
Neural Contextual Bandits with UCB-based Exploration

Dongruo Zhou 1 Lihong Li 2 Quanquan Gu 1

Abstract
We study the stochastic contextual bandit prob-
lem, where the reward is generated from an un-
known function with additive noise. No assump-
tion is made about the reward function other
than boundedness. We propose a new algorithm,
NeuralUCB, which leverages the representation
power of deep neural networks and uses a neural
network-based random feature mapping to con-
struct an upper confidence bound (UCB) of re-
ward for efficient exploration. We prove that, un-
der standard assumptions, NeuralUCB achieves
Õ(
√
T) regret, where T is the number of rounds.

To the best of our knowledge, it is the first neural
network-based contextual bandit algorithm with a
near-optimal regret guarantee. We also show the
algorithm is empirically competitive against rep-
resentative baselines in a number of benchmarks.

1. Introduction
The stochastic contextual bandit problem has been exten-
sively studied in machine learning (Langford & Zhang,
2008; Bubeck & Cesa-Bianchi, 2012; Lattimore &
Szepesvári, 2019): at round t ∈ {1, 2, . . . , T}, an agent
is presented with a set of K actions, each of which is asso-
ciated with a d-dimensional feature vector. After choosing
an action, the agent will receive a stochastic reward gener-
ated from some unknown distribution conditioned on the
action’s feature vector. The goal of the agent is to maximize
the expected cumulative rewards over T rounds. Contextual
bandit algorithms have been applied to many real-world
applications, such as personalized recommendation, adver-
tising and Web search.

The most studied model in the literature is linear contextual
bandits (Auer, 2002; Abe et al., 2003; Dani et al., 2008;
Rusmevichientong & Tsitsiklis, 2010), which assumes that

1Department of Computer Science, University of California,
Los Angeles, CA 90095, USA 2Google Research, USA. Corre-
spondence to: Quanquan Gu <qgu@cs.ucla.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

the expected reward at each round is linear in the feature
vector. While successful in both theory and practice (Li
et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011),
the linear-reward assumption it makes often fails to hold in
practice, which motivates the study of nonlinear or nonpara-
metric contextual bandits (Filippi et al., 2010; Srinivas et al.,
2010; Bubeck et al., 2011; Valko et al., 2013). However,
they still require fairly restrictive assumptions on the reward
function. For instance, Filippi et al. (2010) make a general-
ized linear model assumption on the reward, Bubeck et al.
(2011) require it to have a Lipschitz continuous property
in a proper metric space, and Valko et al. (2013) assume
the reward function belongs to some Reproducing Kernel
Hilbert Space (RKHS).

In order to overcome the above shortcomings, deep neu-
ral networks (DNNs) (Goodfellow et al., 2016) have been
introduced to learn the underlying reward function in con-
textual bandit problem, thanks to their strong representation
power. We call these approaches collectively as neural
contextual bandit algorithms. Given the fact that DNNs
enable the agent to make use of nonlinear models with less
domain knowledge, existing work (Riquelme et al., 2018;
Zahavy & Mannor, 2019) study neural-linear bandits. That
is, they use all but the last layers of a DNN as a feature map,
which transforms contexts from the raw input space to a
low-dimensional space, usually with better representation
and less frequent updates. Then they learn a linear explo-
ration policy on top of the last hidden layer of the DNN with
more frequent updates. These attempts have achieved great
empirical success, but no regret guarantees are provided.

In this paper, we consider provably efficient neural contex-
tual bandit algorithms. The new algorithm, NeuralUCB,
uses a neural network to learn the unknown reward function,
and follows a UCB strategy for exploration. At the core
of the algorithm is the novel use of DNN-based random
feature mappings to construct the UCB. Its regret analysis is
built on recent advances on optimization and generalization
of deep neural networks (Jacot et al., 2018; Arora et al.,
2019; Cao & Gu, 2019). Crucially, the analysis makes no
modeling assumptions about the reward function, other than
that it be bounded. While the main focus of our paper is
theoretical, we also show in a few benchmark problems the
effectiveness of NeuralUCB, and demonstrate its benefits
against several representative baselines.

Neural Contextual Bandits with UCB-based Exploration

Our main contributions are as follows:

• We propose a neural contextual bandit algorithm that
can be regarded as an extension of existing (generalized)
linear bandit algorithms (Abbasi-Yadkori et al., 2011;
Filippi et al., 2010; Li et al., 2010; 2017) to the case of
arbitrary bounded reward functions.

• We prove that, under standard assumptions, our algorithm
is able to achieve Õ(d̃

√
T) regret, where d̃ is the effec-

tive dimension of a neural tangent kernel matrix and T
is the number of rounds. The bound recovers the ex-
isting Õ(d

√
T) regret for linear contextual bandit as a

special case (Abbasi-Yadkori et al., 2011), where d is the
dimension of context.

• We demonstrate empirically the effectiveness of the algo-
rithm in both synthetic and benchmark problems.

Notation: Scalars are denoted by lower case letters, vec-
tors by lower case bold face letters, and matrices by up-
per case bold face letters. For a positive integer k, [k]
denotes {1, . . . , k}. For a vector θ ∈ Rd, we denote its

`2 norm by ‖θ‖2 =
√∑d

i=1 θ
2
i and its j-th coordinate by

[θ]j . For a matrix A ∈ Rd×d, we denote its spectral norm,
Frobenius norm, and (i, j)-th entry by ‖A‖2, ‖A‖F , and
[A]i,j , respectively. We denote a sequence of vectors by
{θj}tj=1, and similarly for matrices. For two sequences
{an} and {bn}, we use an = O(bn) to denote that there
exists some constant C > 0 such that an ≤ Cbn; similarly,
an = Ω(bn) means there exists some constant C ′ > 0 such
that an ≥ C ′bn. In addition, we use Õ(·) to hide logarith-
mic factors. We say a random variable X is ν-sub-Gaussian
if E exp(λ(X − EX)) ≤ exp(λ2ν2/2) for any λ > 0.

2. Problem Setting
We consider the stochastic K-armed contextual bandit prob-
lem, where the total number of rounds T is known. At round
t ∈ [T], the agent observes the context consisting of K fea-
ture vectors: {xt,a ∈ Rd | a ∈ [K]}. The agent selects an
action at and receives a reward rt,at . For brevity, we denote
by {xi}TK

i=1 the collection of {x1,1,x1,2, . . . ,xT,K}. Our
goal is to maximize the following pseudo regret (or regret
for short):

RT = E
[T∑

t=1

(rt,a∗
t
− rt,at

)

]
, (2.1)

where a∗t = argmaxa∈[K] E[rt,a] is the optimal action at
round t that maximizes the expected reward.

This work makes the following assumption about reward
generation: for any round t,

rt,at
= h(xt,at

) + ξt, (2.2)

where h is an unknown function satisfying 0 ≤ h(x) ≤ 1
for any x, and ξt is ν-sub-Gaussian noise conditioned
on x1,a1 , . . . ,xt−1,at−1 satisfying Eξt = 0. The ν-sub-
Gaussian assumption for ξt is standard in the stochastic
bandit literature (e.g., Abbasi-Yadkori et al., 2011; Li et al.,
2017), and is satisfied by, for example, any bounded noise.
The bounded h assumption holds true when h belongs to
linear functions, generalized linear functions, Gaussian pro-
cesses, and kernel functions with bounded RKHS norm over
a bounded domain, among others.

In order to learn the reward function h in (2.2), we propose
to use a fully connected neural networks with depth L ≥ 2:

f(x;θ) =
√
mWLσ

(
WL−1σ

(
· · ·σ(W1x)

))
, (2.3)

where σ(x) = max{x, 0} is the rectified linear unit
(ReLU) activation function, W1 ∈ Rm×d,Wi ∈
Rm×m, 2 ≤ i ≤ L − 1,WL ∈ Rm×1, and θ =
[vec(W1)>, . . . , vec(WL)>]> ∈ Rp with p = m+md+
m2(L− 1). Without loss of generality, we assume that the
width of each hidden layer is the same (i.e., m) for conve-
nience in analysis. We denote the gradient of the neural
network function by g(x;θ) = ∇θf(x;θ) ∈ Rp.

3. The NeuralUCB Algorithm
The key idea of NeuralUCB (Algorithm 1) is to use a neural
network f(x;θ) to predict the reward of context x, and
upper confidence bounds computed from the network to
guide exploration (Auer, 2002).

Initialization It initializes the network by randomly gen-
erating each entry of θ from an appropriate Gaussian dis-

tribution: for 1 ≤ l ≤ L− 1, Wl is set to be
(

W 0
0 W

)
,

where each entry of W is generated independently from
N(0, 4/m); WL is set to (w>,−w>), where each entry of
w is generated independently from N(0, 2/m).

Learning At round t, Algorithm 1 observes the contexts
for all actions, {xt,a}Ka=1. First, it computes an upper confi-
dence bound Ut,a for each action a, based on xt,a, θt−1 (the
current neural network parameter), and a positive scaling
factor γt−1. It then chooses action at with the largest Ut,a,
and receives the corresponding reward rt,at . At the end of
round t, NeuralUCB updates θt by applying Algorithm 2
to (approximately) minimize L(θ) using gradient descent,
and updates γt. We choose gradient descent in Algorithm 2
for the simplicity of analysis, although the training method
can be replaced by stochastic gradient descent with a more
involved analysis (Allen-Zhu et al., 2019; Zou et al., 2019).

Neural Contextual Bandits with UCB-based Exploration

Algorithm 1 NeuralUCB
1: Input: Number of rounds T , regularization parameter λ, exploration parameter ν, confidence parameter δ, norm

parameter S, step size η, number of gradient descent steps J , network width m, network depth L.
2: Initialization: Randomly initialize θ0 as described in the text
3: Initialize Z0 = λI
4: for t = 1, . . . , T do
5: Observe {xt,a}Ka=1

6: for a = 1, . . . ,K do
7: Compute Ut,a = f(xt,a;θt−1) + γt−1

√
g(xt,a;θt−1)>Z−1

t−1g(xt,a;θt−1)/m

8: Let at = argmaxa∈[K] Ut,a

9: end for
10: Play at and observe reward rt,at

11: Compute Zt = Zt−1 + g(xt,at
;θt−1)g(xt,at

;θt−1)>/m
12: Let θt = TrainNN(λ, η, J,m, {xi,ai

}ti=1, {ri,ai
}ti=1,θ0)

13: Compute

γt =

√
1 + C1m−1/6

√
logmL4t7/6λ−7/6 ·

(
ν

√
log

det Zt

detλI
+ C2m−1/6

√
logmL4t5/3λ−1/6 − 2 log δ +

√
λS

)
+ (λ+ C3tL)

[
(1− ηmλ)J/2

√
t/λ+m−1/6

√
logmL7/2t5/3λ−5/3(1 +

√
t/λ)

]
.

14: end for

Algorithm 2 TrainNN(λ, η, U,m, {xi,ai
}ti=1, {ri,ai

}ti=1,θ
(0))

1: Input: Regularization parameter λ, step size η, number
of gradient descent steps U , network width m, contexts
{xi,ai

}ti=1, rewards {ri,ai
}ti=1, initial parameter θ(0).

2: Define L(θ) =
∑t

i=1(f(xi,ai
;θ) − ri,ai

)2/2 +
mλ‖θ − θ(0)‖22/2.

3: for j = 0, . . . , J − 1 do
4: θ(j+1) = θ(j) − η∇L(θ(j))
5: end for
6: Return θ(J).

Comparison with Existing Algorithms We compare
NeuralUCB with other neural contextual bandit algorithms.
Allesiardo et al. (2014) proposed NeuralBandit which con-
sists of K neural networks. It uses a committee of networks
to compute the score of each action and chooses an action
with the ε-greedy strategy. In contrast, our NeuralUCB uses
upper confidence bound-based exploration, which is more
effective than ε-greedy. In addition, our algorithm only
uses one neural network instead of K networks, thus can be
computationally more efficient.

Lipton et al. (2018) used Thompson sampling on deep neu-
ral networks (through variational inference) in reinforce-
ment learning; a variant is proposed by Azizzadenesheli
et al. (2018) that works well on a set of Atari benchmarks.
Riquelme et al. (2018) proposed NeuralLinear, which uses
the first L− 1 layers of a L-layer DNN to learn a represen-
tation, then applies Thompson sampling on the last layer to

choose action. Zahavy & Mannor (2019) proposed a Neu-
ralLinear with limited memory (NeuralLinearLM), which
also uses the first L− 1 layers of a L-layer DNN to learn a
representation and applies Thompson sampling on the last
layer. Instead of computing the exact mean and variance in
Thompson sampling, NeuralLinearLM only computes their
approximation. Unlike NeuralLinear and NeuralLinearLM,
NeuralUCB uses the entire DNN to learn the representa-
tion and constructs the upper confidence bound based on
the random feature mapping defined by the neural network
gradient. Finally, Kveton et al. (2020) studied the use of
reward perturbation for exploration in neural network-based
bandit algorithms.

A Variant of NeuralUCB called NeuralUCB0 is described
in Appendix E. It can be viewed as a simplified version of
NeuralUCB where only the first-order Taylor approxima-
tion of the neural network around the initialized parameter
is updated through online ridge regression. In this sense,
NeuralUCB0 can be seen as KernelUCB (Valko et al., 2013)
specialized to the Neural Tangent Kernel (Jacot et al., 2018),
or LinUCB (Li et al., 2010) with Neural Tangent Random
Features (Cao & Gu, 2019).

While this variant has a comparable regret bound as
NeuralUCB, we expect the latter to be stronger in practice.
Indeed, as shown by Allen-Zhu & Li (2019), the Neural
Tangent Kernel does not seem to completely realize the rep-
resentation power of neural networks in supervised learning.
A similar phenomenon will be demonstrated for contextual
bandit learning in Section 7.

Neural Contextual Bandits with UCB-based Exploration

4. Regret Analysis
This section analyzes the regret of NeuralUCB. Recall that
{xi}TK

i=1 is the collection of all {xt,a}. Our regret analysis
is built upon the recently proposed neural tangent kernel
matrix (Jacot et al., 2018):

Definition 4.1 (Jacot et al. (2018); Cao & Gu (2019)). Let
{xi}TK

i=1 be a set of contexts. Define

H̃
(1)
i,j = Σ

(1)
i,j = 〈xi,xj〉, A

(l)
i,j =

(
Σ

(l)
i,i Σ

(l)
i,j

Σ
(l)
i,j Σ

(l)
j,j

)
,

Σ
(l+1)
i,j = 2E

(u,v)∼N(0,A
(l)
i,j)

[σ(u)σ(v)] ,

H̃
(l+1)
i,j = 2H̃

(l)
i,jE(u,v)∼N(0,A

(l)
i,j)

[σ′(u)σ′(v)] + Σ
(l+1)
i,j .

Then, H = (H̃(L) + Σ(L))/2 is called the neural tangent
kernel (NTK) matrix on the context set.

In the above definition, the Gram matrix H of the NTK on
the contexts {xi}TK

i=1 for L-layer neural networks is defined
recursively from the input layer all the way to the output
layer of the network. Interested readers are referred to Jacot
et al. (2018) for more details about neural tangent kernels.

With Definition 4.1, we may state the following assumption
on the contexts: {xi}TK

i=1.

Assumption 4.2. H � λ0I. Moreover, for any 1 ≤ i ≤
TK, ‖xi‖2 = 1 and [xi]j = [xi]j+d/2.

The first part of the assumption says that the neural tangent
kernel matrix is non-singular, a mild assumption commonly
made in the related literature (Du et al., 2019a; Arora et al.,
2019; Cao & Gu, 2019). It can be satisfied as long as
no two contexts in {xi}TK

i=1 are parallel. The second part
is also mild and is just for convenience in analysis: for
any context x, ‖x‖2 = 1, we can always construct a new
context x′ = [x>,x>]>/

√
2 to satisfy Assumption 4.2. It

can be verified that if θ0 is initialized as in NeuralUCB,
then f(xi;θ0) = 0 for any i ∈ [TK].

Next we define the effective dimension of the neural tangent
kernel matrix.

Definition 4.3. The effective dimension d̃ of the neural
tangent kernel matrix on contexts {xi}TK

i=1 is defined as

d̃ =
log det(I + H/λ)

log(1 + TK/λ)
. (4.1)

Remark 4.4. The notion of effective dimension was first
introduced by Valko et al. (2013) for analyzing kernel con-
textual bandits, which was defined by the eigenvalues of
any kernel matrix restricted to the given contexts. We adapt
a similar but different definition of Yang & Wang (2019),

which was used for the analysis of kernel-based Q-learning.
Suppose the dimension of the reproducing kernel Hilbert
space induced by the given kernel is d̂ and the feature map-
ping ψ : Rd → Rd̂ induced by the given kernel satisfies
‖ψ(x)‖2 ≤ 1 for any x ∈ Rd. Then, it can be verified that
d̃ ≤ d̂, as shown in Appendix A.1. Intuitively, d̃ measures
how quickly the eigenvalues of H diminish, and only de-
pends on T logarithmically in several special cases (Valko
et al., 2013).

Now we are ready to present the main result, which provides
the regret bound RT of Algorithm 1.

Theorem 4.5. Let d̃ be the effective dimension, and h =
[h(xi)]TK

i=1 ∈ RTK . There exist constant C1, C2 > 0, such
that for any δ ∈ (0, 1), if

m ≥ poly(T, L,K, λ−1, λ−1
0 , S−1, log(1/δ)), (4.2)

η = C1(mTL+mλ)−1,

λ ≥ max{1, S−2}, and S ≥
√

2h>H−1h, then with prob-
ability at least 1− δ, the regret of Algorithm 1 satisfies

RT ≤ 3
√
T

√
d̃ log(1 + TK/λ) + 2

·
[
ν

√
d̃ log(1 + TK/λ) + 2− 2 log δ

+ (λ+ C2TL)(1− λ/(TL))J/2
√
T/λ

+ +2
√
λS

]
+ 1. (4.3)

Remark 4.6. It is worth noting that, simply applying re-
sults for linear bandits to our algorithm would lead to a
linear dependence of p or

√
p in the regret. Such a bound

is vacuous since in our setting p would be very large com-
pared with the number of rounds T and the input context
dimension d. In contrast, our regret bound only depends on
d̃, which can be much smaller than p.

Remark 4.7. Our regret bound (4.3) has a term (λ +
C2TL)(1 − λ/(TL))J/2

√
T/λ, which characterizes the

optimization error of Algorithm 2 after J iterations. Setting

J = 2 log
λS√

T (λ+ C2TL)

TL

λ
= Õ(TL/λ), (4.4)

which is independent of m, we have (λ + C2TL)(1 −
λ/(TL))J/2

√
T/λ ≤

√
λS, so the optimization error is

dominated by
√
λS. Hence, the order of the regret bound is

not affected by the error of optimization.

Remark 4.8. With ν and λ treated as constants, S =√
2h>H−1h, and J given in (4.4), the regret bound (4.3)

becomes RT = Õ
(√

d̃T

√
max{d̃,h>H−1h}

)
. Specifi-

cally, if h belongs to the RKHS H induced by the neural

Neural Contextual Bandits with UCB-based Exploration

tangent kernel with bounded RKHS norm ‖h‖H, we have
‖h‖H ≥

√
h>H−1h; see Appendix A.2 for more details.

Thus our regret bound can be further written as

RT = Õ
(√

d̃T

√
max{d̃, ‖h‖H}

)
. (4.5)

The high-probability result in Theorem 4.5 can be used to
obtain a bound on the expected regret.

Corollary 4.9. Under the same conditions in Theorem 4.5,
there exists a positive constant C such that

E[RT]

≤ 2 + 3
√
T

√
d̃ log(1 + TK/λ) + 2

·
[
ν

√
d̃ log(1 + TK/λ) + 2 + 2 log T

+ 2
√
λS + (λ+ CTL)(1− λ/(TL))J/2

√
T/λ

]
.

5. Proof of Main Result
This section outlines the proof of Theorem 4.5, which has
to deal with the following technical challenges:

• We do not make parametric assumptions on the reward
function as some previous work (Filippi et al., 2010; Chu
et al., 2011; Abbasi-Yadkori et al., 2011).

• To avoid strong parametric assumptions, we use overpa-
rameterized neural networks, which implies m (and thus
p) is very large. Therefore, we need to make sure the
regret bound is independent of m.

• Unlike the static feature mapping used in kernel bandit
algorithms (Valko et al., 2013), NeuralUCB uses a neural
network f(x;θt) and its gradient g(x;θt) as a dynamic
feature mapping depending on θt. This difference makes
the analysis of NeuralUCB more difficult.

These challenges are addressed by the following technical
lemmas, whose proofs are gathered in the appendix.

Lemma 5.1. There exists a positive constant C̄ such that
for any δ ∈ (0, 1), if m ≥ C̄T 4K4L6 log(T 2K2L/δ)/λ4

0,
then with probability at least 1− δ, there exists a θ∗ ∈ Rp

such that

h(xi) = 〈g(xi;θ0),θ∗ − θ0〉,
√
m‖θ∗ − θ0‖2 ≤

√
2h>H−1h, (5.1)

for all i ∈ [TK].

Lemma 5.1 suggests that with high probability, the reward
function restricted to {xi}TK

i=1 can be regarded as a linear

function of g(xi;θ0) parameterized by θ∗ − θ0, where θ∗

lies in a ball centered at θ0. Note that here θ∗ is not a
ground truth parameter for the reward function. Instead,
it is introduced only for the sake of analysis. Equipped
with Lemma 5.1, we can utilize existing results on linear
bandits (Abbasi-Yadkori et al., 2011) to show that with high
probability, θ∗ lies in the sequence of confidence sets.

Lemma 5.2. There exist positive constants C̄1 and C̄2 such
that for any δ ∈ (0, 1), if η ≤ C̄1(TmL+mλ)−1 and

m ≥ C̄2 max
{
T 7λ−7L21(logm)3,

λ−1/2L−3/2(log(TKL2/δ))3/2
}
,

then with probability at least 1− δ, we have ‖θt − θ0‖2 ≤
2
√
t/(mλ) and ‖θ∗ − θt‖Zt ≤ γt/

√
m for all t ∈ [T],

where γt is defined in Algorithm 1.

Lemma 5.3. Let a∗t = argmaxa∈[K] h(xt,a). There exists
a positive constant C̄ such that for any δ ∈ (0, 1), if η and
m satisfy the same conditions as in Lemma 5.2, then with
probability at least 1− δ, we have

h
(
xt,a∗

t

)
− h
(
xt,at

)
≤ 2γt−1 min

{
‖g(xt,at

;θt−1)/
√
m‖Z−1

t−1
, 1

}
+ C̄

(
Sm−1/6

√
logmT 7/6λ−1/6L7/2

+m−1/6
√

logmT 5/3λ−2/3L3
)
.

Lemma 5.3 gives an upper bound for h
(
xt,a∗

t

)
− h
(
xt,at

)
,

which can be used to bound the regret RT . It is worth
noting that γt has a term log det Zt. A trivial upper bound
of log det Zt would result in a quadratic dependence on
the network width m, since the dimension of Zt is p =
md+m2(L− 2) +m. Instead, we use the next lemma to
establish an m-independent upper bound. The dependence
on d̃ is similar to Valko et al. (2013, Lemma 4), but the proof
is different as our notion of effective dimension is different.

Lemma 5.4. There exist positive constants
{C̄i}3i=1 such that for any δ ∈ (0, 1), if m ≥
C̄1 max

{
T 7λ−7L21(logm)3, T 6K6L6(log(TKL2/δ))3/2

}
and η ≤ C̄2(TmL+mλ)−1, then with probability at least
1− δ, we have√√√√ T∑

t=1

γ2
t−1 min

{
‖g(xt,at ;θt−1)/

√
m‖2

Z−1
t−1

, 1

}

≤
√
d̃ log(1 + TK/λ) + Γ1[
Γ2

(
ν

√
d̃ log(1 + TK/λ) + Γ1 − 2 log δ +

√
λS

)
+ (λ+ C̄3tL)

[
(1− ηmλ)J/2

√
T/λ+ Γ3(1 +

√
T/λ)

]]
,

Neural Contextual Bandits with UCB-based Exploration

where

Γ1 = 1 + C̄3m
−1/6

√
logmL4T 5/3λ−1/6,

Γ2 =

√
1 + C̄3m−1/6

√
logmL4T 7/6λ−7/6,

Γ3 = m−1/6
√

logmL7/2T 5/3λ−5/3.

We are now ready to prove the main result.

Proof of Theorem 4.5. Lemma 5.3 implies that the total re-
gret RT can be bounded as follows with a constant C1 > 0:

RT =

T∑
t=1

[
h
(
xt,a∗

t

)
− h
(
xt,at

)]
≤ 2

T∑
t=1

γt−1 min

{
‖g(xt,at

;θt−1)/
√
m‖Z−1

t−1
, 1

}
+ C1

(
Sm−1/6

√
logmT 13/6λ−1/6L7/2

+m−1/6
√

logmT 8/3λ−2/3L3
)
.

It can be further bounded as follows:

RT ≤ 2

√√√√T

T∑
t=1

γ2
t−1 min

{
‖g(xt,at

;θt−1)/
√
m‖2

Z−1
t−1

, 1

}
+ C1

(
Sm−1/6

√
logmT 13/6λ−1/6L7/2

+m−1/6
√

logmT 8/3λ−2/3L3
)

≤ 2
√
T ·
√
d̃ log(1 + TK/λ) + Γ1[

Γ2

(
ν

√
d̃ log(1 + TK/λ) + Γ1 − 2 log δ +

√
λS

)
+ (λ+ C2TL)

[
(1− ηmλ)J/2

√
T/λ

+ Γ3(1 +
√
T/λ)

]]
+ C1

(
Sm−1/6

√
logmT 13/6λ−1/6L7/2

+m−1/6
√

logmT 8/3λ−2/3L3
)

≤ 3
√
T

√
d̃ log(1 + TK/λ) + 2

·
[
ν

√
d̃ log(1 + TK/λ) + 2− 2 log δ

+ (λ+ C3TL)(1− ηmλ)J/2
√
T/λ

+ 2
√
λS

]
+ 1,

where C1, C2, C3 are positive constants, the first inequality
is due to Cauchy-Schwarz inequality, the second inequal-
ity due to Lemma 5.4, and the third inequality holds for
sufficiently large m. This completes our proof.

6. Related Work
Contextual Bandits There is a line of extensive work on
linear bandits (e.g., Abe et al., 2003; Auer, 2002; Abe et al.,
2003; Dani et al., 2008; Rusmevichientong & Tsitsiklis,
2010; Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori
et al., 2011). Many of these algorithms are based on the
idea of upper confidence bounds, and are shown to achieve
near-optimal regret bounds. Our algorithm is also based on
UCB exploration, and the regret bound reduces to that of
Abbasi-Yadkori et al. (2011) in the linear case.

To deal with nonlinearity, a few authors have considered
generalized linear bandits (Filippi et al., 2010; Li et al., 2017;
Jun et al., 2017), where the reward function is a composition
of a linear function and a (nonlinear) link function. Such
models are special cases of what we study in this work.

More general nonlinear bandits without making strong mod-
eling assumptions have also be considered. One line of
work is the family of expert learning algorithms (Auer et al.,
2002; Beygelzimer et al., 2011) that typically have a time
complexity linear in the number of experts (which in many
cases can be exponential in the number of parameters).

A second approach is to reduce a bandit problem to super-
vised learning, such as the epoch-greedy algorithm (Lang-
ford & Zhang, 2008) that has a non-optimal O(T 2/3) regret.
Later, Agarwal et al. (2014) develop an algorithm that en-
joys a near-optimal regret, but relies on an oracle, whose
implementation still requires proper modeling assumptions.

A third approach uses nonparametric modeling, such as per-
ceptrons (Kakade et al., 2008), random forests (Féraud et al.,
2016), Gaussian processes and kernels (Kleinberg et al.,
2008; Srinivas et al., 2010; Krause & Ong, 2011; Bubeck
et al., 2011). The most relevant is by Valko et al. (2013),
who assumed that the reward function lies in an RKHS with
bounded RKHS norm and developed a UCB-based algo-
rithm. They also proved an Õ(

√
d̃T) regret, where d̃ is a

form of effective dimension similar to ours. Compared with
these interesting works, our neural network-based algorithm
avoids the need to carefully choose a good kernel or metric,
and can be computationally more efficient in large-scale
problems. Recently, Foster & Rakhlin (2020) proposed
contextual bandit algorithms with regression oracles which
achieve a dimension-independent O(T 3/4) regret. Com-
pared with Foster & Rakhlin (2020), NeuralUCB achieves
a dimension-dependent Õ(d̃

√
T) regret with a better depen-

dence on the time horizon.

Neural Networks Substantial progress has been made
to understand the expressive power of DNNs, in connec-
tion to the network depth (Telgarsky, 2015; 2016; Liang &
Srikant, 2016; Yarotsky, 2017; 2018; Hanin, 2017), as well
as network width (Lu et al., 2017; Hanin & Sellke, 2017).

Neural Contextual Bandits with UCB-based Exploration

0 2000 4000 6000 8000 10000
Round

0

500

1000

1500

2000

2500

3000

3500

Re
gr

et

LinUCB
GLMUCB
KernelUCB
BootstrappedNN
Neural ε-Greedy0
NeuralUCB0
Neural ε-Greedy
NeuralUCB

(a) h1(x) = 10(x>a)2

0 2000 4000 6000 8000 10000
Round

0

10000

20000

30000

40000

50000

60000

Re
gr

et

LinUCB
GLMUCB
KernelUCB
BootstrappedNN
Neural ε-Greedy0
NeuralUCB0
Neural ε-Greedy
NeuralUCB

(b) h2(x) = x>A>Ax

0 2000 4000 6000 8000 10000
Round

0

250

500

750

1000

1250

1500

1750

Re
gr

et

LinUCB
GLMUCB
KernelUCB
BootstrappedNN
Neural ε-Greedy0
NeuralUCB0
Neural ε-Greedy
NeuralUCB

(c) h3(x) = cos(3x>a)

Figure 1. Comparison of NeuralUCB and baseline algorithms on synthetic datasets.

The present paper on neural contextual bandit algorithms
is inspired by these theoretical justifications and empirical
evidence in the literature.

Our regret analysis for NeuralUCB makes use of recent
advances in optimizing a DNN. A series of works show that
(stochastic) gradient descent can find global minima of the
training loss (Li & Liang, 2018; Du et al., 2019b; Allen-
Zhu et al., 2019; Du et al., 2019a; Zou et al., 2019; Zou &
Gu, 2019). For the generalization of DNNs, a number of
authors (Daniely, 2017; Cao & Gu, 2019; 2020; Arora et al.,
2019; Chen et al., 2019) show that by using (stochastic)
gradient descent, the parameters of a DNN are located in a
particular regime and the generalization bound of DNNs can
be characterized by the best function in the corresponding
neural tangent kernel space (Jacot et al., 2018).

7. Experiments
In this section, we evaluate NeuralUCB empirically and
compare it with seven representative baselines: (1) LinUCB,
which is also based on UCB but adopts a linear represen-
tation; (2) GLMUCB (Filippi et al., 2010), which applies
a nonlinear link function over a linear function; (3) Ker-
nelUCB (Valko et al., 2013), a kernelised UCB algorithm
which makes use of a predefined kernel function; (4) Boot-
strappedNN (Efron, 1982; Riquelme et al., 2018), which
simultaneously trains a set of neural networks using boot-
strapped samples and at every round chooses an action based
on the prediction of a randomly picked model; (5) Neural
ε-Greedy, which replaces the UCB-based exploration in Al-
gorithm 1 by ε-greedy; (6) NeuralUCB0, as described in
Section 3; and (7) Neural ε-Greedy0, same as NeuralUCB0

but with ε-greedy exploration. We use the cumulative regret
as the performance metric.

7.1. Synthetic Datasets

In the first set of experiments, we use contextual bandits
with context dimension d = 20 and K = 4 actions. The
number of rounds T = 10 000. The contextual vectors

{x1,1, . . . ,xT,K} are chosen uniformly at random from the
unit ball. The reward function h is one of the following:

h1(x) = 10(x>a)2,

h2(x) = x>A>Ax,

h3(x) = cos(3x>a) ,

where each entry of A ∈ Rd×d is randomly generated from
N(0, 1), a is randomly generated from uniform distribution
over unit ball. For each hi(·), the reward is generated by
rt,a = hi(xt,a) + ξt, where ξt ∼ N(0, 1).

Following Li et al. (2010), we implement LinUCB using
a constant α (for the variance term in the UCB). We do a
grid search for α over {0.01, 0.1, 1, 10}. For GLMUCB, we
use the sigmoid function as the link function and adapt the
online Newton step method to accelerate the computation
(Zhang et al., 2016; Jun et al., 2017). We do grid searches
over {0.1, 1, 10} for regularization parameter, {1, 10, 100}
for step size, {0.01, 0.1, 1} for exploration parameter. For
KernelUCB, we use the radial basis function (RBF) kernel
with parameter σ, and set the regularization parameter to 1.
Grid searches over {0.1, 1, 10} for σ and {0.01, 0.1, 1, 10}
for the exploration parameter are done. To accelerate the
calculation, we stop adding contexts to KernelUCB after
1000 rounds, following the same setting for Gaussian Pro-
cess in Riquelme et al. (2018). For all five neural algo-
rithms, we choose a two-layer neural network f(x;θ) =√
mW2σ(W1x) with network width m = 20, where θ =

[vec(W1)>, vec(W2)>] ∈ Rp and p = md + m = 420.1

Moreover, we set γt = γ in NeuralUCB, and do a grid
search over {0.01, 0.1, 1, 10}. For NeuralUCB0, we do grid
searches for ν over {0.1, 1, 10}, for λ over {0.1, 1, 10}, for
δ over {0.01, 0.1, 1}, for S over {0.01, 0.1, 1, 10}. For Neu-
ral ε-Greedy and Neural ε-Greedy0, we do a grid search for
ε over {0.001, 0.01, 0.1, 0.2}. For BootstrappedNN, we fol-
low Riquelme et al. (2018) to set the number of models to
be 10 and the transition probability to be 0.8. To accelerate

1Note that the bound on the required network width m is likely
not tight. Therefore, in experiments we choose m to be relatively
large, but not as large as theory suggests.

Neural Contextual Bandits with UCB-based Exploration

0 2000 4000 6000 8000 10000 12000 14000
Round

0

1000

2000

3000

4000

5000

6000

7000

Re
gr

et

LinUCB
GLMUCB
KernelUCB
BootstrappedNN
Neural ε-Greedy0
NeuralUCB0
Neural ε-Greedy
NeuralUCB

(a) covertype

0 2000 4000 6000 8000 10000 12000 14000
Round

0

1000

2000

3000

4000

Re
gr

et

LinUCB
GLMUCB
KernelUCB
BootstrappedNN
Neural ε-Greedy0
NeuralUCB0
Neural ε-Greedy
NeuralUCB

(b) magic

0 2000 4000 6000 8000 10000 12000 14000
Round

0

250

500

750

1000

1250

1500

1750

Re
gr

et

LinUCB
GLMUCB
KernelUCB
BootstrappedNN
Neural ε-Greedy0
NeuralUCB0
Neural ε-Greedy
NeuralUCB

(c) statlog

0 2000 4000 6000 8000 10000 12000 14000
Round

0

1000

2000

3000

4000

5000

Re
gr

et

LinUCB
GLMUCB
KernelUCB
BootstrappedNN
Neural ε-Greedy0
NeuralUCB0
Neural ε-Greedy
NeuralUCB

(d) mnist

Figure 2. Comparison of NeuralUCB and baseline algorithms on real-world datasets.

Table 1. Dataset statistics

DATASET
COVER-

MAGIC STATLOG MNIST
TYPE

FEATURE 54 10 8 784
DIMENSION
NUMBER OF 7 2 7 10
CLASSES
NUMBER OF 581012 19020 58000 60000
INSTANCES

the training process, for BootstrappedNN, NeuralUCB and
Neural ε-Greedy, we update the parameter θt by TrainNN
every 50 rounds. We use stochastic gradient descent with
batch size 50, J = t at round t, and do a grid search for
step size η over {0.001, 0.01, 0.1}. For all grid-searched
parameters, we choose the best of them for the comparison.
All experiments are repeated 10 times, and the averaged
results reported for comparison.

7.2. Real-world Datasets

We evaluate our algorithms on real-world datasets from the
UCI Machine Learning Repository (Dua & Graff, 2017):
covertype, magic, and statlog. We also evaluate
our algorithms on mnist dataset (LeCun et al., 1998).
These are all K-class classification datasets (Table 1), and
are converted into K-armed contextual bandits (Beygelz-
imer & Langford, 2009). The number of rounds is set as
T = 15000. Following Riquelme et al. (2018), we create

contextual bandit problems based on the prediction accu-
racy. In detail, to transform a classification problem with
k-classes into a bandit problem, we adapts the disjoint model
(Li et al., 2010) which transforms each contextual vector
x ∈ Rd into k vectors x(1) = (x,0, . . . ,0), . . . ,x(k) =
(0, . . . ,0,x) ∈ Rdk. The agent received regret 0 if he clas-
sifies the context correctly, and 1 otherwise. For all the
algorithms, We reshuffle the order of contexts and repeat
the experiment for 10 runs. Averaged results are reported
for comparison.

For LinUCB, GLMUCB and KernelUCB, we tune their
parameters as Section 7.1 suggests. For BootstrappedNN,
NeuralUCB, NeuralUCB0, Neural ε-Greedy and Neural ε-
Greedy0, we choose a two-layer neural network with width
m = 100. For NeuralUCB and NeuralUCB0, since it is
computationally expensive to store and compute a whole
matrix Zt, we use a diagonal matrix which consists of the
diagonal elements of Zt to approximate Zt. To accelerate
the training process, for BootstrappedNN, NeuralUCB and
Neural ε-Greedy, we update the parameter θt by TrainNN
every 100 rounds starting from round 2000. We do grid
searches for λ over {10−i}, i = 1, 2, 3, 4, for η over {2 ×
10−i, 5 × 10−i}, i = 1, 2, 3, 4. We set J = 1000 and use
stochastic gradient descent with batch size 500 to train the
networks. For the rest of parameters, we tune them as those
in Section 7.1 and choose the best of them for comparison.

Neural Contextual Bandits with UCB-based Exploration

7.3. Results
Figures 1 and 2 show the cumulative regret of all algorithms.
First, due to the nonlinearity of reward functions h, Lin-
UCB fails to learn them for nearly all tasks. GLMUCB
is only able to learn the true reward functions for certain
tasks due to its simple link function. In contrast, thanks to
the neural network representation and efficient exploration,
NeuralUCB achieves a substantially lower regret. The per-
formance of Neural ε-Greedy is between the two. This
suggests that while Neural ε-Greedy can capture the non-
linearity of the underlying reward function, ε-Greedy based
exploration is not as effective as UCB based exploration.
This confirms the effectiveness of NeuralUCB for contex-
tual bandit problems with nonlinear reward functions. Sec-
ond, it is worth noting that NeuralUCB and Neural ε-Greedy
outperform NeuralUCB0 and Neural ε-Greedy0. This sug-
gests that using deep neural networks to predict the reward
function is better than using a fixed feature mapping associ-
ated with the Neural Tangent Kernel, which mirrors similar
findings in supervised learning (Allen-Zhu & Li, 2019). Fur-
thermore, we can see that KernelUCB is not as good as
NeuralUCB, which suggests the limitation of simple ker-
nels like RBF compared to flexible neural networks. What’s
more, BootstrappedNN can be competitive, approaching
the performance of NeuralUCB in some datasets. However,
it requires to maintain and train multiple neural networks,
so is computationally more expensive than our approach,
especially in large-scale problems.

8. Conclusion
In this paper, we proposed NeuralUCB, a new algorithm for
stochastic contextual bandits based on neural networks and
upper confidence bounds. Building on recent advances in
optimization and generalization of deep neural networks,
we showed that for an arbitrary bounded reward function,
our algorithm achieves an Õ(d̃

√
T) regret bound. Promis-

ing empirical results on both synthetic and real-world data
corroborated our theoretical findings, and suggested the
potential of the algorithm in practice.

We conclude the paper with a suggested direction for fu-
ture research. Given the focus on UCB exploration in this
work, a natural open question is provably efficient explo-
ration based on randomized strategies, when DNNs are used.
These methods are effective in practice, but existing regret
analyses are mostly for shallow (i.e., linear or generalized
linear) models (Chapelle & Li, 2011; Agrawal & Goyal,
2013; Russo et al., 2018; Kveton et al., 2020). Extending
them to DNNs will be interesting. Meanwhile, our current
analysis of NeuralUCB is based on the NTK theory. While
NTK facilitates the analysis, it has its own limitations, and
we will leave the analysis of NeuralUCB beyond NTK as
future work.

Acknowledgement
We would like to thank the anonymous reviewers for their
helpful comments. This research was sponsored in part
by the National Science Foundation IIS-1904183 and IIS-
1906169. The views and conclusions contained in this paper
are those of the authors and should not be interpreted as
representing any funding agencies.

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved

algorithms for linear stochastic bandits. In Advances in
Neural Information Processing Systems, pp. 2312–2320,
2011.

Abe, N., Biermann, A. W., and Long, P. M. Reinforcement
learning with immediate rewards and linear hypotheses.
Algorithmica, 37(4):263–293, 2003.

Agarwal, A., Hsu, D., Kale, S., Langford, J., Li, L., and
Schapire, R. E. Taming the monster: A fast and simple al-
gorithm for contextual bandits. In Proceedings of the 31st
International Conference on Machine Learning (ICML),
pp. 1638–1646, 2014.

Agrawal, S. and Goyal, N. Thompson sampling for contex-
tual bandits with linear payoffs. In International Confer-
ence on Machine Learning, pp. 127–135, 2013.

Allen-Zhu, Z. and Li, Y. What can ResNet learn efficiently,
going beyond kernels? In Advances in Neural Informa-
tion Processing Systems, 2019.

Allen-Zhu, Z., Li, Y., and Song, Z. A convergence theory for
deep learning via over-parameterization. In International
Conference on Machine Learning, pp. 242–252, 2019.

Allesiardo, R., Féraud, R., and Bouneffouf, D. A neural
networks committee for the contextual bandit problem.
In International Conference on Neural Information Pro-
cessing, pp. 374–381. Springer, 2014.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., and
Wang, R. On exact computation with an infinitely wide
neural net. In Advances in Neural Information Processing
Systems, 2019.

Auer, P. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning
Research, 3(Nov):397–422, 2002.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E.
The nonstochastic multiarmed bandit problem. SIAM
Journal on Computing, 32(1):48–77, 2002.

Azizzadenesheli, K., Brunskill, E., and Anandkumar, A.
Efficient exploration through Bayesian deep Q-networks.

Neural Contextual Bandits with UCB-based Exploration

In 2018 Information Theory and Applications Workshop
(ITA), pp. 1–9. IEEE, 2018.

Beygelzimer, A. and Langford, J. The offset tree for learn-
ing with partial labels. In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 129–138, 2009.

Beygelzimer, A., Langford, J., Li, L., Reyzin, L., and
Schapire, R. E. Contextual bandit algorithms with su-
pervised learning guarantees. In Proceedings of the Four-
teenth International Conference on Artificial Intelligence
and Statistics, pp. 19–26, 2011.

Bubeck, S. and Cesa-Bianchi, N. Regret analysis of stochas-
tic and nonstochastic multi-armed bandit problems. Foun-
dations and Trends in Machine Learning, 5(1):1–122,
2012.

Bubeck, S., Munos, R., Stoltz, G., and Szepesvári, C. X-
armed bandits. Journal of Machine Learning Research,
12(May):1655–1695, 2011.

Cao, Y. and Gu, Q. Generalization bounds of stochastic gra-
dient descent for wide and deep neural networks. In Ad-
vances in Neural Information Processing Systems, 2019.

Cao, Y. and Gu, Q. Generalization error bounds of gra-
dient descent for learning over-parameterized deep relu
networks. In the Thirty-Fourth AAAI Conference on Arti-
ficial Intelligence, 2020.

Chapelle, O. and Li, L. An empirical evaluation of thompson
sampling. In Advances in neural information processing
systems, pp. 2249–2257, 2011.

Chen, Z., Cao, Y., Zou, D., and Gu, Q. How much over-
parameterization is sufficient to learn deep relu networks?
arXiv preprint arXiv:1911.12360, 2019.

Chu, W., Li, L., Reyzin, L., and Schapire, R. Contextual
bandits with linear payoff functions. In Proceedings
of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pp. 208–214, 2011.

Dani, V., Hayes, T. P., and Kakade, S. M. Stochastic linear
optimization under bandit feedback. 2008.

Daniely, A. SGD learns the conjugate kernel class of the
network. In Advances in Neural Information Processing
Systems, pp. 2422–2430, 2017.

Du, S., Lee, J., Li, H., Wang, L., and Zhai, X. Gradient
descent finds global minima of deep neural networks.
In International Conference on Machine Learning, pp.
1675–1685, 2019a.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient
descent provably optimizes over-parameterized neural
networks. In International Conference on Learning Rep-
resentations, 2019b. URL https://openreview.
net/forum?id=S1eK3i09YQ.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Efron, B. The jackknife, the bootstrap, and other resampling
plans, volume 38. Siam, 1982.

Féraud, R., Allesiardo, R., Urvoy, T., and Clérot, F. Random
forest for the contextual bandit problem. In Artificial
Intelligence and Statistics, pp. 93–101, 2016.

Filippi, S., Cappe, O., Garivier, A., and Szepesvári, C. Para-
metric bandits: The generalized linear case. In Advances
in Neural Information Processing Systems, pp. 586–594,
2010.

Foster, D. J. and Rakhlin, A. Beyond ucb: Optimal and
efficient contextual bandits with regression oracles. arXiv
preprint arXiv:2002.04926, 2020.

Goodfellow, I., Bengio, Y., and Courville, A. Deep
Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Hanin, B. Universal function approximation by deep neural
nets with bounded width and ReLU activations. arXiv
preprint arXiv:1708.02691, 2017.

Hanin, B. and Sellke, M. Approximating continuous func-
tions by ReLU nets of minimal width. arXiv preprint
arXiv:1710.11278, 2017.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. In
Advances in neural information processing systems, pp.
8571–8580, 2018.

Jun, K.-S., Bhargava, A., Nowak, R. D., and Willett, R. Scal-
able generalized linear bandits: Online computation and
hashing. In Advances in Neural Information Processing
Systems 30 (NIPS), pp. 99–109, 2017.

Kakade, S. M., Shalev-Shwartz, S., and Tewari, A. Effi-
cient bandit algorithms for online multiclass prediction.
In Proceedings of the 25th international conference on
Machine learning, pp. 440–447, 2008.

Kleinberg, R., Slivkins, A., and Upfal, E. Multi-armed
bandits in metric spaces. In Proceedings of the fortieth
annual ACM symposium on Theory of computing, pp.
681–690. ACM, 2008.

https://openreview.net/forum?id=S1eK3i09YQ
https://openreview.net/forum?id=S1eK3i09YQ
http://archive.ics.uci.edu/ml
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Neural Contextual Bandits with UCB-based Exploration

Krause, A. and Ong, C. S. Contextual Gaussian process
bandit optimization. In Advances in neural information
processing systems, pp. 2447–2455, 2011.

Kveton, B., Zaheer, M., Szepesvári, C., Li, L.,
Ghavamzadeh, M., and Boutilier, C. Randomized ex-
ploration in generalized linear bandits. In Proceedings
of the 22nd International Conference on Artificial Intelli-
gence and Statistics, 2020.

Langford, J. and Zhang, T. The epoch-greedy algorithm for
contextual multi-armed bandits. In Advances in Neural
Information Processing Systems 20 (NIPS), pp. 1096–
1103, 2008.

Lattimore, T. and Szepesvári, C. Bandit Algorithms. Cam-
bridge University Press, 2019. In press.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Li, L., Chu, W., Langford, J., and Schapire, R. E. A
contextual-bandit approach to personalized news article
recommendation. In Proceedings of the 19th interna-
tional conference on World wide web, pp. 661–670. ACM,
2010.

Li, L., Lu, Y., and Zhou, D. Provably optimal algorithms for
generalized linear contextual bandits. In Proceedings of
the 34th International Conference on Machine Learning-
Volume 70, pp. 2071–2080. JMLR. org, 2017.

Li, Y. and Liang, Y. Learning overparameterized neural
networks via stochastic gradient descent on structured
data. In Advances in Neural Information Processing
Systems, pp. 8157–8166, 2018.

Liang, S. and Srikant, R. Why deep neural net-
works for function approximation? arXiv preprint
arXiv:1610.04161, 2016.

Lipton, Z., Li, X., Gao, J., Li, L., Ahmed, F., and Deng,
L. BBQ-networks: Efficient exploration in deep rein-
forcement learning for task-oriented dialogue systems. In
Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. The expres-
sive power of neural networks: A view from the width. In
Advances in neural information processing systems, pp.
6231–6239, 2017.

Riquelme, C., Tucker, G., and Snoek, J. Deep Bayesian ban-
dits showdown. In International Conference on Learning
Representations, 2018.

Rusmevichientong, P. and Tsitsiklis, J. N. Linearly parame-
terized bandits. Mathematics of Operations Research, 35
(2):395–411, 2010.

Russo, D., Roy, B. V., Kazerouni, A., Osband, I., and Wen,
Z. A tutorial on Thompson sampling. Foundations and
Trends in Machine Learning, 11(1):1–96, 2018.

Srinivas, N., Krause, A., Kakade, S., and Seeger, M. Gaus-
sian process optimization in the bandit setting: no regret
and experimental design. In Proceedings of the 27th In-
ternational Conference on International Conference on
Machine Learning, pp. 1015–1022. Omnipress, 2010.

Telgarsky, M. Representation benefits of deep feedforward
networks. arXiv preprint arXiv:1509.08101, 2015.

Telgarsky, M. Benefits of depth in neural networks. arXiv
preprint arXiv:1602.04485, 2016.

Valko, M., Korda, N., Munos, R., Flaounas, I., and Cris-
tianini, N. Finite-time analysis of kernelised contextual
bandits. arXiv preprint arXiv:1309.6869, 2013.

Yang, L. F. and Wang, M. Reinforcement leaning in feature
space: Matrix bandit, kernels, and regret bound. arXiv
preprint arXiv:1905.10389, 2019.

Yarotsky, D. Error bounds for approximations with deep
ReLU networks. Neural Networks, 94:103–114, 2017.

Yarotsky, D. Optimal approximation of continuous func-
tions by very deep ReLU networks. arXiv preprint
arXiv:1802.03620, 2018.

Zahavy, T. and Mannor, S. Deep neural linear bandits:
Overcoming catastrophic forgetting through likelihood
matching. arXiv preprint arXiv:1901.08612, 2019.

Zhang, L., Yang, T., Jin, R., Xiao, Y., and Zhou, Z.-H. On-
line stochastic linear optimization under one-bit feedback.
In International Conference on Machine Learning, pp.
392–401, 2016.

Zou, D. and Gu, Q. An improved analysis of training over-
parameterized deep neural networks. In Advances in
Neural Information Processing Systems, 2019.

Zou, D., Cao, Y., Zhou, D., and Gu, Q. Stochastic gra-
dient descent optimizes over-parameterized deep ReLU
networks. Machine Learning, 2019.

