤ 4 and exp

(
µ

2(µ+2γ)

)
≤

2. By using induction and the basic fact (1−a) ≤ exp(−a),∀a > 0 and for brevity letting c = 2a2
(

1 + 2bγ
µ

)
, the previous

inequality then leads to

E[‖θt − θ∗‖2H ] = E[‖ut‖2] ≤
(
1− a2

)
E[‖ut−1‖2] + c exp (−2at)

=
(
1− a2

)t E[‖u0‖2] + c

t∑
i=1

(1− 2a)t−i exp (−2ai)

≤E[‖u0‖2] exp(−2at) + c exp (−2at)

≤
(
‖θ0 − θ∗‖2H + 2a2

(
1 +

2bγ

µ

))
exp

(
− µt

µ+ 2γ

)
.

Step 4. Bound E[F (θt)− F (θ∗)].
It is easy to check E[F (θt)− F (θ∗)] = 1

2E[‖θt − θ∗‖2H ] in the quadratic case. So we obtain the desired result:

E[F (θt)− F (θ∗)]=
1

2
E[‖θt − θ∗‖2H ]

≤1

2

(
‖θ0 − θ∗‖2H +

µ2

2(µ+ 2γ)2

(
1 +

2γ

µ
(‖θ0 − θ∗‖H + e)

))
exp

(
− µt

µ+ 2γ

)
¬
≤1

2

(
‖θ0 − θ∗‖2H +

1

4
‖θ0 − θ∗‖H +

3

2

)
exp

(
− µt

µ+ 2γ

)
=

(
1

2

(
‖θ0−θ∗‖H+

1

2

)2

+
5

8

)
exp

(
− µt

µ+ 2γ

)
,

where ¬ uses µ2

2(µ+2γ)2 ≤
1
2 and µγ

(µ+2γ)2 ≤
1
4 . The proof is completed.

B.2. Proof of Corollary 1

Proof. This proof has four steps. In the first step, we estimate the smallest iteration number T such that E[F (θT )−F (θ∗)] ≤
ε. Since the IFO complexity comes from two aspects: (1) the outer sampling steps for constructing the proximal function
Pt(θ)=FS(θ) + 〈∇FSt(θt−1)−∇FS(θt−1),θ〉+ γ

2 ‖θ − θt−1‖
2
2 which requires sampling the gradient ∇FSt(θt−1); (2)

the inner optimization complexity which is produced by SVRG to solve the inner problem Pt(θ) such that ‖Pt(θ)‖ ≤ εt. So
in the second step, we estimate computational complexity of the outer sampling. In the third step, we estimate computational
complexity of the inner optimization via SVRG. Finally, we combine these two kinds of complexity together to obtain total
IFO bounds. Please see the proof steps below.

Step 1. Estimate the smallest iteration number T such that E[F (θT )− F (θ∗)] ≤ ε.
According to Theorem 1, we have

E[F (θt)−F (θ∗)]=
1

2
E[‖θt−θ∗‖2H ]≤ζ exp

(
− µt

µ+2γ

)
,
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where ζ= 1
2

(
‖θ0−θ∗‖H+ 1

2

)2
+ 5

8 with ‖θ‖H=
√
θ>Hθ. In this way, to guarantee E[F (θt)− F (θ∗)] ≤ ε, the iteration

number T should be satisfies

T =
µ+ 2γ

µ
log

(
ζ

ε

)
.

Step 2. Estimate computational complexity of the outer sampling .
The stochastic gradient estimation complexity up to the time step T is given by

T−1∑
t=0

|St| ≤
16ν2(µ+ 2γ)2

µ2

T−1∑
t=0

exp

(
µt

µ+ 2γ

)
=

16ν2(µ+ 2γ)2

µ2

exp
(

µT
µ+2γ

)
− 1

exp
(

µ
µ+2γ

)
− 1

¬
≤16ν2(µ+ 2γ)2

µ2

µ+ 2γ

2µ

ζ

ε
=

16ζν2(µ+ 2γ)3

µ3ε
,

where in ¬ we have used the definition of T such that exp
(

µT
µ+2γ

)
= ζ

ε and the fact exp(a) ≥ 1 + a,∀a > 0. At the same
time, we also have

T−1∑
t=0

|St| ≤ nT =
(µ+ 2γ)n

µ
log

(
ζ

ε

)
.

By combing the above two inequalities we obtain the computational complexity of the outer sampling as

16ζν2(µ+ 2γ)3

µ3ε

∧ (µ+ 2γ)n

µ
log

(
ζ

ε

)
= O

((
1 +

κ3 log1.5(d)

s1.5

)
ν2

ε

∧(
1 +

κ log0.5(d)

s0.5

)
n log

(
1

ε

))
,

where we use γ =
(
√

log(d)+
√
2)Lr2√

s
and κ = L

µ .

Step 3. Estimate computational complexity of the inner optimization via SVRG.
At each iteration time stamp t, we need to optimize the inner problem Pt(θ)=FS(θ) + 〈∇FSt(θt−1)−∇FS(θt−1),θ〉+
γ
2 ‖θ − θt−1‖

2
2. In Pt(θ), its finites-sum structure comes from FS(θ) and its gradient.

For (µ+ γ)-strongly-convex and (L+ γ)-smooth problem, it is standardly known that the IFO complexity of the inner-loop
SVRG computation to achieve E[Pt−1(θT )− Pt−1(θ∗)] ≤ εt can be bounded in expectation by O

((
s+ L+γ

γ+µ

)
log
(

1
εt

))
,

where θ∗ denotes the optimal solution of Pt−1(θ). Since Pt−1(θ) is (µ+ γ)-strongly-convex, we have ‖∇Pt−1(θt)‖2 ≤
2(µ+ γ)(Pt−1(θT )− Pt−1(θ∗)). In this way, to achieve ‖∇Pt−1(θt)‖2 ≤ εt = µ1.5

4(µ+2γ) exp
(
− µ(t−1)

2(µ+2γ)

)
, the expected

IFO complexity of SVRG is

O
((

s+
L+ γ

γ + µ

)
log

(
2(µ+ γ)

εt

))
≤O

((
s+

L

γ

)
log

(
(µ+ γ)2

µ1.5
exp

(
µ(t− 1)

µ+ 2γ

)))
=O

((
s+

L

γ

)(
log

(
(µ+ γ)2

µ1.5

)
+
µ(t− 1)

µ+ γ

))
.

From above result we know that E[F (w(t))] ≤ F (w∗) + ε after T = O
(
γ
µ log

(
1
ε

))
rounds of iteration. Therefore the total

inner-loop IFO complexity is bounded in expectation by

O

(
T∑
t=1

{(
s+

L

γ

)(
log

(
(µ+ γ)2

µ1.5

)
+
µ(t− 1)

µ+ γ

)})
=O

((
s+

L

γ

)(
T log

(
(µ+ γ)2

µ1.5

)
+
µT 2

γ

))
=O

((
s+

L

γ

)(
γ

µ
log

(
(µ+ γ)2

µ1.5

)
log

(
1

ε

)
+
γ

µ
log2

(
1

ε

)))
.

We plug γ =
(
√

log(d)+
√
2)Lr2√

s
into the above inner-loop IFO bound to obtain

O

((
s+

√
s

log(d)

)
L

µ

√
log(d)

s

(
log

(
L1.5

µ1.5

√
log(d)

s

)
log

(
1

ε

)
+ log2

(
1

ε

)))
.
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Step 4. Combing inner optimization complexity and outer sampling complexity to obtain total IFO bounds.
Combing the preceding inner-loop optimization complexity and outer sampling complexity yields the following overall
computation complexity bound

O

(
L
√
s log(d)

µ

(
log

(
L1.5

µ1.5

√
log(d)

s

)
log

(
1

ε

)
+ log2

(
1

ε

))
+

(
1 +

κ3 log1.5(d)

s1.5

)
ν2

ε

∧(
1 +

κ log0.5(d)

s0.5

)
n log

(
1

ε

))

=O
(
κ
√
s log(d) log2

(
1

ε

)
+

(
1 +

κ3 log1.5(d)

s1.5

)
ν2

ε

∧(
1 +

κ log0.5(d)

s0.5

)
n log

(
1

ε

))
,

where κ = L
µ .

This competes the proof.

B.3. Proof of Corollary 2

Proof. The result in Corollary 2 can be easily obtained. Specifically, we plug ε = O( 1√
n

) , κ = O(
√
n) and s =

O
(νn0.75 log0.5(d)

log(n)

)
into Corollary 1 and can compute the desired results.

C. Proofs for the Results in Section 3.2
C.1. Proof of Theorem 2

Proof. This proof has two steps. In the first step, we prove the results in the first part of Theorem 2, namely the linearly
convergence of F (θ) on the generic loss functions. Then in the second step, we analyze the computational complexity of
HSDMPG on the generic loss functions. Please see the following detailed steps.

Step 1. Establish linearly convergence of F (θ).
To begin with, by using the smoothness property of each individual loss function `(θ>x,y) we can obtain

F (θt) ≤ Qt−1(θt)=F (θt−1)+〈∇F (θt−1),θt−θt−1〉+∆t−1(θt),

where ∆t−1(θ) = 1
2 (θ − θt−1)>H̄(θ − θt−1) with H̄ = L

n

∑n
i=1 xix

>
i + µI .

On the other hand, from our optimization rule, we can establish for any z ∈ [0, 1]

Qt−1(θt) ≤ Qt−1((1− z)θt + zθ∗) + ε′t

=F (θt−1) + z〈∇F (θt−1),θ∗ − θt−1〉+
Lz2

2
(θ∗ − θt−1)>

(
1

n

n∑
i=1

xix
>
i +

µ

L
I

)
(θ∗ − θt−1) + ε′t.

Next, from the σ-strongly convexity of each loss `(θ>x,y), we can obtain∇2F (θ) = 1
n

∑n
i=1 `

′′(θ>xi,yi)xix
>
i +µI �

σ
n

∑n
i=1 xix

>
i + µI for all θ. In this way, we can lower bound

F (θ∗) ≥F (θt−1)+〈∇F (θt−1),θ∗−θt−1〉+
σ

2
(θ∗ − θt−1)>

(
1

n

n∑
i=1

xix
>
i +

µ

σ
I

)
(θ∗ − θt−1)

¬
≥F (θt−1)+〈∇F (θt−1),θ∗−θt−1〉+

σ

2
(θ∗ − θt−1)>

(
1

n

n∑
i=1

xix
>
i +

µ

L
I

)
(θ∗ − θt−1)

where ¬ we use L ≥ σ. By setting z = σ
L and combining all results together, we have

F (θt) ≤ Qt−1(θt)

≤F (θt−1) +
σ

L

[
〈∇F (θt−1),θ∗ − θt−1〉+

σ

2
(θ∗ − θt−1)>

(
1

n

n∑
i=1

xix
>
i +

µ

L
I

)
(θ∗ − θt−1)

]
+ε′t

≤F (θt−1) +
σ

L
[F (θ∗)− F (θt−1)] + ε′t.
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Then by using the basic fact (1− a) ≤ exp(−a),∀a > 0 and ε′t = σ
2L exp

(
−σ(t−1)2L

)
we rewrite this equation and obtain

F (θt)− F (θ∗) ≤
(

1− σ

L

)
(F (θt−1)− F (θ∗)) +

σ

2L
exp

(
−σ(t− 1)

2L

)
¬
= (1− 2a)

t
(F (θ0)− F (θ∗)) + a

t∑
i=1

(1− 2a)
t−i

exp (−a(i− 1))

­
≤
(

1− 2a

1− a

)t
(F (θ0)− F (θ∗)) exp(−at) + a

t∑
i=1

(
1− 2a

1− a

)t−i
exp (−a(t− 1))

=

(
1− 2a

1− a

)t
(F (θ0)− F (θ∗)) exp(−at) + (1− a) exp (−a(t− 1))

≤ (F (θ0)− F (θ∗) + (1− a) exp(a)) exp(−at)
≤ (F (θ0)− F (θ∗) + 1) exp(−at),

where in ¬ we let a = σ
2L for brevity; ­ uses (1− a)k ≤ exp(−ak) for a > 0.

Step 2. Establish computational complexity of HSDMPG for achieving E[F (θ)− F (θ∗)] ≤ ε.
It follows immediately that E[F (θ)− F (θ∗)] ≤ ε is valid when

t ≥ 2L

σ
log

(
F (θ0)− F (θ∗) + 1

ε

)
.

At each iteration time stamp t, the leading terms in Theorem 1 suggest that the IFO complexity of the inner-loop HS-
DMPG computation to achieve ε′t-sub-optimality ofQt can be bounded in expectation by

O
(
κ
√
s log(d) log2

(
1

ε′t

)
+

(
1 +

κ3 log1.5(d)

s1.5

)
ν2

ε′t

∧(
1 +

κ log0.5(d)

s0.5

)
n log

(
1

ε′t

))
=O

(
σ2
√
s log(d)

Lµ
t2+

(
1 +

κ3 log1.5(d)

s1.5

)
Lν2

σ
exp
(σ
L
t
)∧(

1 +
κ log0.5(d)

s0.5

)
Ln

σ
t

)

where κ = L
µ denotes the conditional number and ε′t = σ

2L exp
(
−σ(t−1)2L

)
.

From above result, we know that E[F (θ)− F (θ∗)] ≤ ε after T = O
(
L
σ log

(
1
ε

))
rounds of iteration. Therefore the total

inner-loop IFO complexity (w.r.t. the quadratic sub-problem) is bounded in expectation by

O

(
T∑
t=1

{
σ2
√
s log(d)

Lµ
t2+

(
1 +

κ3 log1.5(d)

s1.5

)
Lν2

σ
exp
(σ
L
t
)∧(

1 +
κ log0.5(d)

s0.5

)
Ln

σ
t

})

=O

(
σ2
√
s log(d)

Lµ
T 3 +

(
1 +

κ3 log1.5(d)

s1.5

)
Lν2

σ
exp

(σ
L

(T + 1)
)∧(

1 +
κ log0.5(d)

s0.5

)
Ln

σ
T 2

)

=O

(
L2
√
s log(d)

σµ
log3

(
1

ε

)
+

(
1 +

κ3 log1.5(d)

s1.5

)
Lν2

σε

∧(
1 +

κ log0.5(d)

s0.5

)
L3n

σ3
log2

(
1

ε

))
.

This proves the desired bound.

C.2. Proof of Corollary 3

Proof. Based on Theorem 2, the results can be easily obtained. Specifically, we plug ε = O( 1√
n

) , κ = O(
√
n) and

s = O
(νn0.75 log0.5(d)

log(n)

)
into Theorem 2 and can compute the desired results.
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D. Proof of Auxiliary Lemmas
D.1. Proof of Lemma 1

The following lemma from (Lei & Jordan, 2017) will be used to bound the gradient estimation variance.

Lemma 4. (Lei & Jordan, 2017) Let z1, ..., zN ∈ Rp be an arbitrary population of N vectors with
∑N
i=1 zi = 0. Let S be

a uniform random subset of [N ] with size n. Then

E

∥∥∥∥∥ 1

n

∑
i∈S

zi

∥∥∥∥∥
2

≤ 1(n < N)

n

1

N

N∑
i=1

‖zi‖2.

Proof of Lemma 1. Let zit = H−1/2(∇F (θt) − ∇`i(θ)). Then we have
∑n
i=1 z

i
t = 0, 1

n

∑n
i=1 ‖zit‖2 ≤ ν2 and

H−1/2rt = 1
|St|

∑
i∈St z

i
t. By invoking Lemma 4 we get

E
[
‖H−1/2rt‖2

]
= E

∥∥∥∥∥ 1

|St|
∑
i∈St

zit

∥∥∥∥∥
2
 ≤ ν21(|St| < n)

|St|
.

Provided that

|St| =
16ν2(µ+ 2γ)2

µ2
exp

(
µt

µ+ 2γ

)∧
n,

then the following condition always holds

E
[
‖H−1/2rt‖2

]
≤ µ2

16(µ+ 2γ)2
exp

(
− µt

µ+ 2γ

)
.

Next, by using Jensen’s Inequality, we can obtain

E
[
‖H−1/2rt‖

]
≤
√
E
[
‖H−1/2rt‖2

]
=

√√√√√E

∥∥∥∥∥ 1

|St|
∑
i∈St

zit

∥∥∥∥∥
2
≤ µ

4(µ+ 2γ)
exp

(
− µt

2(µ+ 2γ)

)
.

The proof is completed.

D.2. Proof of Lemma 2

Lemma 5. (Oliveira, 2010) Suppose {Ai}ni=1 are deterministic Hermitian matrices and {εi}ni=1 are independent Bernoulli
variables taking values ±1 with probability 1

2 . Let Z =
∑n
i=1 εiAi. Then we have

Eε
[
‖Z‖2

]
≤ (
√

log(d) +
√

2)2

∥∥∥∥∥
n∑
i=1

A2
i

∥∥∥∥∥ .
Proof. To begin with, we can compute the Hessian matrix H = 1

n

∑n
i=1 `

′′(θ>xi,yi)xix
>
i + µI . In this way, we can

formulate

‖HS −H‖ =

∥∥∥∥∥1

s

∑
i∈S

`′′(θ>xi,yi)xix
>
i −

1

n

n∑
i=1

`′′(θ>xi,yi)xix
>
i

∥∥∥∥∥ .
Assume xi are drawn from S and x̄i are drawn from S ′ where S ′ is also uniformly sampled from the n samples. In this
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way, we can establish

ES

∥∥∥∥∥1

s

∑
i∈S

`′′(θ>xi,yi)xix
>
i −

1

n

n∑
i=1

`′′(θ>xi,yi)xix
>
i

∥∥∥∥∥
2


=ES

∥∥∥∥∥1

s

s∑
i=0

`′′(θ>xi,yi)xix
>
i − ES′

1

s

s∑
i=0

`′′(θ>x̄i, ȳi)x̄ix̄
>
i

∥∥∥∥∥
2


¬
≤ESES′

∥∥∥∥∥1

s

s∑
i=0

`′′(θ>xi,yi)xix
>
i −

1

s

s∑
i=0

`′′(θ>x̄i, ȳi)x̄ix̄
>
i

∥∥∥∥∥
2


­
=EεESES′

∥∥∥∥∥1

s

s∑
i=1

εi
(
`′′(θ>xi,yi)xix

>
i − `′′(θ>x̄i, ȳi)x̄ix̄>i

)∥∥∥∥∥
2


≤4EεES

∥∥∥∥∥1

s

s∑
i=1

εi`
′′(θ>xi,yi)xix

>
i

∥∥∥∥∥
2


where ¬ uses the Jensen’s Inequality; in ­ the variable ε has two values ±1 with probability 1
2 . From Lemma 5, we have

Eε

∥∥∥∥∥
s∑
i=1

εi`
′′(θ>xi,yi)xix

>
i

∥∥∥∥∥
2
 ≤ L2Eε

∥∥∥∥∥
s∑
i=1

εixix
>
i

∥∥∥∥∥
2
 ≤ (

√
log(d) +

√
2)2L2

∥∥∥∥∥
s∑
i=1

(xix
>
i )2

∥∥∥∥∥ .
W.l.o.g., suppose ‖xi‖ ≤ r. Then we can obtain

ES

∥∥∥∥∥1

s

∑
i∈S

`′′(θ>xi,yi)xix
>
i −

1

n

n∑
i=1

`′′(θ>x̄i, ȳi)xix
>
i

∥∥∥∥∥
2
≤ (

√
log(d) +

√
2)2L2

s
ES

∥∥∥∥∥1

s

s∑
i=1

(xix
>
i )2

∥∥∥∥∥
≤

(
√

log(d) +
√

2)2r4L2

s
.

Therefore, we can further obtain

ES
[
‖HS −H‖2

]
≤

(
√

log(d) +
√

2)2L2r4

s
.

Next, by using Jensen’s Inequality, we can obtain

E [‖HS −H‖] ≤
√
E [‖HS −H‖2] ≤

(
√

log(d) +
√

2)Lr2√
s

.

The proof is completed.

D.3. Proof of Lemma 3

Proof. Since bothA+ γI andB are symmetric and positive definite, it is known that the eigenvalues of (A+ γI)−1B are
positive real numbers and identical to those of (A + γI)−1/2B(A + γI)−1/2. Let us consider the following eigenvalue
decomposition of (A+ γI)−1/2B(A+ γI)−1/2:

(A+ γI)−1/2B(A+ γI)−1/2 = Q>ΛQ,

whereQ>Q = I and Λ is a diagonal matrix with eigenvalues as diagonal entries. It is then implied that

(A+ γI)−1B = (A+ γI)−1/2Q>ΛQ(A+ γI)1/2,
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which is a diagonal eigenvalue decomposition of (A+ γI)−1B. Thus (A+ γI)−1B is diagonalizable.

To prove the eigenvalue bounds of (A+ γI)−1B, it suffices to prove the same bounds for (A+ γI)−1/2B(A+ γI)−1/2.
Since ‖A − B‖ ≤ γ, we have B � A + γI which implies (A + γI)−1/2B(A + γI)−1/2 � I and hence
E
[
λmax((A+ γI)−1/2B(A+ γI)−1/2)

]
≤ 1. Moreover, since B � µI , it holds that 2γ

µ B − γI � γI � EAA −B.
Then we get (A + γI)−1/2B(A + γI)−1/2 � µ

µ+2γ I which implies λmin((A + γI)−1/2B(A + γI)−1/2) ≥ µ
µ+2γ .

Similarly, we can show that µ
µ+2γ I � B

1/2(A+ γI)−1B1/2 � I , implying ‖I −B1/2(A+ γI)−1B1/2‖ ≤ 2γ
µ+2γ . The

proof is competed.

D.4. Descriptions of Testing Datasets

We first briefly introduce the ten testing datasets in the manuscript including including ijcnn, a09, w8a, covtype, protein,
codrna, satimage, sensorless, letter, rcv1. All these datasets are provided in the LibSVM website1. Their detailed
information is summarized in Table 1. From it we can observe that these datasets are different from each other due to their
feature dimension, training samples, and class numbers, etc.

Table 1: Descriptions of the ten testing datasets.

#class #sample #feature #class #sample #feature

ijcnn1 2 49,990 22 codrna 2 59,535 8
a09 2 32,561 123 satimage 6 4,435 36
w8a 2 49,749 300 sensorless 11 58,509 48
covtype 2 581,012 54 rcv1 2 20,242 47,236
protein 3 14,895 357 letter 26 10,500 16
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