Neural Contextual Bandits with UCB-based Exploration

A. Proof of Additional Results in Section 4
A.1. Verification of Remark 4.4

Suppose there exists a mapping ¢ : R — RY satisfying ||9(x)||2 < 1 which maps any context x € R? to the
Hilbert space H associated with the Gram matrix H € RTEXTE over contexts {x’}2%. Then H = ¥'W¥, where

U = [1p(xt),...,p(xTE) e RIXTK Thus, we can bound the effective dimension d as follows
~ logdet[I+H/)\ logdet [I+WWT/\] . log|I+®¥T/A|,

1= TogT+ TR/ gl - TK/N) =4 Tlog(l - TE/N)

where the second equality holds due to the fact that det(I + ATA / A) = det(I + AAT/)) holds for any matrix A, and the
inequality holds since det A < ||A||2 forany A € RIxd, Clearly, d < d as long as T+ \II\IIT/)\H <14+ TK/\. Indeed,

TK
[T+ @@ T/A, <1+ [[@ET] /A< 1+ [[px)p(x)T|,/A < 1+ TE/A,
i=1

where the first inequality is due to triangle inequality and the fact A > 1, the second inequality holds due to the definition of
W and triangle inequality, and the last inequality is by ||1p(x?)||2 < 1 forany 1 <i < TK.
A.2. Verification of Remark 4.8

Let K(-,-) be the NTK kernel, then for i, j € [T K], we have H; ; = K(x,x’). Suppose that b € H, then h can be
decomposed as h = hg + h ), where hg(x) = ZlT:Ii a; K (x,x") is the projection of & to the function space spanned by
{K(x,x")} X and h, is the orthogonal part. By definition we have h(x') = hyz(x?) fori € [T K], thus

h = [h(x}),... h(x"5)]T

= [ha(xY), ... ha (xTE) T
TK TK T
= [Z K (xhx%), ..., ZaiK(xTK,xi)}
i=1 i=1
= Ha,

which implies that o = H~1h. Thus, we have

|l > [|hslln = VaTHa = VhTH-'HH-'h = VhTH-'h.

A.3. Proof of Corollary 4.9

Proof of Corollary 4.9. Notice that Ry < T since 0 < h(x) < 1. Thus, with the fact that with probability at least 1 — 4,
(4.3) holds, we can bound E[Ry] as

E[Ry] < (1 —4) <3\/:F\/Elog(1 +TK/A) +2 {y\/&vlog(l LTK/A) 42— 2logd
+2VAS + (A + CoTL)(1 —nm)\)J/Q\/T//\} + 1) + 6T. (A1)
Taking 6 = 1/T completes the proof. O

B. Proof of Lemmas in Section 5
B.1. Proof of Lemma 5.1

We start with the following lemma:
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Lemma B.1. Let G = [g(x';8)),...,g(x"%;80)]//m € RP*(TK) Let H be the NTK matrix as defined in Definition
4.1. For any ¢ € (0,1), if

- Q(LG log(?KL/(S))’

then with probability at least 1 — §, we have

|IG'G —H||p < TKe.
We begin to prove Lemma 5.1.

Proof of Lemma 5.1. By Assumption 4.2, we know that \g > 0. By the choice of m, we have m > Q(LSlog(TKL/J)/€*),
where € = \g/(2TK). Thus, due to Lemma B.1, with probability at least 1 — &, we have |GTG — H||r < TKe = \o/2.
That leads to

G'G-H-|G'G-H|pI=H-)\I/2>H/2 >0, (B.1)

where the first inequality holds due to the triangle inequality, the third and fourth inequality holds due to H > A\¢I > 0.
Thus, suppose the singular value decomposition of G is G = PAQT, P € RPXTK A ¢ RTEXTK Q ¢ RTEXTK e
have A >~ 0. Now we are going to show that 8* = 8y + PA~1Q"h/./m satisfies (5.1). First, we have

G'Vm(0* —6)) =QAP'PA'Q'h=h,
which suggests that for any i, (g(x*; 0y), 0% — 0y) = h(x*). We also have
m||0* -6l =h"QA?Q'h=h"(G"G)'h < 2h"H 'h,

where the last inequality holds due to (B.1). This completes the proof. O

B.2. Proof of Lemma 5.2

In this section we prove Lemma 5.2. For simplicity, we define Z;, b;, 7, as follows:

t

Zi =M+ g(Xia;:00)8(Xia;00) /m,
i=1

t
= Z riﬁaig(xi,ai 5 00)/\/E’
=1

_ det Z,
5 \/1ogdt/\1—21g5+fs

We need the following lemmas. The first lemma shows that the network parameter 6; at round ¢ can be well approximated
by o + Z; 'b,//m.

Lemma B.2. There exist constants {C; }2_; > 0 such that for any 6§ > 0, if for all t € [T}, n, m satisfy
t/(mA) > Cym ™32 L3/ [log(T K L?/6)]3/2,

2\/f/7<6'2mm{L [log m] 3/2,(m(An)zL’Gfl(logm)*1)3/8}7
n < C3(mA +tmL)™!

m/8 > Cy\/logmL7/ 276 X=T/5(1 4+ \/t/N),

then with probability at least 1 — §, we have that ||@; — 6y||2 < 2+/t/(mA) and
16, — 00 — Z; b, /v/mll2 < (1 —nmN)/2\/t/(mX) + Csm ™23\ /logmL7/*>/3X\72/3(1 + \/t/X).
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Next lemma shows the error bounds for Z; and Z;.
Lemma B.3. There exist constants {C;}?_; > 0 such that for any § > 0, if m satisfies that
Cim=32L=32[log(TKL?/6)]*/? < 23/t/(m)) < CoL~%[logm]~%/2, vt € [T],
then with probability at least 1 — 4, for any ¢ € [T, we have
1Z¢]l2 < A+ CstL,
1Zy — Zo|F < C‘v4m—1/6\/ml/4t7/6)\—1/67

det(Zy) det(Z;) ~ 4 _
1 1 < /6 1 L4 5/3 1/6-
%% Get() 08 qer(ar) | S C5m Vo mLTEEA

With above lemmas, we prove Lemma 5.2 as follows.

Proof of Lemma 5.2. By Lemma B.2 we know that [|6; — 6g]2 < 21/t/(mA). By Lemma 5.1, with probability at least
1 — 4, there exists 8* such that forany 1 < ¢ < T,

MXt.a,) = (8(Xt,a,300)/vVm, Vm (0" — 6y)), (B.2)
Vm||0* — 62 < V2hTH Th < S, (B.3)

where the second inequality holds since S > v2hTH~1h in the statement of Lemma 5.2. Thus, conditioned on (B.2) and
(B.3), by Theorem 2 in Abbasi-Yadkori et al. (2011), with probability at least 1 — 4, for any 1 < ¢ < T, 8* satisfies that

IVm(0" = 60) = Z; by, <5t (B.4)
We now prove that ||0* — 0;]|z, < ~:/+/m. From the triangle inequality,
16"~ Oz, < 0"~ 60— 2 'Bu/Vilz, + |6, 80— Z; by Vs, ®5)
Il 12

We bound I; and I» separately. For I, we have
112=(0*—90—Z’15 /M) Z(6" — 60 — Z; 'by/v/m)
= (6" — 6 — 1bt/xf) Z,(0" — 6 — Z vm)
+ (6" — 60— Z; 'by/v/m) " (2, )(0*—90—2{1&/\/@
< (0" -0y —Z; bt/ﬁ) Z,(6" —00—2;1&/\/%)
T R N AT S W
< (L4 1Ze = Zell2/ NA: /m, (B.6)

where the first inequality holds due to the fact that x" Ax < x"Bx - [|Al2/Amin(B) for some B - 0 and the fact that
Amin(Z¢) > A, the second inequality holds due to (B.4). We have

Z — 7). < ||Z; — Z¢|| . < Cim~Y/%\/logmL*t7/S\~1/6, (B.7)
2 F

where the first inequality holds due to the fact that ||A||2 < ||A||F, the second inequality holds due to Lemma B.3. We also
have

oz,
N = \/log L _2logd+VAS

det \I

det Z; det Z, det
— /1 1 L 2logd S
V\/OgthI B et I Bldetar VA

< V\/log jet ?t + Com—1/61/log mL*t3/3X=1/6 — 21og § + VAS, (B.8)
et
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where C7, Cy > 0 are two constants, the inequality holds due to Lemma B.3. Substituting (B.7) and (B.8) into (B.6), we
have

L <A1+ 120 — Zallo/ X3/ v/
< \/1+ Crm=1/0\logmLAtT/6A=7/5 /\/m

Z
- (V\/log jzz )\; + Com—1/6,/log mL4t5/3)\=1/6 — 2]og § + \[\S) : (B.9)

For I, we have

I, = |0: — 60 — Z;'by//mz,
< ||Zell2 - |6 — 60 — Z; "oy /v/m |2
< (A +C3tL)||0; — 89 — Z; by //m|2

< A+ CstL) [ (1 —nmA)?2\/t) (mA) +m™23\logmL7/*5/3X\=5/3(1 + \/t/)\)}, (B.10)

where C'3 > 0 is a constant, the first inequality holds since for any vector a, the second inequality holds due to ||Z;|> <
A + C5tL by Lemma B.3, the third inequality holds due to Lemma B.2. Substituting (B.9) and (B.10) into (B.5), we obtain
6" — etHZ, < ~¢/+/m. This completes the proof. O

B.3. Proof of Lemma 5.3

The proof starts with three lemmas that bound the error terms of the function value and gradient of neural networks.

Lemma B.4 (Lemma 4.1, Cao & Gu (2019)). There exist constants {C’i}g’:l > 0 such that for any ¢ > 0, if 7 satisfies that
Cim™32L=32log(TK L?/6)]3/? < 7 < Co L™ %[logm] /2,
then with probability at least 1 — 4, for all 8, 8 satisfying 10 — 6oll2 < T, Hé_ 6oll2 < 7 and j € [T K] we have
J(:0) — f(x;0) — (g(x’:6).6 — B)| < Cyr*/*L*\/mlogm.

Lemma B.5 (Theorem 5, Allen-Zhu et al. (2019)). There exist constants {C;}?_; > 0 such that for any § € (0, 1), if 7
satisfies that

Cym ™32 L =32 max{log=*/? m,log®*(TK/§)} < 7 < CoL™%log 3 m,
then with probability at least 1 — §, for all ||@ — ||z < 7 and j € [T K] we have
lg(x’;6) = g(x’; 80) 2 < Cs/log mr L lg(x7; 60) |
Lemma B.6 (Lemma B.3, Cao & Gu (2019)). There exist constants {C’i}?zl > 0 such that for any ¢ > 0, if 7 satisfies that
Cym ™32 L3 log(TK L?/6)]*/? < 7 < CoL™[logm] ~*/2,

then with probability at least 1 — &, for any ||@ — 0|2 < 7 and j € [T K] we have ||g(x?; 0)|r < C3vmL.

Proof of Lemma 5.3. We follow the regret bound analysis in Abbasi-Yadkori et al. (2011); Valko et al. (2013). Denote
a; = argmax,c(g]h(xtq) and C; = {6 : |0 — O[]z, < v/v/m}. By Lemma 5.2, forall 1 < ¢t < T, we have
|0: — 0|2 < 2+/t/(mA) and 6* € C;. By the choice of m, Lemmas B.4, B.5 and B.6 hold. Thus, 2(x,qx) — h(X¢,q,) can
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be bounded as follows:

h(x¢,ar) — h(Xt,a,)
= (g(xt,07560),0" — 00) — (8(xt,4,;00),0" — 6y)
<A(g8(Xtar;0:-1),0" — 0g) — (8(Xt,a,56:-1),0" — 0p)
+ 116" — Ooll2(llg(xt,a750:—1) — 8(Xt,a7:600) |2 + ||&(Xt,0,3 O1—1) — g(Xt a:;60)ll2)

< (g(Xt,03:0:-1), 0" — 00) — (8(Xt,0,560:-1),0" — 60) + C1VhTH1 16, Nlog mt"/S\=1/67/2
< max (g(xea;3601-1),0 = 0) = (&(Xt,0,:01-1),0" — o) +C’1\/hTH* hm =6 /logmtt/SA\=YOL7/2 (B.11)
€Ci-1
I

where the equality holds due to Lemma 5.1, the first inequality holds due to triangle inequality, the second inequality holds
due to Lemmas 5.1, B.5, B.6, the third inequality holds due to 8* € C;_;. Denote

ﬁt,a = (8(x¢t,a;0t-1),0:—1 — Og) + Y11 \/g(Xt,a; 0:-1)"Z; " g(xt,0:00—1)/m,
then we have ﬁm = maxgee, , (8(Xt.q;01—1),0 — 6p) due to the fact that

max (a,x) = (a,b) + cvVaT A~ la.

x:||x—b|la<c

Recall the definition of Uy , from Algorithm 1, we also have

Uta — Utal = |f(Xt.0;0:-1) — (8(Xt,0;0:-1),01—1 — 60)]
= |f(Xt,a; 0,_1)— f(Xt,a; 0o) — <g(Xt,a; 0 1),6: 1 — 90>’
< Com™ Y0\ /logmt*/3\=2/3L3, (B.12)

where Cy > 0 is a constant, the second equality holds due to f(x7; 8y) = 0 by the random initialization of 6y, the inequality
holds due to Lemma B.4 with the fact |0;_1 — 0|2 < 24/t/(m])). Since 8* € C;_1, then I; in (B.11) can be bounded as

max (g(X¢,ar;0:-1),0 — 0o) — (8(Xt,a,;0:-1),0" — 6o)

0eCi_q

= ﬁt,a; — (g8(x¢t,a,;0t-1),0 )

< Upa; — (8(Xt,0,:01-1), 0 — 8o) + Com™ /% /logmt* SN2/ 3

< Uty — (8(Xt,0,;00-1), 0" — 80) + Com ™6 /logmt?/3\=2/3 13

< Upa, — (8(Xt.a,;00-1), 0" — 00) 4+ 2Com /6 /logmt*/3X=2/3 L3, (B.13)

where the first inequality holds due to (B.12), the second inequality holds since a; = argmax, U, 4, the third inequality
holds due to (B.12). Furthermore,

ijtvat - <g(xt,at;0t71)a 0* - 90>

= max (g(X¢,a,;0t-1),0 — 00) — (8(Xt,a,;0t-1),0" — o)
0cCi_1

= BIET?X <g(Xt,a,,;9t—1)’9 - 0t—1> - <g(Xt,at;9t—1)79* - 9t—1>
t—1

S ma)f He et 1HZ ||g Xtaﬂet 1)||Z_1 +H0* 025 1HZ ||g Xt(lt70t 1)||Z_

< 2’)’t71||g(xt,at§atfl)/\/ﬁnz;ll, (B.14)
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where the first inequality holds due to Holder inequality, the second inequality holds due to Lemma 5.2. Combining (B.11),
(B.13) and (B.14), we have

h(xt,af) - h(Xt,at)
< 29i-1/|8(%ta,300-1) V|1 + CiVRTH-Thm™ V0 /logmt'/A~1/CL7/?

+ 2Com~ Y0\ logmt?/ 3 \=2/3 3
<mm{2% 1g(Xt,a0: 0e-1) /vl 1 + CrvRTH= hm ™0\ flog me'/Ox~1/0LT/?

+ 2C,m ™% log mt?/3X\"2/3 L3, 1}

< min {2%_1 \\g(xt,at;at_l)/\/R||Z;_11, 1} + OVhTH Thm=V/6/log mt'/6\=1/67/2
+2Cym Y6\ /logmt*3\=2/3 3

< 27,1 min {|g(xt,at; Bt,l)/\/%nz:l, 1} +CvVhTH! /6. flog mt}/S\~1/6 [7/2

+ 2Cgm_1/6\/1og mt2/3)\_2/3L3, (B.15)

where the second inequality holds due to the fact that 0 < h(X¢,43 ) — h(X¢t,q,) < 1, the third inequality holds due to the fact
that min{a + b, 1} < min{a, 1} + b, the fourth inequality holds due to the fact v;_; > +/AS > 1. Finally, by the fact that
Vv2hH-1h < S, the proof completes. O

B.4. Proof of Lemma 5.4

In this section we prove Lemma 5.4, we need the following lemma from Abbasi-Yadkori et al. (2011).

Lemma B.7 (Lemma 11, Abbasi-Yadkori et al. (2011)). We have the following inequality:

T . 9 detZT
D min § lg0x a0 Oom) Vil 1 < 2log oS
t=1

Proof of Lemma 5.4. First by the definition of ~;, we know that ~; is a monotonic function w.r.t. det Z,. By the definition
of Z;, we know that Z, > Z;, which implies that det Z; < det Zy. Thus, 44 < ~r. Second, by Lemma B.7 we know that

T
Z min {||g(xtﬁat; etfl)/\/mHZt—_ll , 1}
=1

det Zr
< 21
BN
< 2log detM 1+ Cym~ Y\ log mLATS/3)\=1/6, (B.16)

where the second inequality holds due to Lemma B.3. Next we are going to bound logdet Z7. Denote G =
[g(x';00)/vm,...,g(xT%;0)/vm] € RP*(TK) then we have

7 T
det ZT . . .
& det A\I - IOg det (I + Z g(xt,at ’ 00)g(xt,at 3 00) /(mA)>

<logdet | I+ Zg x";600)g (Xi§90)T/(m)\))
=logdet (I+ GG /)

= log det (I +G'G /)\) (B.17)
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where the inequality holds naively, the third equality holds since for any matrix A € RP*TX we have det(I + AAT) =
det(I+ AT A). We can further bound (B.17) as follows:

log det <I+GTG//\) =logdet (I+H/A+ (G'TG — H)/)\)

< log det (I + H/)\> (I+H/N)"L(GTG -H)/\)
< log det <I+H/)\>+I|(I+H/>\) HrIGTG —H| /A

< log det I+H/)\>+\/ K|G'G - H|p

< log det (I + H/A) +1

= dlog(1+TK/)\) +1, (B.18)

where the first inequality holds due to the concavity of logdet(-), the second inequality holds due to the fact that
(A,B) < ||A||r||B||F, the third inequality holds due to the facts that I + H/X = I, A > 1 and ||A||r < VT K| Al2
for any A € RTEXTK the fourth inequality holds by Lemma B.1 with the choice of m, the fifth inequality holds by the
definition of effective dimension in Definition 4.3, and the last inequality holds due to the choice of A. Substituting (B.18)
into (B.17), we obtain that

det ZT >
<dlog(l1+TK 1. B.1
8 o S dlog(1 + /A) + (B.19)

Substituting (B.19) into (B.16), we have

T
Z min { Hg(xt,at;at,l)/\/ﬁﬂé_jl, 1} < 2dlog(1 + TK/\) + 2+ Cym™ Y%\ /logmLAT?/3\~1/9. (B.20)

We now bound ~yp, which is

= \/1 + Cym~1/6\/logmLAT7/6)\~7/6

detZ
: (V\/log deet )\; + Com=1/6\/logmLAT5/3\=1/6 — 2log § + \F)\S>

+ (A + CsTL) [(1 — gmN)?2 /T (mN) +m~%/3\/logmL7/>T5/3\=5/3(1 + \/TTA)}
< \/1 + Cym—1/6 \/@]}T?ﬂs/\—wﬁ
. (V\/log ((iieett?\; + 2Cm=1/6\/log mLAT5/3A=1/6 — 21og § + \&S)
+ (A4 C5TL) {(1 —mA)?2 T/ (mA) + m~%3\/logmL7/>T5/3X\=%/3(1 + T/)\)}, (B.21)
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where the inequality holds due to Lemma B.3. Finally, we have

T
oty min {00 Vil 1

T
<) S min { gt 000) Vil 1

< \/1 Cclitt)\; + Cym~Y6,/log mLAT5/3\~1/6 [\/1 + Cym~—Y/6\/log mLAT7/6\~7/6
det ZT
| vy/log Tot 30 + 2Com~1/6/log mLAT5/3)=1/6 — 210g § + VAS
e
+ (A4 C5TL) [(1 —mA)? 2T/ (mN) +m ™32 logmL™2T5/3X75/3(1 + «/T//\)H

< \/Jlog(l +TK/\) + 1+ Cym=1/6\/logmILAT5/3\~1/6 [\/1 + Cym=1Y/6\/logmLAT7/6\~7/6

. (y\/glog(l +TK/A) + 1+ 2Com=1/6y/logmLAT5/3X=1/6 — 21og § + \/XS)
+ (A + C3TL) [(1 — gmN)? 2T (mN) +m=%2\/log mL7/>T5/3\~%/3(1 + \/T/) H

where the first inequality holds due to the fact that ,_; < v, the second inequality holds due to (B.20) and (B.21), the
third inequality holds due to (B.19). This completes our proof. O

C. Proofs of Technical Lemmas in Appendix B
C.1. Proof of Lemma B.1

In this section we prove Lemma B.1, we need the following lemma from Arora et al. (2019):

Lemma C.1 (Theorem 3.1, Arora et al. (2019)). Fix ¢ > 0 and ¢ € (0, 1). Suppose that

. Q(LG 10g4(L/6))

€
then for any 4, j € [TK], with probability at least 1 — § over random initialization of 6y, we have

l(g(x";60),8(x7;00))/m — H; ;| < e. (C.1)

Proof of Lemma B.1. Taking union bound over 4, j € [T K], we have that if

o Q(L6 log(TQKQL/(S))

el

then with probability at least 1 — §, (C.1) holds for all (i, j) € [T K] x [T K]. Therefore, we have

TK TK
IGTG—H|r=,|> > la(x;0),8(x/;60))/m — H; j|> < TKe.

1=15=1
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C.2. Proof of Lemma B.2

In this section we prove Lemma B.2. During the proof, for simplicity, we omit the subscript ¢ by default. We define the
following quantities:

JO — (g(xlm;g(j)), B -,g(Xt,at;Q(j))) c R(md+m2(L72)+m)><t,
HO — [J(j)]TJ(j) c Rtxt7

£0) = (f(x1,0,:09). . f(x0,:09)) T € R,

y= (Tl,a17' s ;rt,at) € RtX1-

Then the update rule of 1) can be written as follows:
U+ — ) _ n[J(j)(f(j) _ y) + m)\(B(j) _ 0(0))] (C.2)
We also define the following auxiliary sequence { g(k)} during the proof:

00 =90 gu+h) — gl) _ n[J(O)([J(O)]T(g(j) —69) —y) + mAOY) — 5(0))]

Next lemma provides perturbation bounds for JU), H() and ||fU+1) — £0) — [JO]T(9U+D) — gU))||,.
Lemma C.2. There exist constants {C;}%_; > 0 such that for any § > 0, if 7 satisfies that
Cim ™32 L3 log(TK L?/8))3/? < 1 < CoL™%[log m]~3/2,

then with probability at least 1 — 6, if for any j € [J], |8¥) — 8(D||, < 7, we have the following inequalities for any
JselJ],

99, < Cavm, -
1369 — 3O < CsfEmTogmr'/3L7/2, (C4
[£2) — £0) — [3D)T () — 9))|, < Cer¥/3L3\/tmlog m, (C5)
lyll2 < V. (C.6)

Next lemma gives an upper bound for ||[f() — y||..

Lemma C.3. There exist constants {C; }4_; > 0 such that for any & > 0, if 7,7 satisfy that
Cym ™32 L3 log(TK L?/6))*/? < 7 < CoL™[logm] =%/, ,
n < Cs(mA+tmL)™",
8/3 < Cym(On)2 L% (logm) ™,

then with probability at least 1 — §, if for any j € [J], || — 8(9)||y < 7, we have that for any j € [J], [|f¥) —y||o < 2V/%.

Next lemma gives an upper bound of the distance between auxiliary sequence ||§(j ) —0O),.
Lemma C.4. There exist constants {C;}3_; > 0 such that for any & € (0, 1), if 7,7 satisfy that
Cim™32L=32log(TKL?/6)]*/? < 7 < Co L™ %[logm] /2,
n < Cz3(tmL +m\) ™,
then with probability at least 1 — §, we have that for any j € [J],
Hé(j) _ g(O)H2 < /t/(m)\),
169 — 6© — 2B/, < (1 qmA)/2 /e (mN)
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With above lemmas, we prove Lemma B.2 as follows.

Proof of Lemma B.2. Set 7 = 2,/t/(m\). First we assume that [|[) — 8(9)||, < 7 forall 0 < j < J. Then with this
assumption and the choice of m, 7, we have that Lemma C.2, C.3 and C.4 hold. Then we have

6G+D — U+ || = |99 — 6 — (30 — JO)(ED) — ) — iA@Y — 8))
— IO 0 — [JOT (L) — 3(0)))H2
- H(1 —pmA)(09) — W)y — (30 — JO)(£0) — y)
—J© [f(j) ~ IO T (99 — 9O 4 [JO]T (9) — g0)) } H

< (3D — JOYED — y)||, + n| IO €9 — OO — 6],

I Iy

+ [T = n(mAL + H@)] (8D — 80))||, (ek))

I3

where the inequality holds due to triangle inequality. We now bound I7, I» and I3 separately. For 17, we have

I < 77||J(j) - J(0)||2||f(j) —ylla < nCot/mlogms/3L7/2, (C.8)

where Cy > 0 is a constant, the first inequality holds due to the definition of matrix spectral norm and the second inequality
holds due to (C.4) in Lemma C.2 and Lemma C.3. For I5, we have

I < ,,HJm)HQHf(j) — 3O () 9<o>)H2 < nCstmL72743 flog m, (.9)

where Cs > 0, the first inequality holds due to matrix spectral norm, the second inequality holds due to (C.3) and (C.5) in
Lemma C.2 and the fact that f(©) = 0 by random initialization over 0©), For I 3, we have

I < |1 = p(mAI + HO)|| |69 — 9|, < (1 —5m)||6Y) — 8], (C.10)
where the first inequality holds due to spectral norm inequality, the second inequality holds since
n(mAL+HO) = n(mAl + [JO]TIO) < p(mAl + Crtm L) < 1,

for some C > 0, the first inequality holds due to (C.3) in Lemma C.2, the second inequality holds due to the choice of 7.
Substituting (C.8), (C.9) and (C.10) into (C.7), we obtain

HGUH) H(JH)H (1 —nm) HB(J) H(j)H2 + C4(nt\/mlogm7'1/3L7/2 + ntmL7/274/3\/logm), (C.11)

where Cy > 0 is a constant. By recursively applying (C.11) from 0 to j, we have

[0U+D — gu+D|| < ¢, nty/mlogmr!/3L7/2 +/\77tmL7/274/3\/m
nm

= Cym 23\ logmL7/2°/>X=5/3(1 + \/t/\)
-

< = 12
< 3 (C.12)

where C'5 > 0 is a constant, the equality holds by the definition of 7, the last inequality holds due to the choice of m, where

m/8 > Cs\/logmL™/ 276 \=T/5(1 4+ \/t/N),

and Cg > 0 is a constant. Thus, for any j € [J], we have

16— 6©ll> < 189 — 82 + |89 — 62 < \/t/(mA) +7/2 =1, (C.13)
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where the first inequality holds due to triangle inequality, the second inequality holds due to Lemma C.4. (C.13) suggests
that our assumption ||@) — @), < 7 holds for any ;. Note that we have the following inequality by Lemma C.4:

169 — 0©) —(Z)~'b/v/m|, < (1 — nmA)\/t/(m). (C.14)
Using (C.12) and (C.14) we have

o9 — Z7'b/v/m||, < (1 —nmA)?/2\/t/(mA) + Csm™2/3\/logmL7/2t>/3X7/3(1 + \/t/ ).

This completes the proof. O

C.3. Proof of Lemma B.3

In this section we prove Lemma B.3.

Proof of Lemma B.3. Set T = 24/t/(mA). By Lemma B.2 we have that ||@; — 8g||2 < 7 for i € [t]. || Z||2 can be bounded
as follows.

t
1222 = |3 0051 )0s5601)
=1

2

¢
<A+ H)\I +)8(Xia,:0i-1)8(Xia,;0i-1)  /m

i=1 i
t
<A+ Hg(Xz‘,aﬁgi—l)H;/m
i=1
S )\ + COtLv

where Cp > 0 is a constant, the first inequality holds due to the fact that |laaT||F = ||a/|2, the second inequality holds due
to Lemma B.6 with the fact that ||@; — 0|2 < 7. We bound ||Z; — Z|| as follows. We have

1Z — Z || =

t
> (g(xi,ai;eo)g(xi,aﬁ 00)" — 8(Xia;0:)8(%i0.; 0:) )
=1

Szt:Hg(xz»,ai;eo)g(Xi,m;ao)T_g(xi,ai;oi)g(xla 0,)" H /m
i=1

t
< Z (Hg(xi,aqy; 00)||2 + ||g(xv',,ala H )Hg Xi,a;3 ) X1 (Lla H /m (C.15)
1=1

where the first inequality holds due to triangle inequality, the second inequality holds the fact that [|[aa”™ — bb ||z <
(Ilall2 + ||b]l2)||a — b]|2 for any vectors a, b. To bound (C.15), we have

l|&(%i.a,; 00|, ||&(xia,: 05|, < C1Vm (C.16)
where Cy > 0 is a constant, the inequality holds due to Lemma B.6 with the fact that ||9@ — Bpl|2 < 7. We also have
Hg(xi,ai;ao) - g(xi,ai;ﬂi)H2 < Cyy/log mTl/3L3||g(Xj; 00)||2 < Csy/mlogmr/3L7/2, (C.17)

where Co, C'3 > 0 are constants, the first inequality holds due to Lemma B.5 with the fact that ||@; — 0|2 < 7, the second
inequality holds due to Lemma B.6. Substituting (C.16) and (C.17) into (C.15), we have

|Z; — Zy||p < Cat\/logmr'/3L2,

where Cy > 0 is a constant. We now bound log det Z, —log det Z;. It is easy to verify that Zi =NI+JJT,Z, = NI+ JJT,
where

J= (g(Xl,al;Go)a . 7g(xt,at;90)>/\/7n7
3= (8611 00).- - (Xt i0e1) ) [V,
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We have the following inequalities:

det(Z;) det(Z;)

1 -1 =logdet(I+JJT/\) —logdet(I+JJ "
%8 ot D) 8 qer) — 0gdetT+IIT/A) —logdet(T+ 37 /)

=logdet(T+J"J/\) —logdet(I4+JTJ/\)

<(@+JITI/NLITT-TTT)

<NA+ITI/N)HpIITT = ITI||p

SVH@+ITI/N T = ITI||p

<VITI=3T3||p, (C.18)
where the second equality holds due to the fact that det(I + AAT) = det(I + AT A), the first inequality holds due to

the fact that log det function is convex, the second inequality hold due to the fact that (A, B) < ||A|| r||B|| F, the third
inequality holds since T + J "J /) is a t-dimension matrix, the fourth inequality holds since T+ JTJ/\ = I. We have

(37T =3
< tlgzl'%'}ét 8(Xi,a;500) " &(Xj.0;500) — 8(Xia,50:) ' &(Xj,0,50;)|/m
<t max, |&(%i,a,300) — 8(%i.a,:0) ||, ||8(Xj.a0,505) ||,/m

+ || 2(xj,0,300) = 8(%j,0,36;) ||, || &(xi,0:: 80) ||,/
< Csty/logmr/3 L4, (C.19)
where C5 > 0 is a constant, the first inequality holds due to the fact that ||A | < tmax |A, ;| for any A € R**, the

second inequality holds due to the fact |a’a’ — b "b’| < ||a — b|a||b’[|2 + ||’ — b’||2]|a]|2, the third inequality holds due
to (C.16) and (C.17). Substituting (C.19) into (C.18), we obtain

det(Zt) det(Zt) 3
1 —1 < C5t3/%,/1 1314,
8 qetM) % det(AD) = o8mT

Using the same method, we also have

det(Zt) det(Zt) 3/2 1/3 4
— < (Cj .
og det(\D) log det (D) = Cst°/=+/logm7/°L

This completes our proof.

D. Proofs of Lemmas in Appendix C
D.1. Proof of Lemma C.2

In this section we give the proof of Lemma C.2.

Proof of Lemma C.2. It can be verified that 7 satisfies the conditions of Lemmas B.4, B.5 and B.6. Thus, Lemmas B.4, B.5
and B.6 hold. We will show that for any j € [J], the following inequalities hold. First, we have

JD|| < Vimax ||g(xia; 09|, < CiVimL, (D.1)
39 < Vimax gxia.: 609, < C1VimE

where C; > 0 is a constant, the first inequality holds due to the fact that [|[J7)||p < v/#]|[J)||5, 0, the second inequality
holds due to Lemma B.6.

We also have

HJ(j) _ J(O)HF <Oy /longI/3L3HJ(O)HF < 03\/W71/3L7/27 (D.2)
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where Cy, C3 > 0 are constants, the first inequality holds due to Lemma B.5 with the assumption that |[§0) — () ||, < T,
the second inequality holds due to (D.1).

We also have
||f(8) £ _ [J(j)]—r(g(s) _ 9(]‘))“2

< max V| (%00, 09) = f(Xi0,509)) — (g(x1,0,50),05) — 09|
1€t

< Cur*3L3\/tm logm,

where Cy > 0 is a constant, the first inequality holds due to the the fact that ||x||o < v/t max |z;| for any x € R, the second
inequality holds due to Lemma B.4 with the assumption that [|§() — 8[|y < 7,(|8() — )|y < 7.

For ||y||2, we have ||y |2 < vtmaxi<;<; |r(Xi,q;)| < Vt. This completes our proof.

D.2. Proof of Lemma C.3

Proof of Lemma C.3. It can be verified that 7 satisfies the conditions of Lemma C.2, thus Lemma C.2 holds. Recall that the
loss function L is defined as

1(0) = 51£(0) — y 13 + "0 — 63
We define J(0) and £(6) as follows:
3(0) = (8(x1,0,50), - 8(1,0,:6) ) € RO (LoD,
£(0) = (f(x1,0::0),- - f(x0.0,:0)) " € R

Suppose [|@ — 8|y < 7. Then by the fact that || - ||2/2 is 1-strongly convex and 1-smooth, we have the following
inequalities:

L(0') — L(8)
< (£(0) —y,£(6') — £(0)) + %Hf(e’) —£(O)|]2+mA6 - 6.0 — ) + mTAHo’ ~ 9|2

2
2

= (£(8) —y.[3(9)]"(8' —6) +e) + %H[J(B)]T(H’ —0) +e
+mA0 - 00,6 — )+ mTAHe’ -9

= (J(O)(£(8) —y) +mA(6 —6V),6' —6) + (£(6) —y.e)
510070~ 0)+ i+ "o~ o]

~ (VL(0).0' 0) + (£(0) ~y.e) + 5 [(0)]T(0' —0) +e|[2 + "0’ ~ ]2 (D.3)

Iy

where e = f(0") — £(0) —J(0) T (6’ — ). I, can be bounded as follows:
mA 2
Lo < [[£(6) = ylallell2 + [3(O)[3]16" = 0115+ llell5 + =] — 6]
C 2
< G (tmx-+tmr) o7 = 0] + 1£66) - ylaliel + lel D4

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds due to the fact that
[3(8)]l2 < Cov/tmL with ||@ — 8|5 < 7 by (C.3) in Lemma C.2. Substituting (D.4) into (D.3), we obtain

C
L(O) - 1(6) < (VE(0).6' - 6) + T (nr-+ 1) |0 = 0]12) + £6) ~ ylalela + el )
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Taking ' = 8 — nV L(0), then by (D.5), we have
L(0 —nVL(8)) — L(0) < —n|[VL(O)[3[1 — CL(mA + tmL)n] + [[£(6) — yll2lel|2 + [lel3- (D.6)
By the 1-strongly convexity of || -
L(6") — L(O)
/ 0) pr mA 2
> (£(0) —y,£(0") — £(0)) + mA (0 — 6, 0" — 0) + 7”0 -6,

2, we further have

= (£(0) —y,[J(0)]"(0' —8) +e) +mAO -0 0 —0) + m%”e' —0|>
= (VL(6),6' — 6) + mTAHe' — 0|2+ (£(6) ~ y.e)

A
> (VL(6),0' ~6) + "6~ 0]]2 ~ [£(6) — yalell

IVL(6)|3
2mA

where the second inequality holds due to Cauchy-Schwarz inequality, the last inequality holds due to the fact that (a, x) +
c||x||3 > —||a||3/(4c) for any vectors a,x and ¢ > 0. Substituting (D.7) into (D.6), we obtain

L(0 — nVL(B)) — L(6)

< 2mAn(1 — Cy(mA +tmL)n) [L(0') — L(0) + | £(8) — y|2llell] + [£(8) — yll2llell2 + [lel3

< mAn[L(8') — L(8) + [|£(8) — yll2llell2] + [I£(0) — yll2llell2 + [le]3

<mAn[L(0") — L(0) + [If(8) — yll5/8 + 2[lel5] + mAn|[£(8) — y|3/8 + 2lell3/(mAn) + |3
<mAn(L(0") — L(8)/2) + |le[l5(1 + 2mAn + 2/(mAn)), (D.8)

where the second inequality holds due to the choice of 7, third inequality holds due to Young’s inequality, fourth inequality
holds due to the fact that ||f(0) — y||3 < 2L(8). Now taking @ = 8U) and 8’ = 0®), rearranging (D.8), with the fact that
U+ = 9U) — nVL(6Y)), we have

L(g(j+1)) _ L(g(o))

< (1=mAn/2)[L(0Y)) = L(0)] +mAn/2L(8") + [lel|5 (1 + 2mAn + 2/ (mAn))

< (1—mAn/2)[L(OY) — L(OD)] + mAn/2 -t +mIn/2 -t

< (1—mAn/2)[L(6YV) — L(O)] + mnt, (D.9)

> - — [£(6) — yll=[le]l2, (D.7)

where the second inequality holds due to the fact that L(0(©)) = ||f(0©)) — y||2/2 = ||y||3/2 < t, and
(1+ 2mAn +2/(mAn))|lell3 < 3/(mAn) - Cyr®3 LStmlogm < tmn/2, (D.10)

where the first inequality holds due to (C.5) in Lemma C.2, the second inequality holds due to the choice of 7. Recursively
applying (D.9) for u times, we have

L(g(j+1)) _ L(G(O)) < mAnt = 2t,
mAn/2
which implies that ||fU+1) — y||, < 2v/f. This completes our proof. O

D.3. Proof of Lemma C.4

In this section we prove Lemma C.4.

Proof of Lemma C.4. 1t can be verified that 7 satisfies the conditions of Lemma C.2, thus Lemma C.2 holds. It is worth
noting that 1) is the sequence generated by applying gradient descent on the following problem:

o 1 T mA 2
min £(6) = S ||1)7 (6 — ) —y|I5 + =~ [|6 — 6]|,-
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Then ||6(©) — 81)||5 can be bounded as

P26 — 693 < STO]T@D - 00) - yI + |89 ~ 00|}
1 ~ A5
< SIIOTT@ - 0) —y |3+ 2|60 — 6
<t/2,

where the first inequality holds trivially, the second inequality holds due to the monotonic decreasing property brought by
gradient descent, the third inequality holds due to (C.6) in Lemma C.2. It is easy to verify that £ is a mA-strongly convex
and function and C (tmL + mA\)-smooth function, since

V2L < ([ 3O2 + mA)I < Ci(tmL +m),
where the first inequality holds due to the definition of L, the second inequality holds due to (C.3) in Lemma C.2. Since we

choose 7 < Co(tmL + m\)~! for some small enough C > 0, then by standard results of gradient descent on ridge linear
regression, 81) converges to 8(?) 4 (Z)~'b/./m with the convergence rate

169) — 0 — Z~b/\/ml|2 < (1 —nmA) - %(5(0@) —£(6 +Z7'b/vm))

2(1 — nmA)?

<= T £e©

< LAY pgo)

21—\ ylB
m\ 2

where the first inequality holds due to the convergence result for gradient descent and the fact that 8(°) + (Z)~'b/\/m is
the minimal solution to £, the second inequality holds since £ > 0, the last inequality holds due to Lemma C.2.

O

E. A Variant of NeuralUCB

In this section, we present a variant of NeuralUCB called NeuralUCB,. Compared with Algorithm 1, The main differences
between NeuralUCB and NeuralUCB are as follows: NeuralUCB uses gradient descent to train a deep neural network to
learn the reward function h(x) based on observed contexts and rewards. In contrast, NeuralUCB uses matrix inversions to
obtain parameters in closed forms. At each round, NeuralUCB uses the current DNN parameters (6;) to compute an upper
confidence bound. In contrast, NeuralUCB, computes the UCB using the initial parameters ().
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Algorithm 3 NeuralUCB

1:

10:

Input: number of rounds 7', regularization parameter A, exploration parameter v, confidence parameter J, norm
parameter S, network width m, network depth L
Initialization: Generate each entry of W independently from N (0,2/m) for 1 <[ < L — 1, and each entry of W,
independently from N (0, 1/m). Define ¢(x) = g(x; 6y)/+/m, where 8y = [vec(W1) T, ... vec(W)T]T € RP
Zo=M,by=0
fort=1,....,Tdo

Observe {x; .} | and compute

(ar,0,0,) = argmax (@(xq),0 — 6p) (E.1)
a€[K],0€C_1

Play a; and receive reward 7 4,
Compute

Zi =71+ O(Xt,0,)P(Xt,0,) | €RP*P. by =by 1+ 714 4,0(Xt,0,) € R

Compute 0; = Z, by + 60y € RP
Construct C; as

det Zt
det \I

C,=1{0:0; — 0|z, <}, where ~ = u\/log —2log 6+ VAS (E.2)

end for




