Go Wide, Then Narrow: Efficient Training of Deep Thin Networks

A. Proof of Proposition 3.3

This result directly follows Theorem 5.5 in Aratjo et al. (2019). Let B&, denote the infinitely wide network trained by
gradient descent in the limit of M — oo. By the results in Theorem 5.5 of Araujo et al. (2019), we have
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where we explicitly give the dependency of constant C'5 5 in Aradjo et al. (2019) on the depth n, because C55 =
O(exp(c1 x Cp.1g)), where Cp.16 = O(exp(can)) and ¢; is some positive constant. See Lemma 12.2 in Aradjo et al.
(2019) for details.

Similarly,
1
D[SE&p, B&pl =0, (n exp(cy exp(can)) (\/M + \/17)) .
Combining this, we have

D[B&Dp, Béb] < D[SEp, B&pl +D[Bih, Bl
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B. Proof of Theorem 3.5

Assumption 3.4 Denote by S{jy the result of mimicking Bé‘;/[D following Algorithm 1. When training Sig;N, we assume
the parameters of Sy in each layer are initialized by randomly sampling m neurons from the the corresponding layer of
the wide network BYL. Define BgD’[i:n] =BMo...BM,

Theorem 3.5 Assume all the layers of Bé/ID are Lipschitz maps and all its parameters are bounded by some constant.
Under the assumptions 3.1, 3.2, 3.4, we have

, {pn
Disiinw. B3] = 0, (22 ).

Bé\;/ID,[i-i-l:n] Lip and Op(-) denotes the big O notation in probability, and the randomness is w.r.t.

the random initialization of gradient descent, and the random mini-batches of stochastic gradient descent.

where {3 = max;cy]

Proof. To simply the notation, we denote B(% by BM and Si by S™ in the proof. We have
BM(X) = (Bflv[ o Bﬁ{l o..o0 B{V[)(X)
S™(x) = (S:L" oS 0.0 S{”) (x).
We define
B[kﬂ/fl:kﬂ(z) = (B,i\f o B,Jg_l 0...0 B,i.\;[)(z),

where z is the input of B[I‘,fl ko) Define

Fy(x) = (B o...0 B} o B} o B\Y) (x)

n

Fi(x) = (B) o...0 B} o B} 0 ST") (x)

n

Fy(x) = (Bf:/[ o..oBMosSy o ST") (x)

Fou(x) = (8] 0 ..o S50 S50 ST) (x),

following which we have Fjy = BM and F,, = S™, and hence

D[S™, BM] = D[F,, Fy] < Y D[Fi, Fy_1].
k=1
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Define ¢;_1 := HBM

[2:n]

fori € [n] and ¢,, = 1. Note that
Lip

2
D[F, Fo] = \/EXND |:(B[J¥n] © B{W(X) - B[Jgjn] © S{n(x)) :|

< 0B (B0 - 57 0)']

By the assumption that we initialize S7"(x) by randomly sampling neurons from B2 (x), we have, with high probability,

\/]EM [(B{”(x) - S{”(x)ﬂ = ﬁ

where c is constant depending on the bounds of the parameters of B . Therefore,

D[F), Fy] = O, <\%> .

Similarly, we have

Combine all the results, we have

O

Remark Since the wide network Bé\fD is observed to be easy to train, it is expected that it can closely approximate the
underlying true function and behaves nicely, hence yielding a small /5. An important future direction is to develop rigorous
theoretical bounds for controlling /5.



