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Abstract

Semi-supervised learning (SSL) leverages unla-
beled data when training a model with insufficient
labeled data. A common strategy for SSL is to
enforce the consistency of model outputs between
similar samples, e.g., neighbors or data augmen-
tations of the same sample. However, model
outputs can vary dramatically on unlabeled data
over different training stages, e.g., when using
large learning rates. This can introduce harmful
noises and inconsistent objectives over time
that may lead to concept drift and catastrophic
forgetting. In this paper, we study the dynamics
of neural net outputs in SSL and show that
selecting and using first the unlabeled samples
with more consistent outputs over the course of
training (i.e., “time-consistency”) can improve the
final test accuracy and save computation. Under
the time-consistent data selection, we design an
SSL objective composed of two self-supervised
losses, i.e., a consistency loss between a sample
and its augmentation, and a contrastive loss
encouraging different samples to have different
outputs. Our approach achieves SOTA on several
SSL benchmarks with much fewer computations.

1 Introduction

Semi-supervised learning (SSL) tackles a challenging prob-
lem commonly encountered in real-world applications, i.e.,
how one should train a reliable machine learning model with
limited amounts of labeled samples but a rich reserve of un-
labeled samples. For many tasks, collecting accurate labeled
data is expensive and error-prone as it requires human labor,
while unlabeled data is cheap and abundant. Commonly
used methodology in the early days of SSL includes label
and measure propagation (Zhu & Ghahramani, [2002; |Zhou
et al., [2003; |Subramanya & Bilmes, [2011) and manifold
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regularization (Niyogil [2013), which encourage the label
consistency within a local neighborhood on the embedded
data manifold (i.e., the model should produce similar label
distributions for samples geodesically close to each other),
and where the manifold is approximated by a graph. This
encourages the model to be locally smooth on the manifold.

Recent deep learning shows that a trained neural net not
only works as an accurate classifier but also provides hidden-
layer features that can capture manifold structure at multiple
scales (Verma et al., [2019a; Zeiler & Fergus, [2014) More-
over, with prior knowledge of data and inductive bias embed-
ded in the neural net architecture and training strategies, e.g.,
convolutions and data augmentations (Zhang et al.| 2018}
DeVries & Taylor, [2017; |Cubuk et al., 2019a:b)), we can
train a more locally consistent model with better general-
ization performance. This motivates recent progress on self-
supervision (Raina et al., 2007} Trinh et al., 2019; [Zhang
et al.,2016; Noroozi & Favaro, 2016)) and SSL (Sajjadi et al.}
2016 Iscen et al.| [2019; |[Miyato et al., [2019} [Athiwaratkun
et al.l 2019; [Laine & Ailal 2017 [Berthelot et al., 2019}
Oliver et al.}[2018)), in which a self-supervised loss (which
does not require ground-truth labels) defined on data aug-
mentations can encourage a neural network’s local smooth-
ness on the data manifold. For example, the loss can encour-
age that a sample and its augmentations should have simi-
lar outputs, or different samples (and their augmentations)
should have different outputs. The former is usually called
“consistency regularization” (Rasmus et al.| [2015)), while
the latter is regarded as a “contrastive loss” (Chopra et al.,
2005) or a “triplet loss” (Weinberger & Saul, 2009). Neural
networks trained by this strategy have achieved substantial
improvements on SSL (Sajjadi et al., 2016} Berthelot et al.,
2020) and unsupervised learning (Caron et al., [2018; [He
et al., [2019) tasks without leveraging the weighed neighbor-
hood graphs commonly used in earlier works. More recently,
MixMatch (Berthelot et al.,|2019) and ReMixMatch (Berth4
elot et al.,2020) utilize a consistency loss with data augmen-
tations and, with a delicate combination of regularization
techniques, gets significantly improved SSL performance
on several datasets, thus demonstrating the effectiveness of
combining data augmentation and self-supervision.

The self-supervised loss defined on data augmentations can
be explained as an ordinary supervised loss with a pseudo
target (Leel [2013 [Miyato et al.,[2019) generated by the neu-
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ral net itself or a self-ensemble (Tarvainen & Valpola, 2017
Laine & Ailal [2017). For a consistency loss, the pseudo
target for an unlabeled sample can be the class distribution
of the sample’s random augmentation(s) generated by the
neural net. For a contrastive loss, we can use softmax to
normalize the similarities between a sample and a subset
of other samples (including one of its own augmentations).
The pseudo target for the softmax output has value 1 for the
sample’s augmentation and O for the other samples (van den
Oord et al., 2018)). Although pseudo targets achieved on
data augmentations tend to be accurate, the above tech-
niques cannot guarantee time-consistent pseudo targets for
unlabeled samples. At different training stages, the output
of a neural net for a sample can change dramatically due to
the non-smoothness of activation functions, the complexity
of network structures, and sophisticated learning rate sched-
ules (Smuith, 2017; Loshchilov & Hutter, 2017; L1 & Aroral,
2019). In such a case, when we use self-supervised losses
with varying pseudo targets for the same sample, the opti-
mization objectives may keep changing over training steps.
This inconsistency of the objective over time can consider-
ably slow down the training progress or even make it diverge,
resulting in serious concept drift and training failure.

Another common strategy for SSL is to select samples
whose predictions have high confidence. However, the con-
fidence can still change drastically over time for the same
aforementioned reason. Moreover, a neural network can
often simultaneously overconfident and incorrect on train-
ing samples. Indeed, our later empirical analysis shows
that confidence is an unreliable metric for selecting samples.
In addition, samples with high confidence tend to be less
informative to the future training since the gradient is pro-
portional to the gap between current outputs and the pseudo
target, which is small if the confidence is high.

In this paper, we study the dynamics of neural net outputs
during SSL. We analyze possible catastrophic forgetting on
labeled data caused by adding an unlabeled sample to train-
ing, from which we derive a “time-consistency (TC)” metric
c!(x) for an individual sample x at training stet that can
be used to select informative unlabeled data with more time-
consistent pseudo targets in self-supervision. Specifically,
ct(z) is an negative exponential moving average of a®(x)
(defined below) over training history before ¢:
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where Dy, (+]|+) is the Kullback-Leibler divergence, p*(z)
and y'(z) £ argmax, pl,(x) are the output distribution
over classes and the predicted class label of x at step ¢.
Intuitively, the KL-divergence between output distributions
measures how consistent the output is between two consec-

"We use superscripts to index the training step in this paper.

utive steps, while the log odds ratio for the predicted class
y'~1(z) measures the change of confidence on the predicted
class y*~1(x). A moving average of a’(z) naturally cap-
tures inconsistency over time quantify, based on the history,
how much change will occur to the learning objective when
selecting x and its pseudo target for future training.

We then present an empirical study of TC for unlabeled data
selection and compare this with using confidence. We artifi-
cially split a fully labeled dataset into labeled and unlabeled
subsets, and train a neural net by only using the labeled set.
We observe that the model tends to produce consistent out-
puts on some unlabeled samples but frequently changes its
prediction on others. We further find that the time-consistent
outputs (the former) are usually correct predictions while
the latter contains more mistakes. The observations lead us
to a natural curriculum (Bengio et al.,|2009; Zhou & Bilmes|,
2018)) for SSL that selects unlabeled samples with higher TC
at each training step while gradually increasing the selection
budget. We then introduce “TC-SSL” that adopts the curricu-
lum to train a neural net by minimizing the consistency loss
and contrastive loss defined on augmentations of unlabeled
samples (using learned policies of AutoAugment (Cubuk
et al.l[2019a)). In experiments, we show that TC-SSL outper-
forms the very recent MixMatch and other SSL approaches
on three datasets (CIFAR10, CIFAR100, and STL10) under
various labeled-unlabeled splittings and significantly im-
proves SSL efficiency, i.e., consistently using < 20% train-
ing batches of what the best baseline needs. These results
portend well for TC-SSL as a modern SSL methodology.

1.1 Related Work

Classic SSL methods enforce samples to have similar label
distributions in every local region of the data manifold —
this approach is taken by label/measure propagation (Zhu &
Ghahramani, 2002; |Zhu et al., [2003};|Zhou et al., 2003} |Sub-
ramanya & Bilmes| 2011} [Bengio et al., 2006} Iscen et al.,
2019) and manifold regularization (Niyogi, [2013} Belkin &
Niyogi, |2002). They rely on similarity measures between
samples to find the local neighborhood for every sample.
One can think of these methods as encouragements of “spa-
tial consistency”. It is not always clear, however, how to
determine sample pair similarity for a given data set and
model. E.g., which feature space do we compute the sim-
ilarity in? What similarity metric performs best? Recently,
graph neural net (GNN) based methods (Kipf & Welling|
2017; | Velickovi€ et al., 2018} [Verma et al.,2019b) can apply
graph-based SSL on neural net architectures and gets com-
pelling performance on SSL of graph data. The data in these
works consists of natural graph structures, while on arbitrary
data, generating the graph is itself a challenging problem.

Recent SSL research encourages spatial consistency by com-
bining data augmentation techniques and self-supervised
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losses. In (Rasmus et al.| 2015; |Sajjadi et al.l 2016), the
authors propose “consistency regularization” to encourage
the sample and its augmentations to have similar neural net
outputs. “Contrastive loss” (Chopra et al., |2005; |[van den
Oord et al., 2018) and “triplet loss” (Weinberger & Saul,
2009; |Schroff et al., |2015), on the contrary, encourage
different samples (and their augmentations) to have dis-
tant outputs. MixMatch (Berthelot et al.,|2019) combines
several techniques, i.e., consistency loss + sharpening the
pseudo target distribution averaged over multiple augmen-
tations + MixUp (Zhang et al.| 2018), which significantly
improve SSL performance on several datasets. Compared to
graph-based SSL, it integrates multiple augmentation meth-
ods (Berthelot et al.l|2020; |Cubuk et al.|[2019ajb) to provide
stronger self-supervision. Our work also adopts a similar
strategy but additionally enforces the time-consistency of
selected samples at every SSL step, which is an orthogonal
technique that can be seamlessly integrated into MixMatch.

2 Time-Consistency of Unlabeled Sample

We define the time-consistency (TC) of a sample x at step ¢
as an exponential moving average of —a'’(z) over time, i.c.,

c!(2) = ve(=a' (@) + (1 = 7e)c' (@) 2)
where 7. € [0,1] is a discount factor. We negate a'(x)
so that larger c!(z) means better time-consistency. For
classification tasks, we show that the changes in labeled
samples’ losses are bounded by a’(z) on unlabeled data. In
other words, choosing time-consistent unlabeled samples
mitigates catastrophic forgetting of labeled sample.

We denote the labeled data set as £, an unlabeled data set as
U, and an unlabeled sample as 2’ € U. Let f*(x) be the final
layer output (before softmax) on sample x with network pa-
rameters 0" at step ¢ of training, so p'(z) = softmax(f*(x)).
Let y(x) be the one-hot label vector for sample z, and
{(z; 0') be the cross entropy loss between the class label
and the softmax output of network with parameter 6. We
consider two cases: (1) we train the network using only
the labeled samples as a gradient step, i.e., 0/t = 6! +
N> wer Vol(z;60"), where 1) is the learning rate; and (2) we
add an unlabeled sample 2’ to the gradient step, i.e., 611 =
0" +1(3 e p Vol(x;0")+Vol(2';6")). In (2), when calcu-
lating £(x’; 6%), we use a one-hot label y!(z') that has value
one in position y*(z) (recall y*(z’') = argmax; p’(z’),
where pl;(2”) is class-j’s probability in distribution p‘z(m’ )
and value zero elsewhere — which is a “winner take all” or
a “pseudo” target. The Taylor expansion of labeled sample
loss ¢(x, 0) defined on 6, and evaluated at 6 is:

90,(0) = [0 €w300) + Voll(w; 00)(6, — 0a)]

+0((6y — 6a)?) (3)
We can measure the forgetting effect of adding =’ € U to the
training set by looking at the changes in loss over labeled

samples x € L. Ideally, =’ should not cause vital changes
to the loss over labeled samples, which should remain small.
If 8, is close to 8, it is reasonable to omit the second and
higher order terms of the Taylor expansion in Eq. (3. Doing
so, we calculate the change of loss for labeled data by
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If the learning rate is not too large, we may use the
difference (f'*'(z') — f*(2')) to approximate of(=)/ot.
After some algebra (details given in Appendix[B)), we can
bound the changes in loss for labeled samples by a’(z'):

tony ey O (@)
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Therefore, by selecting an unlabeled sample x’ with high
TC c!(2') (a smoothed estimate of —a’(z’) using expo-
nential moving average to eliminates noise), we will not
suffer from a rapid surge on the labeled sample loss if
> wer L(x;0") = 0 at step t. Thereby, " and its pseudo tar-
get will not result in catastrophic forgetting of learned sam-
ples. On the other hand, for 2’ itself, we expect its pseudo
target and objective to be consistent after being added to
training. A large c!(2’) indicates that both p’(z’) and the
confidence on pseudo-class y*(x’) vary little over training
history. Note the above analysis of forgetting effect on la-
beled data also extends and can be recursively applied to
the unlabeled data that have been correctly predicted and se-
lected for training. Hence, selecting unlabeled samples with
large TC can avoid catastrophic forgetting of learned data.

<Dgr(p'(a")l[p" " (2")) + [log =a'(a).

2.1 Empirical Evidence

We empirically investigate the quality of unlabeled samples
selected by the time-consistency metric. Ideally, in SSL
training, we expect the selected samples to have pseudo
targets no different from the unknown ground truths. On
CIFAR-10, we randomly select 15000 samples for training
and use the remaining 35000 samples for validation, where
the latter is considered as unlabeled data in the SSL setting.
We train a WideResNet-28-2 (Zagoruyko & Komodakis),
2016) (28 layers, width factor of 2, 1.5-million parameters)
on the 15000 samples by fully supervised training, and
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inspect the 35000 samples to check if the time-consistency
metric can effectively prune out the samples with wrong
predictions on the model while selecting samples with
the right labels. We compare time-consistency against
confidence as the metric to select unlabeled samples in
Figures and 3] More empirical studies with different
parameters and on CIFAR-100 can be found in Appendix [A]
which show patterns similar to what we present here.

CIFAR10: 15000 labeled, 35000 unlabeled

—— #incorrect samples selected by time consistency at epoch 100 <
e N

) w ) w0
selection threshold (confidence and time consistency are normalized to the same range)

Figure 1. Computed time-consistency and confidence at epoch 100.
The x-axis shows the validation samples selected using different
thresholds on the two metrics (normalized to [0, 100]). The y-axis
reports correct v.s. incorrect predictions over the selected samples.

N e e N Wl e

1000 samples with largest time consistency
—— 1000 samples with smallest time consistency

!!!!!!

W 1000 samples with largest confidence
—— 1000 samples with smallest confidence

apochs

Figure 2. Computed time-consistency (top) and confidence (bot-
tom) at epoch 100. Select the top 1000 and bottom 1000 validation
samples based on the two metrics. Compare the moving average
of true class probability of the selected samples across epochs.

We report the number of correct/incorrect predictions over
the validation samples selected by various thresholds on TC
in Figure |1 and compare it with confidence max, p(y|z),
i.e., the highest probability among classes. We normalize
TC and confidence values to be in [0, 100] and so, the thresh-
old set to 20 means that we select the validation samples
whose TC is greater than 20% of the maximum TC value.
At high thresholds, time-consistency can more effectively
identify the correctly predicted samples than confidence.

rue class probabilty (epoch=100)
rue class probabilty (epoch=100)

[
[

s
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time consistency (epoch=100) confidence (epoch=100)

Figure 3. Scatter plot and correlation (cyan lines) of the true class’s
probability (y-axis) for incorrectly predicted validation samples
with TC (left) or confidence (right) on the x-axis at epoch 100.

In Figure 2] we select the top 1000 and bottom 1000 sam-

ples in the validation set based on the two criteria computed
at epoch 100 and report the performance on those samples
across training epochs. Compared to confidence, the perfor-
mance on the top 1000 samples selected by TC is signifi-
cantly better than the bottom 1000 ones across most epochs.
This again suggests that TC is a more powerful criteria for
identifying correctly-predicted samples. It also shows that
TC can be predictive for future training dynamics.

In Figure [3] we plot all incorrectly predicted samples in
the validation set based on their performance and selection
criteria (either TC or confidence) computed at epoch 100.
Comparing the two, we find many fewer samples with high
TC that have low true-class probability than we find using
the confidence (see the lower-right regions in Figure [3).
This suggests that TC could potentially prune incorrectly-
predicted samples more effectively.

3 Time-Consistent SSL

In this section, we will first introduce the training objective
of TC-SSL at each step and explain the importance of
selecting time-consistent samples to the training stability
when using this objective. We then present the TC-SSL
algorithm, which selects samples by their TC according to a
curriculum that selects more unlabeled samples as training
progresses. We then discuss some practical modifications
to TC-SSL that bring further improvements.

3.1 Self-supervised loss and their time-consistency

We use two types of self-supervised losses which cooper-
ate with each other to encourage the output consistency
between similar samples on the data manifold. In partic-
ular, given a sample x and one of its augmentation G(x),
we minimize the consistency loss defined as the difference
between f(z) and f(G(x)), i.e., the neural net outputs on
these two samples. In order to obtain a pseudo target robust
to unbounded noise over training steps, we follow the mean
teacher (Tarvainen & Valpola,2017) method and instead use
an exponential moving average of the neural net in-training
to generate the pseudo target, i.e.,

Fia) & (300,00 2 50" + (1 =)0 1, (6)
where 6" is the neural net parameters at step ¢ and 6? is re-
cursively defined as the moving average of % over time with
discount factor v, € [0, 1]. Although 67 tends to produce a
smooth target over time, it cannot filter out time-inconsistent
samples whose outputs change dramatically over time and
their smoothed targets still suffer from large variance and
low entropy. The consistency loss on x is defined as

Cog(230) 2 || f(G(2):0) — f1(2) ], @)
where we set p = 2 in our experiments and the above loss
aims to minimize the {5 distance between the two outputs.
In order to stabilize back-propagation on £¢_(z;6), fi(x)
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is often treated as a constant pseudo target (Tarvainen &
Valpola, 2017) (i.e., no back-propagation through f?(z)
to ) of f(G(x)). Hence, we only minimize the loss
w.r.t. the current 6. In practice, we can further consider
replacing the pseudo target fi(x) with an average over
different augmentations and multiple time steps, e.g.,
Ynm 31— O™ FE(Gi()), which might be more ac-
curate (Berthelot et al., 2020). For simplicity and efficiency,
we do not adopt this form and use f?(x) in our experiments.

Contrastive loss (Chopra et al., 2005} van den Oord et al.,
2018)) enforces the distance between augmentations of the
same sample to be smaller than distances between other
samples (or other samples’ augmentations). Specifically, we
use InfoNCE loss (van den Oord et al.l [2018)) defined as
follows: given a dictionary D of “other” data and/or their
augmentations to compare with, InfoNCE loss is

o (010) 2 — tog SRL(GE@)0) TG @)
> exp(cos[f(G(x); 0), f*(2)])
2€{G’'(z)}uD
where G(z) and G'(x) can be either two different augmen-
tations of x or two distinct instantiations of the same random
augmentation policy applied to «, and cos|z, z] £ m
denotes the cosine similarity.

®)

The contrastive loss above can be explained as a cross en-
tropy loss, where the predicted probability distribution (com-
puted by applying softmax to the |D| + 1 similarities in the
denominator) is defined over all the | D| + 1 samples that
measures the probability of each sample being similar to
G(z), and the pseudo label is 1 for the same sample’s aug-
mentation G’ (x) and 0 for other samples. Similar to consis-
tency loss, all the quantities with fZ(-) in Eq. Iare treated as
constants during back-propagation. Recent work (He et al.,
2019) shows that minimizing the contrastive loss requires
a sufficiently large dictionary size | D| to achieve improve-
ments. In our experiments, | D| is often set > 1000. During
training, we keep a fixed-length queue of samples’ outputs in
memory as the dictionary D and replace the oldest outputs
in the queue by the latest training batch’s outputs.

These two types of self-supervised losses constitute only
one part of our SSL optimization objective. The consis-
tency and contrastive losses provide two complementary
self-supervision strategies, one maximizing the absolute sim-
ilarity between similar samples, while the other enforcing
that the relative similarity between similar samples should
be much larger than the one between distant samples. When
applied together with data augmentation (which can cover a
larger local region around each sample on the data manifold)
and expressive neural nets (which encodes the prior of data
structure and enjoys universal approximation capability),
they can effectively learn a locally consistent and smooth
model over the data manifold, without requiring ground
truth labels for most samples. Nor does the method use sim-

ilarity between all the samples (as most earlier works do),
also such graph-based methods could be incorporated in
our work possibly further improving performance. To best
of our knowledge, TC-SSL is the first attempt to combine
consistent and contrastive losses together for SSL.

The two self-supervised losses enforce local consistency
but not time-consistency. For a sample or its augmentation,
its pseudo targets in the loss (i.e., all the terms containing
f4(-) in Eq. (7) and Eq. (§)) at different training steps us
time-variant and can be inconsistent, since the neural net
outputs on the sample or its nearby region may change dras-
tically during training. There are several possible reasons
for such instability on individual samples: a non-smooth ac-
tivation function, a complicated neural net structure, a steep
learning rate schedule, or too complicated a data augmenta-
tion strategy. When the training targets significantly change
over time, the learning could be very inefficient or even
diverge and suffer from concept drift. Therefore, selecting
time-consistent samples for more consistent self-supervision
is essential to the widely used strategy of combining data
augmentation with self-supervised losses.

For a labeled sample (x, y) with ground truth class y, we
minimize their cross entropy loss, i.e.,

exp(f(G(x); 0)[y]) ©)
>y exp(f(G(x);0)[y'])’
In order to minimize the entropy of the outputs for unla-
beled data (Grandvalet & Bengiol 2005; Leel [2013), we also
minimize a cross entropy loss with y*~!(z) as the pseudo
label of each selected unlabeled data z, i.e.,

o SRU(CE): 0y ()
=, ep(f(Ge):0)l])

The overall training objective of TC-SSL at step ¢ is

1
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D [eslh (@3 0) + Aerlly(w;0) + Acello (2;0)], (11)
rzeSt
where £ denotes the set of all labeled data and S* C U/ is the
subset of unlabeled data selected by TC at step ¢ from the
unlabeled data set I/, and A5, A\, and A, are weights for
different types of loss that can be tuned on a validation set.

3.2 The TC-SSL algorithm

We provide the complete description of TC-SSL in
Algorithm[I] At step ¢, TC-SSL aims to select a subset of
unlabeled data S* with higher TC ¢!(z) and then minimizes
the objective in Eq. w.r.t. the neural net weights 6% by
taking gradient steps. We can either select the top-k unla-
beled samples with the largest ¢t (z) as S* (line-8) or apply
a weighted sampling of S* according to Pr(z € S?) oc
exp(c!(z)) (line-9). The optimization of L!(6*) can be one
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or several steps of gradient descent or SGD (line-10). We
denote the update of §¢ produced by the adopted optimizer
as (Vg L!(6"),n"), where n* contains all hyperparameters
of the optimizer at step t, e.g., the learning rate. We keep
updating TC ¢! (z) for every unlabeled data 2z € U (line-18)
as a (negative) moving average of a‘(z) (line-16), and
update a moving average of 6' over time (line-19) as
the mean teacher (Tarvainen & Valpolal [2017) providing
pseudo targets for the two self-supervised losses in L(6?).

Algorithm 1 Time-Consistent SSL (TC-SSL)

1: input: U, £, 7(-;n),n" T, £(0), G();

2: hyperparameters: Ty, T, Acs, Acty Aces V05 Ves Vs

3: initialize: 69, k';

4: fort € {1,---,T} do

5 if t <7, then
6 O 0"t (Z(%y)eﬁ Volee(w,y;0071); nt>
7. else
8.
9

S* = argmaxg. ey |5|=kt 2ges ¢ (¥) O

: Draw k' samples from Pr(z € S*) oc exp(c(x));
10: 0"« 0"~ + 7 (VoL'(6"~1);n') (ref. Eq. (TT));
11:  endif
exp(f(2:0")[y])

12 pt(x) « ST, exp([ 097 Yy € [C),x € U;
13:  ift =1 then

14: 0f < 0!, ct(z) + 0, Yz e U

15:  else

16: Compute a’(z) (ref. Eq (1)), Vz € U;

17:  end if

18: () « ve(—a(2))+ (1 =) (=), Vo e U;
19: G+« 40t + (1- ’}/9)%;

200 KM (14 ) x kY

21: end for

Since the TC ¢*(z) is an accumulated statistic over multiple
time steps, we need a sufficiently long horizon to estimate
it accurately and stably before using. Moreover, the change
of neural net outputs on a sample in a single step can be
easily perturbed by SGD randomness, the learning rate
change, and neural net weight changes during early training.
Therefore, we apply T, warm starting epochs (line-6) that
train the neural net using only the labeled data before se-
lecting any unlabeled data for self-supervision. In addition,
there may be fewer time-consistent unlabeled samples in
earlier stages without sufficient training. As more training
occurs with consistent targets, the neural nets’ accuracy
and confidence improve, and we expect an increase in the
number of time-consistent samples. Hence, over the course
of training, we gradually increase the number of unlabeled
samples selected into S* (line-20). This yields a curriculum
for SSL that in early stages effective saves computation and
avoids perturbation caused by inconsistent unlabeled data,
and in later stages fully explores the information brought
by the reserve of unlabeled data.

In MixMatch (Berthelot et al.,|2019) and MixUp (Zhang
et al.|[2018), augmentation over unlabeled and labeled data
can significantly improve SSL performance. One possible
reason is that minimizing the self-supervised loss on linear
interpolations between two samples enforces the local
consistency and smoothness over larger regions of the data
manifold. In TC-SSL, after single-sample augmentation
(if any), we apply standard MixUp between all training
samples in &/ U L, but only use the resulted MixUp samples
in cross entropy loss, i.e., Eq. (9) and Eq. (I0). Unlike
MixMatch, we do not need to modify MixUp and simply
treat each unlabeled sample as labeled with a pseudo class
when mixing its target with another (labeled or unlabeled)
sample. For the two self-supervised losses, we still use the
single-sample augmentations before MixUp because: (1)
the consistency loss already uses a soft pseudo label but
MixUp further reduces its entropy; and (2) the contrastive
loss aims to discriminate different samples but replacing
them with their interpolations will weaken the effect.

3.3 Practical aspects that further improve TC-SSL

Calibrate the time-consistency by the learning rate:
Since the learning rate ¢ can change over time, and large
learning rates lead to greater changes on model outputs,
the scales of a;(z) might change accordingly. Hence, we
calibrate a;(z) (via a’(z) < a'(x)/n') before using it.

Exponential weight for exploration-exploitation trade-
off: During early training, the weighted sampling in line-9
of Algorithm [T|usually works better than selecting the top-
k' samples (line-8) since the randomness avoids selecting
the same samples repeatedly and encourages exploration
of new unlabeled data, whose TC might be improved once
being trained. In practice, we can achieve a better trade-off
between exploration and exploitation by using similar tech-
niques to Exp3 (Auer et al.,|2003), i.e., instead of applying
line-8 or line-9, we sample S* according to a smoothed prob-
ability Pr(z € S?) oc exp(y/2log /i x ct(z)) and then
re-scale a®(x) for all selected 2 € S* by their probability of
being selected, i.e., a’(z) + a'(x)/ Pr(xz € S*). Thereby,
x with smaller probability will get more of a chance to be
selected in the future.

Decrease the entropy of pseudo target: Following
(Grandvalet & Bengiol 2005} Miyato et al., 2019; |[Berth{
elot et al.,|2019; |Leel [2013)), we also decrease the entropy
of pseudo target distribution in the contrastive loss by mul-
tiplying a temperature parameter v > 1 E]to the quantities
inside the exponential in Eq. (8).

Prune S* using the confidence statistics on a validation
set: Although TC is a better metric than confidence for
unlabeled data selection, confidence is still not useless. For

%e.g., we use v = 10 in all experiments.
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instance, it is not efficient to train models with unlabeled
samples of either extremely high or low confidence since
the former contributes very small gradients while the latter’s
pseudo target suffers from high entropy. Therefore, we
remove them from S* by applying two thresholds computed
on a validation set, which are the b%-percentile and (100 —
b)%-percentile of the confidence computed on the validation
set[’] We do not use the statistics on training set 2/ U £ since
the model can be over-confident on samples being trained.

Duplicate labeled samples: When applying TC-SSL with
MixUp, we duplicate the labeled samples so that an unla-
beled sample has higher a chance of being mixed with a
labeled sample. This improves training robustness since
mixing the incorrect pseudo target of an unlabeled sample
with the correct label of a labeled sample is less harmful.
However, unlike MixMatch, we do not duplicate the labeled
samples to the same amount of unlabeled samples. Instead,
we start using fewer duplicates E] than MixMatch — this
amount is comparable to the amount of unlabeled data se-
lected in the first iteration, and we gradually reduce the
duplicates as training proceeds. Thanks to the TC metric,
the selected samples are likely to be correct with stable
pseudo targets and we do not need to spend much compute
on the labeled data to keep training robust and stable.

4 Experiments

In this section, we apply TC-SSL to train Wide
ResNet (Zagoruyko & Komodakis, 2016) models on dif-
ferent labeled-unlabeled splittings of three datasets, i.e.,
CIFAR10, CIFAR100 (Krizhevsky & Hinton, 2009), and
STL10 (Coates et al), 2011). Unless otherwise speci-
fied, we followed all the settings and train the same neu-
ral net architectures from previous works such as Mix-
Match (Berthelot et al.l 2019) and mean teacher (Tar{
vainen & Valpolal 2017) to make sure that the comparison
with previously published results on these datasets are fair.
For CIFAR10 experiments, we train a small WideResNet-
28-2 (28 layers, width factor of 2, 1.5-million parame-
ters) and a large WideResNet-28-135 (28 layers, 135 fil-
ters per layer, 26-million parameters) for four kinds of
labeled/unlabeled/validation random splittings applied to
the original training set of CIFARI10, i.e., 500/44500/5000,
1000/44000/5000, 2000/43000/5000, 4000/41000/5000. For
CIFAR100 experiments, we train WideResNet-28-135 for
three splittings, i.e., 2500/42500/5000, 5000/40000/5000,
10000/35000/5000. For STL10 experiment, we train a
deeper variant of WideResNet-28-2 with four extra residual
blocks added before the output layer with the purpose of
processing larger images in STL10 (compared with CIFAR
images). This extra part as a whole has 256 input channels

3e.g., we use b = 10 in experiments
‘e.g., we use k' = |S*|, which is 0.1]2/] in all experiments.

and 512 output channels and increases the total parameters
from 1.5-million to 5.9-million, which however is still much
smaller than the model used in MixMatch (23.8-million
parameters) (Berthelot et al., 2019). We randomly draw
500 samples from the original training set as our validation
set, so the splitting is 4500/100000/500. We evaluate the
performance of all the trained models on the original test
set of each dataset.

4.1 Hyperparameters

For TC-SSL in the experiments, we apply 7y = 10 warm
starting epochs and 1" = 680 epochs in total. Note the
“epoch” here refers to one iteration in Algorithm [I]and is
different from its meaning in most fully supervised training,
where it refers to a full pass of the whole training set. In our
case, the training samples in each epoch changes according
to our curriculum of k¢. We apply SGD with momentum of
0.9 and weight decay of 2 x 10~°, and use a modified cosine
annealing learning rate schedule (Loshchilov & Hutter,
2017) for multiple episodes of increasing length and decay-
ing target learning rate, since it can quickly jump between
different local minima on the loss landscape and explore
more regions without being trapped by a bad local minima.
In particular, we set up 12 episodes with epochs-per-episode
starting from 10 (i.e., the warm starting episode) and increas-
ing by 10 after every episode until reaching epoch-680. The
learning rate at the beginning and end of the first episode are
set to 0.2 and 0.02, respectively. We then multiply each of
them by 0.9 after every episode. We do not heavily tune the
A-parameters and y-parameters. For all experiments, we use
Aes = 20/, Aot = 0.2, Aee = 1.0,79 = 7. = 0.99, v, =
0.005 (C' is the number of classes). For data augmentation,
we use AutoAugment (Cubuk et al.), |2019a) learned
policies for the three datasets followed by MixUp with the
mixing weight sampled from Beta(0.5,0.5). We initialize
k' = 0.1U| and 6° by Pytorch default initialization. We
apply all the practical tips detailed in Section

4.2 Test Accuracy of TC-SSL

For each experiment,
we run 5 trials with
different random
seeds and report the
mean and variance

Table 3. Test error rate of several meth-
ods training CNNss of different #params
on STL10. Baselines: CutOut (DeVries
& Taylor, 2017), IIC (J1 et al., 2019),
MixMatch (Berthelot et al., 2019).

of the test accuracy Benchmark STL10
in Table [T}3). More  |apeled/unlabeled 5k/100k
details can be found 5 " oM 12.74
in  Appendix TIC (N/A) 11.20
TC-SSL achieves the MixMatch (23.8M) 5.59
lowest test error on TC-SSL (ours, 5.9M) 4.82

most  experiments
compared with several recent baselines using a heavy
combination of multiple advanced techniques. Most of our
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Table 1. Test error rate (mean=tvariance) of SSL methods training a small WideResNet and a large WideResNet on CIFAR10. Baselines:
Pseudo Label (Lee} 2013), IT-model (Sajjadi et al., 2016), VAT (Miyato et al., 2019), Mean Teacher (Tarvainen & Valpola, 2017),
MixMatch (Berthelot et al.,2019), ReMixMatch (Berthelot et al., 2020)).

Benchmark

CIFAR10 (small WideResNet-28-2)

CIFARI10 (large WideResNet-28-135)

labeled/unlabeled 500/44500

1000/44000  2000/43000  4000/41000

500/44500  1000/44000  2000/43000  4000/41000

Pseudo Label
II-model

VAT

Mean Teacher
MixMatch
ReMixMatch
TC-SSL (ours)

40.55£1.70 30.91 £ 1.73 21.96 £0.42 16.21 £0.11
41.82 +£1.52 31.53 £0.98 23.07 £0.66 5.70£0.13
26.11 £1.52 18.68 £0.40 14.40+£0.15 11.05£0.31
42.01 £5.86 17.32£4.00 12.17£0.22 10.36 £ 0.25
9.65+£0.94 7.75£0.32 7.03+0.15 6.24+0.06

- 5.73+£0.16 - 5.14 £ 0.04
9.14+0.88 6.15+0.23 5.85+£0.10 5.07 +0.05

8.44+£1.04 7.38+0.63 6.51+048 5.12+£0.31

6.04 £0.39 3.81£0.19 3.79+0.21 3.54+0.06

Table 2. Test error rate (mean+variance) of SSL. methods train-
ing WideResNet-28-135 on CIFAR100. Baselines: SWA (Athi/
waratkun et al., 2019), MixMatch (Berthelot et al.| [2019).

Benchmark CIFAR100 (WideResNet-28-135)
labeled/unlabeled 2500/42500  5000/40000  10000/35000
SWA - - 28.80
MixMatch 44.20 £ 1.18 34.62 +£0.63 25.88+0.30

TC-SSL (ours)  31.95£0.55 26.98 £0.51 22.10 £0.37

results are SOTA, e.g., TC-SSL trains a much smaller model
(5.9M parameters) and achieves the SOTA performance on
STL10. Note these improvements are achieved in the case
that we do not conduct any heavy tuning or fine-grained
search of hyperparameters, nor use any advanced data
augmentation or any bag of tricks. The only exception
when TC-SSL performs worse happens at the 1000/44000
splitting of CIFAR10 when training a small WideResNet-
28-2, in which case the very recent ReMixMatch achieves
slightly better results than ours. However, ReMixMatch’s
result was achieved when using a powerful augmentation
proposed in their paper, i.e., CTAugment, and averaging
over multiple (i.e., 8 vs.1 in TC-SSL) augmentations to
produce the pseudo targets. According to their ablation
study (Berthelot et al.| 2020), these two techniques bring
significant improvements. In Table 4] we further present
a thorough ablation study that separately verifies the
improvement caused by each component of TC-SSL.

4.3 Training Efficiency of TC-SSL

Since the recent MixMatch achieves much better perfor-
mance than the SSL methods prior to it, we present a more
detailed comparison to it in Figure ] by using the Pytorch
re-implementation of MixMatch aforementioned. We use
the number of mini-batches for training in the two methods
as an approximate metric of their training costs since the for-
ward and back-propagation on them dominates the incurred
computation. Since TC-SSL uses batch size of 128 while
MixMatch uses 64, we divide the number of training batches

in MixMatch by 2. The comparison shows TC-SSL’s sig-
nificant advantage in learning efficiency, e.g., it achieves
higher test accuracy much earlier than MixMatch. This is
because that TC-SSL selects the most time-consistent unla-
beled samples that are more informative and less harmful
to the training, where the selection is guided by an efficient
curriculum. In contrast, MixMatch uses all the unlabeled
samples since the beginning, which might introduce wrong
training signals and noise, especially during earlier stages,
and thus slow down the growth of test accuracy.

CIFAR10: 500 labeled, 44500 unlabeled

racy (%)

— = MixMatch (small WideResNets)
MixMatch (large WideResNets)

—— TCSSL (small WideResNets)

—— TCSSL (large WideResNets)

test accu

training batches (batch size = 128)

CIFAR10: 1000 labeled, 44000 unlabeled

— = MixMatch (small WideResNets)
MixMatch (large WideResNets)

—— TC-SSL (small WideResNets)

—— TC-SSL (large WideResNets)

training batches (batch size = 128)

CIFAR10: 2000 labeled, 43000 unlabeled

ccuracy (%)

testa

training batches (batch size = 128)

CIFAR10: 4000 labeled, 41000 unlabeled

— = MixMatch (small WideResNets)
MixMatch (large WideResNets)

—— TC-SSL (small WideResNets)

—— TC-SSL (large WideResNets)

acouracy (%)

test

training batches (batch size = 128)

Figure 4. Test accuracy (%) during training small/large WideRes-
Net by MixMatch and TC-SSL on four splittings of CIFAR10.

4.4 Quality of Pseudo Labels for Unlabeled Data
Selected for Training in TC-SSL

One primary reason for the substantial improvements
achieved by TC-SSL is that the unlabeled samples selected
by time consistency have high-quality pseudo labels. To
verify this, we report how the precision and recall of these
selected pseudo labels together with their percentage in all
the unlabeled data change during training in Figure[5}
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Table 4. Ablation Study: test error rate (mean=+variance) of TC-SSL variants for training WideResNet-28-135 on CIFAR10: “no
consistency” removes the consistency loss in Eq. (7); “no contrastive” removes the contrastive loss in Eq. (§); “no PseudoLabel” removes
the cross entropy loss for unlabeled data in Eq. (I0); “no TC-selection” replaces Line 8-9 of Algorithm[T]with uniform sampling.

labeled/unlabeled 500/44500 1000/44000 2000/43000 4000/41000
TC-SSL (ours) 6.04 +0.39 3.81 +£0.19 3.79+£0.21 3.54 +£0.06
TC-SSL (no consistency) 7.51 £0.56 5.31 £0.23 3.82 +£0.20 3.58 £0.06
TC-SSL (no contrastive) 7.56 £ 0.52 5.35 +0.28 3.96 £ 0.25 3.66 £+ 0.08
TC-SSL (no PseudoLabel) 41.05 £ 2.32 23.64 +1.17 14.37 + 0.69 9.87 +0.22
TC-SSL (no TC-selection) 12.25 +0.81 6.39 + 0.44 4.68 +0.35 4.05+0.13

CIFAR10: 4000 Iabeled, 41000 unlabeled

Net)
ideResNet)
d data (small WideResNet)
leResNet)
— = Precision of TC-SSL selected samples (large WideResNet)

Percentage of selected samples in all unlabeled data (large WideResNet)
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Figure 5. Precision and recall (%) of pseudo labels produced by the
model during training for the unlabeled samples selected by TC-
SSL. We also provide the percentage (%) of the selected samples
in the ground set of unlabeled data /.

In most of the four plots, the recall quickly increases to a
high value close to 100% and keeps it high consistently over
training, indicating that almost all the correctly-predicted
unlabeled samples are selected by TC-SSL. In addition, the
precision also increases quickly to a relatively high value
(close to the test accuracy of fully-supervised learning that
uses the whole training set), implying that most samples
selected by TC-SSL have correct pseudo labels. This well
explains the promising learning efficiency and final perfor-
mance of TC-SSL. The noisy part (i.e., quick drops) on the
recall curve when training large WideResNet is caused by
the confidence thresholding mentioned in Section[3.3] which
removes the extremely confident samples from S* since they
provide very limited information to training (though their
pseudo labels might be correct). The curves are flat during
the first few training batches since they are warm-starting
epochs only using labeled samples and no unlabeled data is
selected. It also worth noting that the model cannot be pre-
cise on predicting all the unlabeled data in the early stages,
so selecting too many unlabeled data will leads to a large
portion of incorrect pseudo labels used for training, i.e., low

precision. In contrast, for TC-SSL, we adopt a curriculum
of gradually increasing number of selected unlabeled data,
which avoid the above problem and remains a high precision
on the unlabeled data selected for early training steps.

Hence, TC-SSL can maintain a precision and recall close
to 100% during most steps (except when it excludes some
highly-confident and correctly predicted samples since they
are less informative), while gradually increase the percent-
age of selected unlabeled samples to 100%.

5 Conclusions

We propose a metric called “time-consistency (TC)” to se-
lect unlabeled samples (with pseudo labels) for training in
semi-supervised learning (SSL). We derive TC from the
training dynamics of SSL and show that adding unlabeled
samples with large TC to training mitigates the catastrophic
forgetting on previously learned data. Moreover, TC can be
efficiently computed from the byproducts of training by ex-
tremely cheap computation. We further propose a recipe of
self-supervised losses and show that TC is essential to guar-
antee the effectiveness of self-supervision in improving SSL.
Based on TC and the self-supervision recipe, we develop
a curriculum learning method (TC-SSL) that incorporates
more practical improvements. TC-SSL achieves state-of-the-
arts performance on three SSL benckmarks and considerably
improves the training efficiency. Additionally, we provide
a thorough ablation study of TC-SSL and an evaluation of
the quality for unlabeled samples selected in TC-SSL.

TC-SSL can be seamlessly integrated into any recent SSL
approaches such as MixMatch and its variants, since our
proposed curriculum of selecting unlabeled samples is or-
thogonal to existing techniques. In addition, TC in this paper
is of general interests to other machine learning problems
leveraging unlabeled data.
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