Nonparametric Score Estimators

In appendix A we provide additional details and further results of experiments. In appendix B, we list the assumptions we
used, and prove the non-asymptotic verison of Theorem 4.2 and 4.6. In appendix C, we give the details of Sec. 3, including
deriving algorithms presented in Sec. 3.2, examples in Sec. 3.4 and a general formula for curl-free kernels. Appendix D
includes some technical results used in proofs. Finally, We present samples drawn from trained WAEs in appendix E.

A. Experiment Details and Additional Results

In experiments, we use the IMQ kernel k(x,y) := (1 + ||x — y||3/0%)~ /2 and its curl-free version in corresponding kernel

estimators. We use the median of the pairwise Euclidean distances between samples as the kernel bandwidth. The parameter
v of the v-method is set to 1. The maximum iteration number of KEF-CG is 40 and the convergence tolerance of it is 104,

A.1. Grid Distributions

We use aM eigenvalues in SSGE with « searched in {0.99,0.97,0.95,0.9,0.8,0.7,0.6,0.5,0.4}. We search the number
of iteration steps of the v-method in {20, 30, 40, 50, 60, 70, 80,90, 100}. We search the regularization coefficient A of Stein,
NKEF, KEF-CG in {107% : k = 0,1, - - - , 8}. The experiments are repeated 32 times.

A.2. Wasserstein Autoencoders

We use the standard Gaussian distribution N (0, I) as the prior p(z), and N (114 (x), cr; (x)) as the approximated posterior
g4(z|x), and Bernoulli(Gy(z)) as the generator py(x|z). We use minibatch size 64. Models are optimized by the Adam
optimizer with learning rate 10~*. Each configuration is repeated 3 times, and the mean and the standard deviation are
reported in Table 3 and Table 4. All models are timed on GeForce GTX TITAN X GPU.

Table 3. Negative log-likelihoods on the MNIST dataset and per epoch time on 128 latent dimension.

LATENT DIM 8 32 64 128 TIME
STEIN 97.15£0.14 92.10£0.07 101.60+0.44 114.41 £0.25 4.28

SSGE 97.24 £0.07 92.24+£0.17 101.92+0.08 114.57+0.23 9.2s

KEF 97.07£0.03 90.93+£0.23 91.58+0.03 92.40 £0.34  201.1s
NKEF; 97.71 £0.24 92.29+0.41 92.82£0.18 94.14 £ 0.69 36.4s
NKEF, 97.59 £0.15 91.19+£0.08 91.80+0.12 92.94 £0.58 97.5s
NKEFg 97.23 £0.06 90.86 £0.09 92.39 4+ 1.32 92.49 £0.41 301.2s
KEF-CG 97.39 £0.22 90.77£0.12  92.66 £ 0.67 92.05 £0.06 13.7s
V-METHOD 97.28£0.17 90.94+£0.02 91.48 +0.09 92.10 £0.06 78.1s
SSM 96.98 £ 0.27 89.06 = 0.01 93.06 +0.68 96.92 £0.08 6.0s

Table 4. Fréchet Inception Distances on the CelebA dataset and per epoch time on 128 latent dimension.

LATENT DIM 8 32 64 128 TIME
STEIN 73.85+1.39 58.294+0.46 57.54+0.57 76.31+£1.33 164.4s
SSGE 72.49 £1.09 58.01 £0.60 58.39+£1.00 76.85+1.12 172.2s
NKEF, 75.12 £ 1.55 53.924+0.29 51.16£0.30 55.174+0.43 244.7s
NKEF, 73.15+£0.77 54.544+1.02 50.76 £0.19 53.70+0.10 412.5s
KEF-CG 72.92 +£0.60 54.324+0.31 50.44+0.20 50.66+0.89 166.2s
V-METHOD 72.02 £1.22 52.86+0.20 50.16 £0.23 52.804+0.43 220.9s
SSM 69.72 +0.25 49.93+0.74 72.68+1.75 94.07 £3.57 163.3s

MNIST We parameterize ug, ai and Gy(z) by fully-connected neural networks with two hidden layers, both of which con-
sist of 256 units activated by ReLU. For SSM, the score is parameterized by a fully-connected neural network with two hidden
layers consisting of 256 units activated by t anh. The regularization coefficients of Stein, KEF, NKEF, KEF-CG are searched
in {10_"' 1k =2,3,---,7} for the best log-likelihood, and the number of iteration steps of the v-method are searched in
{50,70,---,150}, and we use M eigenvalues in SSGE with « searched in {0.99,0.97,0.95,0.93,0.91,0.89,0.87}. We
run 1000 epoches and evaluate the model by AIS (Neal, 2001), where the parameters are the same as in SSGE. Specifically,
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we set the step size of HMC to 1079, and the leapfrog step to 10. We use 5 chains and set the temperature to 103.

CelebA We parameterize p4, Gg by convolutional neural networks similar to Song et al. (2019). 0'3) is set to 1. For
SSM, we use the same network as in MNIST to parameterize the score. The regularization coefficients of Stein, KEF,
NKEF, KEF-CG are searched in {10*’c i k = 2,3,---,7} for the best log-likelihood, and the number of iteration
steps of the v-method are searched in {20, 30, 40, 50, 60, 70}, and we use M eigenvalues in SSGE with « searched
in {0.99,0.97,0.95,0.93,0.91,0.89,0.87}. We run 100 epoches and evaluate the model using the Fréchet Inception
Distance (FID). As KEF and NKEF;g are slow, we do not compare them in this dataset. Results are reported in Table 4.

B. Error Bounds

In the following, we suppress the dependence of H on /C for simplicity. We use ||-||;¢ to denote the Hilbert-Schmidt norm
of operators. The assumptions required in obtaining an error bound are listed below.

Assumption B.1. X is a non-empty open subset of R?, with piecewise C'! boundary.

Assumption B.2. p, log p and each element of K are continuously differentiable. p and its total derivative Dp : X — R¢
can both be continuously extended to X', where X is the closure of X'. Each element of K and its total derivative can be
continuously extended to X' x X.

Assumption B.3. For all i,j € [d], K(x,x);;p(x) = 0 on dX, and \/|K(x,x);;[p(x) = o(||x||3~%) as x — oo, where
0X =X\ X.

Assumption B.4. Define an H-valued random variable &, := divy K], let £ := / v &dp. There are two constants 3, K,

sueh that 16—l el 52
X H X H
/X{e"p< K ) K }‘“m

Assumption B.5. There is a constant x > 0 such that sup, » tr K(x,x) < £2.

Assumptions B.1-B.3 are similar to those in Sriperumbudur et al. (2017). They guarantee the integration by parts is valid, so
we can obtain E,[KxV logp] = —E,[divyx K ]. Assumptions B.4 and B.5 come from Bauer et al. (2007), and are used in
the concentration inequalities. Note that Assumption B.4 can be replaced by a stronger one that ||{ — £]|3 is uniformly
bounded on X'

We follows the idea of Bauer et al. (2007, Theorem 10) to prove Theorem 4.2. The non-asymptotic version is given as
follows

Theorem B.1. Assume Assumptions B.1-B.5 hold. Let 7 be the qualification of the regularizer gy, and §° A be defined
as in (8). Suppose there exists fo € Hx such that sp = Li fo, for some r € [0,7]. Then for any O < 9§ <1,

M > (2v/2k? 10g(4/6)) 2 , choosing \ = M~ T , the following inequalities hold with probability at least 1 — §
R o 4
[8p.x — 8plla < C1 M~ 2772 log 3
and forr € [0,7 — 1/2], we have
R _2rtl 4
[8p.x = spllp < CoM ™~ 5+ log 3

where C1 = 2B(K + X) + 2\/§B/€2||Sp||q.[ + (9 + &2ver) || follw, and Oy = 2B(K + L)k + 2v2BrK3||sp ||z + (4 +
HQ’)/% cr) + c1 (v + £2ver) || follze, and ¢, is a constant depending on r. O, is the Big-O notation in probability.

Proof. We consider the following decomposition

13px = splle < lloa(Lic) (€ — Olla + lor(Lic) Licsp — spl12
< Nlga(Lic) (€ = Ollae + lga(Lic) (L — Lic)spllae + Ira(Lic)splla,

where 7y (o) := gx(0)o — 1. By Definition 4.1, we have ||gx(Lx)|| < B/A. From Lemma D.3 and D.4, with probability at
least 1 — &, we have

2B(K+2)+2f}3n2usp||%1 4

195 (Lic) (€ — Olla + llga (L) (L — Lic)splla < WiTi g5
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By Definition 4.1, ||ra(Lx ) Li|| < A" and ||rx(Lx)|| < 7, then

lra(Lic)splla < llra(Lic) Lic folla + llra(Lic) (L — L) folln
<A [ follyg + 1Lk — Licl | folly, -

When 7 € [0, 1], from Bauer et al. (2007, Theorem 1), there exists a constant ¢, such that | Ly — Li|| < ¢.||Lx — Li]|”.
Then by Lemma D.4, and choose A > 2v/2k2M ~'/2log(4/6), we have

. W2 4\
| Lic — T/c||<0r< v 10g> <.

Nyt

Collecting the above results,

15p.x — Splln < A" 1oé

p,)\ P H = )\\/7 g 57

where A;, A5 are constants which do not depend on A and M. Then, we can choose A = M ~%7%2 to obtain the bound.
Combining with X\ > 2v/2k2M ~1/2log(4/6), we require M 772 > 21/2k2 log(4/4).

When r > 1, from Lemma D.5, there exists a constant ¢, such that || Ly — L% s < c.|| L — L ||us. Then || L — L |us <
2v/2¢. k2 M~1/?10g(4/6), and a similar discussion can be applied to obtain the bound.

Note that [|5,x — spll, = [[V/Lixc(8p,x — sp)ll2. Then we can apply the above discussion to obtain the bound for [|-[| ,. O

Next, we give the non-asymptotic version of Theorem 4.6 as follows

Theorem B.2. Under the same assumption of Theorem B.1, we define g (o) := (A o)™}, and choose Z := {Z" ey € &,
Let Y := {y™}.cim) be a set of i.i.d. samples drawn from p. Let 3, » z be defined as in (8) with X = Z UY. Suppose

2r42

N = M@, then forany 0 < § < 1, M > (2v/2k?log(4/68)) "+, choosing \ = M~ T , the following inequalities hold
with probability at least 1 —

I 4 o
sup |$p,2 = spllw < CLM ™25 log = 4 Cy M7,
V/

where Cs := 2(k* + 1)?||sp|| 3, and the supy is taken over all {z"},e[n] C X.

In particular, when o« = we have

_r
2r42°

A~ —_ T 4
sup ||8p 2.z — Splln < (C1 + C3)M ™%+ log 5
z

Proof. We define Ty := 3555z, where Sz f := (f(z'),---, f(zV)) is the sampling operator. Let Li = TY and §, » be
the estimator obtained from Y. Then we can write §, » 7 1= g,\(L;c + RZ)(LK + Ryz)sp, where Ry, := M+N (Ty — L;C)

We can bound the error as follows
18p.xz = spllae < [18p.az = Spall + 15p. — splln
< [Iga(Lic + Rz) — gx(Lic)) Licsplln + [lgx(Lic + Rz) Raspllac + 5.0 — splla-
The last term has been bounded by Theorem B.1, and we consider the first two terms. Since g (0) = (A+0)~tis Lipschitz in
[0, 00), from Lemma D.5, we have ||gx (L + Rz) — ga(Lx)|lus < [|Rz||us/A?. Note [|gx(Lx +Rz)Rz||us < ||[Rz|lus/X.
we obtain
N R K2 1 K2 1 2k2N
18002 = Spalle < {3 + ) 1Bzllmslispll < { 35 + 5 M+N“ splln

2(k% + 1)2N
=T e ”31)”H =2(

K2+ 12 MO ||syl,, -

Combining with Theorem B.1, and noticing that the right hand does not depend on Z, we obtain the final bound. U
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Finally, we prove the error bound of the Stein estimator with its original out-of-sample extension.

Proof of Corollary 4.7. The Stein estimator at point X € X’ can be written as

d
Spax(x) = ZUCxeiv Sp.ax) e,

=1

where {e;} is the standard basis of R?. Note that

d
sup |8p,x(x) — sp(x)[|2 < Z sup [(Kxe;, Spax — sp)ul| < K% sup [3p.ax = Splla
XEX i—1 xeX XEX
Then, the bound of Stein estimator immediately follows from Theorem 4.6. O

C. Details in Section 3
C.1. A General Version of Nystrom KEF

In this section, we briefly review the Nystrom version of KEF (NKEF, Sutherland et al. (2018)) and give a more general
version of it in our framework.

One of the drawbacks of KEF, as we have mentioned before, is the high computational complexity. It requires to solve an
Md x Md linear system, where M is the sample size and d is the dimension. Note that the solution of KEF in (3) lies in
the subspace generated by {9;k(x™,-) : i € [d], m € [M]} U {{}. The Nystrom version of KEF consider to minimize the
loss (2) in a smaller subspace generated by {0;k(z",-) : i € [d],n € [N]}, where N < M and {z"} is a subset randomly
sampled from {x"}. Sutherland et al. (2018) showed that it suffices to solve an Nd x Nd linear system, which reduces
the computational complexity, while the convergence rate remains the same as that of KEF if N = Q(M? log M), where
0el1/3,1/2].

In our framework, we can also consider to find our estimator in a smaller subspace. Let Hz be the subspace generated by
{z"}ne(n)s Le., Hz := span{K;nc : n € [N],¢ € R?}. Consider the minimization problem, which is a modification of (6),
where the solution is found in Hz:

M
1 A
Y/ : m my||2 2
+ = . 16
Spa = arfemin i 2:1 [s(x™) — s (x™)]2 B ||3||H;< (16)

The solution can be written as §1ZL>\ = (szl;cPZ + /\I)’lPZCA, where 6, f);g are defined as in Sec. 3.1 and Pz : Hic — Hx
is the projection operator onto Hz, which can be defined as

Pyf = argmin [lg - Fl3, = S5(5253) 1Sz f,
gEH =

where Sz, 57 is the sampling operator and its adjoint, respectively. This motivates us to define the Nystrom version of our
score estimators for general regularization schemes as follows:

§9% = —gA(PyLxPy) PyC. (17)
To obtain the matrix form of (17), we first introduce two operators:
L:= PyLx Py,
L = K, KzxKxzK,; .
We want to connect the spectral decompositions of L and £ as in Lemma 3.2. Suppose the spectral decomposition of L is
Zf\g o;u;u), where ||u;||gara = 1. Consider v; = S;K;Z% u;, we can verify that
lenll3, = (K7 u:) "Kzz Ky u = ulw; = 1,

1 1
g —1 -3 *YE T2
[:’Ui = SZKZZ KZXKXZKZZQ u; = SZKZZ2 Llli = 0;V;.
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Thus, £ = ZM(f 0 (i, )4, v; is the spectral decomposition of L. The estimator can be written as

o gt (3 T S
Sy = —97Kyz Zgz\(ai)“i“i Kyzh = —57Kz7 90 (L)Kzz h. (18)

i=1

The above estimator only involves smaller matrices. However, it requires some expensive matrix manipulations like the
matrix square root for general regularization schemes. Fortunately, these expensive terms can be cancelled when using the
Tikhonov regularization:

Example C.1. When we consider the Tikhonov regularlzatlon gx(0) = (0 +A)~! and curl-free kernels, the score estimator

(18) becomes 57 f(x) = KXZKZZ (L+ M)~ 1KZZ"‘h = —K\z(KzxKxz + M\Kzz) ~'h. Similar to Example 3.5, we find
this is exactly the same as the NKEF estimator obtained in Sutherland et al. (2018, Theorem 1).

C.2. Computational Details

Details of Example 3.6 Using the notation in Example 3.6 and Sec. 2.2, we can reformulate SSGE into a matrix form as

follows:
J
9i(x) = Z( Z@% ) j(x)
j=1 n=1
1 M R M
- _ZM< y Z Ak (x™, X )w' )> ( X Zk(x,xz)wy)
j=1 n,m=1 (=1
1 M M ,
- _Z v ( Z alk(x’L7xm)w§.m)) (Z k(x,x[)wg )>
j=1"J \n,m=1 {=1
M M T ™) O
= 7Zk(x,xz) Z Z ! 2 I | 9ik(x",x™)
(=1 n,m=1 \j=1
M M T (™ O M
V4 n o m
== k(x,x) > - " J (Zazk(x X ))
=1 m=1 \j=1 n=1
J T
W;W
= —k(x,X) Z j)\QJ ) ri,
j=1 77
where r; ; = ZT]LV[:l O;k(x™,x7), and wy,--- , Wy, is the unit eigenvectors of k(X,X) corresponding to eigenvalues

AL > > A w§-m) is the m-th component of w;. Note that when using diagonal kernels, we have K(x,y) = k(x,y)®14,
then the eigenvectors of (X, X) are {w; @ ¢; : i € [M], j € [d]} and the eigenvalue corresponds to w; ® e, is \;, where
{e;} is the standard basis of R?. We also note that in this case

hm—1)dti = C(x™); = i Z divyee (x5, x™ Za E(x,x™) = M7y .

Comparing with (12), we find that SSGE is equivalent to use diagonal kernels and spectral cut-off regularization.

Details of Example 3.7  For the regularizer gy (o) := (A+0)~'1{,50}, from Lemma C.2 we know when K is non-singular,
327 /\(x) = KxK! (ﬁK + )\I)‘lh. Next, we consider the minimization problem in (6), and ignore the one-dimensional

subspace Rf of the solution space, and assume the solution is Kyxc as before. We can rewrite the objective in (6) to

T2 T
—c¢'K“c + AcKc + 2¢'h.
i + +

By taking gradient, we find ¢ satisfies (ﬁK2 +AK)c = —h, so it is equivalent to use the previously mentioned regularization.
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C.3. Curl-Free Kernels

Recover the Function From Its Gradient. Since vector fields in a curl-free RKHS is always the gradient of some
functions, it is possible to recover these functions from its gradient. Specifically, suppose the curl-free kernel is defined by
Ket(x,y) = =V?)(x —y) and f € Hx,,. Assume f is of the following form

m m d
I B S o -9 ).
i=1 i=1 j=1 =1 j=1
where c( 7 is the j-th component of ¢;. Then, we find a desired function whose gradient is f.
The Special Structure of K. (x,y) = —V?¢(||x —y||). As we have mentioned in Sec. 3.5, curl-free kernels have some

special structures. Suppose Ky is a curl-free kernel defined by V2¢(r), where r = (x — x')7 and r = ||r||. Then

87"1 ¢ ¢
7"1';

//

where e; is the ¢-th column of the identity matrix. Then the curl-free kernel is of the form

Ket(x,y) = (¢ - ¢) S (19)

r3 2

We also obtain a divergence formula for such kernel. Note that
(Ti + ’I“j(sij)’l"Q - 27‘3247}'
4

+%[(

2
rir;
9506 = ¢”':Tf +¢"

e e Td
I

.
+ gb//?J 2 5ijrj — T'i)’/‘g — 37‘7‘3'((51']'7‘2 — ’I“ﬁ“j)} s

where §;; = [¢ = j]. Next, we sum out j and then obtain

r

v Kx¥) = ~200)0) = == [+ 2 (70 - 2] 0)

The Special Structure of K ;(x,y) = —V2¢(||x — y||°). Since many frequently used kernels only depend on ||x — ||,

we consider the structure of curl-free kernels of these types. Suppose K. is a curl-free kernel defined by V2p(r?), where
r = (x —x')T and r = ||r||. Then, using (19) and (20) we can find

Ket(x,y) = —4¢"rr" — 241, 1)

divy Ker(x,y) = —4[(d + 2)¢” + 2r2¢"]r. (22)

C.4. Details of Different Regularization Schemes

C.4.1. TIKHONOV REGULARIZATION

Proof of Theorem 3.1. When gx(c) = (o + \)~!, the estimator is 5, = —(Lx + AI)~'(. We need to compute the
explicit formula of the inverse of L 4+ M. Note that (ﬁ;c + M)~ is the solution of the following minimization problem

M

1 i 3 2 2
pa = Argmin D s(x)Ts(x') +2(s, Op + Allsll3, -

seEHk i=1

From the general representer theorem (Sriperumbudur et al., 2017, Theorem A.2), the minimizer lies in the space generated
by
{Kyic:ie[M],ceR¥}U{CL
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We can assume

M
§g7)\ = E ICxiCi-l-aC.
i=1

Define ¢ := (¢1,--- ,¢pr) and h := ({(x!),--- ,{(xM)), then the optimization objective can be written as

1 A .
M(CTKQC + 2ac"Kh + a*h"h) + 2(a||||3, + h"¢) + A(c"Ke + 2ach + a?||(])3,).

Taking the derivative, we need to solve the following linear system
M(KQc + aKh) +h + \(Ke + ah) = 0,

1 .

M(ahTh +¢"Kh) + (1 + Xa)|[¢||3, + Ac¢"h = 0.

By some calculations, this system is equivalent to a = —1/X and (K + MAI)e = h/\. O

C.4.2. SPECTRAL CUT-OFF REGULARIZATION

Proof of Lemma 3.2. Let H, be the subspace of Hy generated by {Kyme: ¢ € RY, m € [M [M]}. Note that f (x™Te
(K(-,x™)e, f)y, = 0 for any f € Hy and ¢ € R%. We know L = 0 on Hg. Also note Lxv € Hy and v(x™)

u(™ /Mo, then

M M
Lxv(x Z x™) \/j Z xF x™)/ou™ = gu(xb),

m=1

and we conclude that Liv = ov. The following equation shows v is normalized:

i 35 (Fa ) = 3 (), =

m: m: m=1

S

u(m Tam = 1.

M:

2
[oll3 =

Theorem 3.3 is a corollary of the following lemma, which provides a general form for the regularizer g, with g»(0) = 0.

Lemma C.2. Let gy : [0, k%] = R be a regularizer such that gx(0) = 0. Let (0;,u;)j>1 be the non-zero eigenvalue and
eigenvector pairs that satisfy 1:Kuj = oju;. Then we have

N gx(oy) T
gA(L/C)C = Kix ( Mo, u;u; ) h,

where K.y and h are defined as in Theorem 3.1.

Proof. Let {(u;,v;)} be the pairs of non-zero eigenvalues and eigenfunctions of Ly : H — H, then by Lemma 3.2 we have
o; = ;. Note that

L =Y pilvs,)wvi and  ga(Li) = Y ga(mi) (vi, ) vse

From Lemma 3.2, we have



Nonparametric Score Estimators

gk(ﬁlc)é = E gx(az’)@u@?ﬂ%
1 M ) 1 M *)
_E : ) } : L) 2 }: out
=2 0 <mj_1 it ’<>H /Mo, ]\/Mik:llcx i

ou? &) Kyu
H

|
Sl
™
SN
S
5
3
L
~

C.4.3. ITERATIVE REGULARIZATION

Theorem C.3 (Landweber iteration). Let 3 \ be defined as in (8), and gx(c) = 1 STo(1 = o), where t := [A71].
Then we have R
) = —tnC(x) + Kuxer,

where co = 0 and ¢y 11 = (14 — nK/M)c; — tn*h /M, and Kyx and h are defined as in Theorem 3.1.

Proof. We note that the iteration process is

0 =~
890 = —nC+ (I = nlx)sy~Y
= 5 (€~ Lslt)
where we define él(f) := 8p,1/¢- We can assume

§§f) = ai( + Kyxcy.

Then, by induction,
§1 = —n¢ + (I — nLi)(ar—1C + Kyxer—1)
= (a1 — 77)5 + Kix(¢i—1 +na—1h/M — nKey—1 /M).

Thus, we have a; = —tnand ¢; = (I — nK/M)c;_; — (t — 1)n*h/M, and ¢; = 0. O
Before introducing the v-method, we recall that the iterative regularization can be represented by a family of polynomials

gx(0) = poly(c), where g converges to the function 1/c as A\ — 0. For example, in the Landweber iteration we see that

t—1

(@) =13 (1 —no)i =

=0

1—(1—no)t
—

We can verify that the identification of \ and ¢~ satisfies Definition 4.1 about the regularization. To see the qualification,
we note that the maximum |1 — ogy(o)|e” = 0" (1 — no)t over [0, ] is attained when o = r/(rn + t) and hence

tr (C)T = max(r", 1)A".

sup |1 —ogr(o)|o” < ( ;

T <
0<o<n—1! T+ )Tt T

Thus, we see that the qualification is co.
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Example C.4 (v-method). The v-method (Engl et al., 1996) is an accelerated version of the Landweber iteration. The idea
behind it is to find better polynomials p; (o) to approximate the function 1/, where p; is a polynomial of degree ¢. These
polynomials satisfy supy<, <, |1 — opi(c)|c” < ¢, 2. Compared with the definition of the qualification in Definition 4.1,
we can identify \ and ¢ ~2. Thus, for the same regularization parameter, the v-method only requires about A~1/2 iterations
while the Landweber iteration requires about A~ ! iterations. For more details about the construction of these polynomials,
we refer the readers to Engl et al. (1996, Appendix A.1 and Section 6.3)

Below we give the algorithm of the v-method, where ¢ = |A~'/2] and Spa = §1(,t).

§1()0) = 07 *§1()1) = _wléa
§§)t) _ §;t—l) + ut(gét—l) o gét—?)) 4 wt(_g _ -Z-/Kjég;t_l))v

where (t—1)(2t — 3)(2t +2v — 1)

(t+2v —1)(2t +4v — 1)(2t + 2v — 3)’
42t +20 = 1)(t+v—1)
(t+2v—1)2t+4v —1)°

Uy =

Wy =

Smilarly, we can assume
50 = il + Kuxer.

Then, by induction,

=
(1 +up — Wtilc) (ar—1C + Kyxer—1) — ur(ar—o + Kx€i o) — wiC

= (14 ug)as—1 — ugas—2 — wy) ¢

w
“(ar_1h+ Key_y) — Utct72) .

+ Kxx ((1 +ug)er—1 — Wi

Thus, we obtain the iteration formula for a; and ¢; as follows:

ap = (1 4+ w)ar—1 — wap—o — wy,

w
¢ = (1+uy)ei—1 — Mt(atflh +Keo1) —wers,

andco =C = O, ag = O, a]; = —Wi.

D. Technical Results

Lemma D.1. Suppose Assumption B.5 holds, then Ly, Lic : Hic — Hyc are positive, self-adjoint, trace class operators.
Moreover, tr L < k2 and tr Lx < k2.

Proof. The result follows from a simple calculation. It is easy to see Li and Ly are positive and self-adjoint. We prove
they are in trace class. Let {¢;} be a orthonormal basis of Hy and {e;} be the standard basis of R¢, then

d
trLc =Y (Lxgi, oi)n = /X > (Ko pi)udp = Z/X D ((Kser, 0i)nKxer, 0i)ndp
% k=1 [

d d
=3 [ SltcenoinPdo =3 [ Ierlido = [ wricxxdo <
k=17% k=17% X

Similarly, we have tr L < x2. O
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We need the following concentration inequality in Hilbert spaces used in Bauer et al. (2007).

Lemma D.2 (Bauer et al. (2007), Proposition 23). Let £ be a random variable with values in a real Hilbert space H.
Assume there are two constants o, H, such that

1
E[||€ — &[] < §m!o"’Hm‘2, Vm > 2.

Then, foralln € N, 0 < § < 1, the following inequality holds with probability at least 1 — §

. H o 2
— < — R —

where £ = LN & and {&;} are independent copies of €.
Lemma D.3. Under Assumption B.4, we have for all M € N,0 < § < 1, the following inequality holds with probability at

least1 — ¢
A K 2
— <2 1 23
16 - cl <2 (7 + = ) Toe @3
where { = & Z L divem K and {x™} is the set of i.i.d. samples from p.

Proof. Define an H-valued random variable & := divy IC It is easy to see Ey~, [éx] = —Lisp =: . From Assump-
tion B.4, we have for m > 2,

[\V]

Eu[”fx gHm] !KmE,, [exp (fo ;{fl?-l) . ||£x ;{5“7{ . 1] lm,EQKm 2

Note that é = ﬁ Y ey &m and IE,,QC = £. Then (23) follows from Lemma D.2. O

Lemma D.4. Under Assumption B.5, we have for all M € N,0 < § < 1, the following inequality holds with probability at
least1 — 9

N 2v/2k2 2
Lx —L < ——/log —. 24
Lk — Lillu < i g5 (24)
Proof. This is a direct consequence of Vito et al. (2005, Lemma 8) and Lemma D.1. O

The following useful lemma is from De Vito et al. (2014, Lemma 7) and Sriperumbudur et al. (2017, Lemma 15)

Lemma D.5. Suppose S and T are two self-adjoint Hilbert-Schmidt operators on a separable Hilbert space H with
spectrum contained in the interval [a, b]. Given a Lipschitz function r : [a,b] — R with Lipschitz constant L.., we have

[r(S) = (D) llas < Lo |15 = Tllus -
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E. Samples

Table 5. WAE samples on MNIST.
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Table 6. WAE samples on CelebA.
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