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A. Proof of Additional Results in Section 4
A.1. Verification of Remark 4.4

Suppose there exists a mapping ψ : Rd → Rd̂ satisfying ‖ψ(x)‖2 ≤ 1 which maps any context x ∈ Rd to the
Hilbert space H associated with the Gram matrix H ∈ RTK×TK over contexts {xi}TK

i=1. Then H = Ψ>Ψ, where
Ψ = [ψ(x1), . . . ,ψ(xTK)] ∈ Rd̂×TK . Thus, we can bound the effective dimension d̃ as follows

d̃ =
log det[I + H/λ]

log(1 + TK/λ)
=

log det
[
I + ΨΨ>/λ

]
log(1 + TK/λ)

≤ d̂ ·
log
∥∥I + ΨΨ>/λ

∥∥
2

log(1 + TK/λ)
.

where the second equality holds due to the fact that det(I + A>A/λ) = det(I + AA>/λ) holds for any matrix A, and the
inequality holds since det A ≤ ‖A‖d̂2 for any A ∈ Rd̂×d̂. Clearly, d̃ ≤ d̂ as long as

∥∥I + ΨΨ>/λ
∥∥

2
≤ 1 + TK/λ. Indeed,

∥∥I + ΨΨ>/λ
∥∥

2
≤ 1 +

∥∥ΨΨ>
∥∥

2
/λ ≤ 1 +

TK∑
i=1

∥∥ψ(xi)ψ(xi)>
∥∥

2
/λ ≤ 1 + TK/λ ,

where the first inequality is due to triangle inequality and the fact λ ≥ 1, the second inequality holds due to the definition of
Ψ and triangle inequality, and the last inequality is by ‖ψ(xi)‖2 ≤ 1 for any 1 ≤ i ≤ TK.

A.2. Verification of Remark 4.8

Let K(·, ·) be the NTK kernel, then for i, j ∈ [TK], we have Hi,j = K(xi,xj). Suppose that h ∈ H, then h can be
decomposed as h = hH + h⊥, where hH(x) =

∑TK
i=1 αiK(x,xi) is the projection of h to the function space spanned by

{K(x,xi)}TK
i=1 and h⊥ is the orthogonal part. By definition we have h(xi) = hH(xi) for i ∈ [TK], thus

h = [h(x1), . . . , h(xTK)]>

= [hH(x1), . . . , hH(xTK)]>

=

[ TK∑
i=1

αiK(x1,xi), . . . ,

TK∑
i=1

αiK(xTK ,xi)

]>
= Hα,

which implies that α = H−1h. Thus, we have

‖h‖H ≥ ‖hH‖H =
√
α>Hα =

√
h>H−1HH−1h =

√
h>H−1h.

A.3. Proof of Corollary 4.9

Proof of Corollary 4.9. Notice that RT ≤ T since 0 ≤ h(x) ≤ 1. Thus, with the fact that with probability at least 1− δ,
(4.3) holds, we can bound E[RT ] as

E[RT ] ≤ (1− δ)
(

3
√
T

√
d̃ log(1 + TK/λ) + 2

[
ν

√
d̃ log(1 + TK/λ) + 2− 2 log δ

+ 2
√
λS + (λ+ C2TL)(1− ηmλ)J/2

√
T/λ

]
+ 1

)
+ δT. (A.1)

Taking δ = 1/T completes the proof.

B. Proof of Lemmas in Section 5
B.1. Proof of Lemma 5.1

We start with the following lemma:
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Lemma B.1. Let G = [g(x1;θ0), . . . ,g(xTK ;θ0)]/
√
m ∈ Rp×(TK). Let H be the NTK matrix as defined in Definition

4.1. For any δ ∈ (0, 1), if

m = Ω

(
L6 log(TKL/δ)

ε4

)
,

then with probability at least 1− δ, we have

‖G>G−H‖F ≤ TKε.

We begin to prove Lemma 5.1.

Proof of Lemma 5.1. By Assumption 4.2, we know that λ0 > 0. By the choice ofm, we havem ≥ Ω(L6 log(TKL/δ)/ε4),
where ε = λ0/(2TK). Thus, due to Lemma B.1, with probability at least 1− δ, we have ‖G>G−H‖F ≤ TKε = λ0/2.
That leads to

G>G � H− ‖G>G−H‖F I � H− λ0I/2 � H/2 � 0, (B.1)

where the first inequality holds due to the triangle inequality, the third and fourth inequality holds due to H � λ0I � 0.
Thus, suppose the singular value decomposition of G is G = PAQ>, P ∈ Rp×TK ,A ∈ RTK×TK ,Q ∈ RTK×TK , we
have A � 0. Now we are going to show that θ∗ = θ0 + PA−1Q>h/

√
m satisfies (5.1). First, we have

G>
√
m(θ∗ − θ0) = QAP>PA−1Q>h = h,

which suggests that for any i, 〈g(xi;θ0),θ∗ − θ0〉 = h(xi). We also have

m‖θ∗ − θ0‖22 = h>QA−2Q>h = h>(G>G)−1h ≤ 2h>H−1h,

where the last inequality holds due to (B.1). This completes the proof.

B.2. Proof of Lemma 5.2

In this section we prove Lemma 5.2. For simplicity, we define Z̄t, b̄t, γ̄t as follows:

Z̄t = λI +

t∑
i=1

g(xi,ai
;θ0)g(xi,ai

;θ0)>/m,

b̄t =

t∑
i=1

ri,ai
g(xi,ai

;θ0)/
√
m,

γ̄t = ν

√
log

det Z̄t

detλI
− 2 log δ +

√
λS.

We need the following lemmas. The first lemma shows that the network parameter θt at round t can be well approximated
by θ0 + Z̄−1

t b̄t/
√
m.

Lemma B.2. There exist constants {C̄i}5i=1 > 0 such that for any δ > 0, if for all t ∈ [T ], η,m satisfy

2
√
t/(mλ) ≥ C̄1m

−3/2L−3/2[log(TKL2/δ)]3/2,

2
√
t/(mλ) ≤ C̄2 min

{
L−6[logm]−3/2,

(
m(λη)2L−6t−1(logm)−1

)3/8}
,

η ≤ C̄3(mλ+ tmL)−1,

m1/6 ≥ C̄4

√
logmL7/2t7/6λ−7/6(1 +

√
t/λ),

then with probability at least 1− δ, we have that ‖θt − θ0‖2 ≤ 2
√
t/(mλ) and

‖θt − θ0 − Z̄−1
t b̄t/

√
m‖2 ≤ (1− ηmλ)J/2

√
t/(mλ) + C̄5m

−2/3
√

logmL7/2t5/3λ−5/3(1 +
√
t/λ).
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Next lemma shows the error bounds for Z̄t and Zt.

Lemma B.3. There exist constants {C̄i}5i=1 > 0 such that for any δ > 0, if m satisfies that

C̄1m
−3/2L−3/2[log(TKL2/δ)]3/2 ≤ 2

√
t/(mλ) ≤ C̄2L

−6[logm]−3/2, ∀t ∈ [T ],

then with probability at least 1− δ, for any t ∈ [T ], we have

‖Zt‖2 ≤ λ+ C̄3tL,

‖Z̄t − Zt‖F ≤ C̄4m
−1/6

√
logmL4t7/6λ−1/6,∣∣∣∣ log

det(Z̄t)

det(λI)
− log

det(Zt)

det(λI)

∣∣∣∣ ≤ C̄5m
−1/6

√
logmL4t5/3λ−1/6.

With above lemmas, we prove Lemma 5.2 as follows.

Proof of Lemma 5.2. By Lemma B.2 we know that ‖θt − θ0‖2 ≤ 2
√
t/(mλ). By Lemma 5.1, with probability at least

1− δ, there exists θ∗ such that for any 1 ≤ t ≤ T ,

h(xt,at
) = 〈g(xt,at

;θ0)/
√
m,
√
m(θ∗ − θ0)〉, (B.2)

√
m‖θ∗ − θ0‖2 ≤

√
2h>H−1h ≤ S, (B.3)

where the second inequality holds since S ≥
√

2h>H−1h in the statement of Lemma 5.2. Thus, conditioned on (B.2) and
(B.3), by Theorem 2 in Abbasi-Yadkori et al. (2011), with probability at least 1− δ, for any 1 ≤ t ≤ T , θ∗ satisfies that

‖
√
m(θ∗ − θ0)− Z̄−1

t b̄t‖Z̄t
≤ γ̄t. (B.4)

We now prove that ‖θ∗ − θt‖Zt ≤ γt/
√
m. From the triangle inequality,

‖θ∗ − θt‖Zt
≤ ‖θ∗ − θ0 − Z̄−1

t b̄t/
√
m‖Zt︸ ︷︷ ︸

I1

+ ‖θt − θ0 − Z̄−1
t b̄t/

√
m‖Zt︸ ︷︷ ︸

I2

. (B.5)

We bound I1 and I2 separately. For I1, we have

I2
1 = (θ∗ − θ0 − Z̄−1

t b̄t/
√
m)>Zt(θ

∗ − θ0 − Z̄−1
t b̄t/

√
m)

= (θ∗ − θ0 − Z̄−1
t b̄t/

√
m)>Z̄t(θ

∗ − θ0 − Z̄−1
t b̄t/

√
m)

+ (θ∗ − θ0 − Z̄−1
t b̄t/

√
m)>(Zt − Z̄t)(θ

∗ − θ0 − Z̄−1
t b̄t/

√
m)

≤ (θ∗ − θ0 − Z̄−1
t b̄t/

√
m)>Z̄t(θ

∗ − θ0 − Z̄−1
t b̄t/

√
m)

+
‖Zt − Z̄t‖2

λ
(θ∗ − θ0 − Z̄−1

t b̄t/
√
m)>Z̄t(θ

∗ − θ0 − Z̄−1
t b̄t/

√
m)

≤ (1 + ‖Zt − Z̄t‖2/λ)γ̄2
t /m, (B.6)

where the first inequality holds due to the fact that x>Ax ≤ x>Bx · ‖A‖2/λmin(B) for some B � 0 and the fact that
λmin(Z̄t) ≥ λ, the second inequality holds due to (B.4). We have∥∥Z̄t − Zt

∥∥
2
≤
∥∥Z̄t − Zt

∥∥
F
≤ C1m

−1/6
√

logmL4t7/6λ−1/6, (B.7)

where the first inequality holds due to the fact that ‖A‖2 ≤ ‖A‖F , the second inequality holds due to Lemma B.3. We also
have

γ̄t = ν

√
log

det Z̄t

detλI
− 2 log δ +

√
λS

= ν

√
log

det Zt

detλI
+ log

det Z̄t

detλI
− log

det Zt

detλI
− 2 log δ +

√
λS

≤ ν
√

log
det Zt

detλI
+ C2m−1/6

√
logmL4t5/3λ−1/6 − 2 log δ +

√
λS, (B.8)
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where C1, C2 > 0 are two constants, the inequality holds due to Lemma B.3. Substituting (B.7) and (B.8) into (B.6), we
have

I1 ≤
√

1 + ‖Zt − Z̄t‖2/λγ̄t/
√
m

≤
√

1 + C1m−1/6
√

logmL4t7/6λ−7/6/
√
m

·

(
ν

√
log

det Zt

detλI
+ C2m−1/6

√
logmL4t5/3λ−1/6 − 2 log δ +

√
λS

)
. (B.9)

For I2, we have

I2 = ‖θt − θ0 − Z̄−1
t b̄t/

√
m‖Zt

≤ ‖Zt‖2 · ‖θt − θ0 − Z̄−1
t b̄t/

√
m‖2

≤ (λ+ C3tL)‖θt − θ0 − Z̄−1
t b̄t/

√
m‖2

≤ (λ+ C3tL)
[
(1− ηmλ)J/2

√
t/(mλ) +m−2/3

√
logmL7/2t5/3λ−5/3(1 +

√
t/λ)

]
, (B.10)

where C3 > 0 is a constant, the first inequality holds since for any vector a, the second inequality holds due to ‖Zt‖2 ≤
λ+ C3tL by Lemma B.3, the third inequality holds due to Lemma B.2. Substituting (B.9) and (B.10) into (B.5), we obtain∥∥θ∗ − θt∥∥Zt

≤ γt/
√
m. This completes the proof.

B.3. Proof of Lemma 5.3

The proof starts with three lemmas that bound the error terms of the function value and gradient of neural networks.

Lemma B.4 (Lemma 4.1, Cao & Gu (2019)). There exist constants {C̄i}3i=1 > 0 such that for any δ > 0, if τ satisfies that

C̄1m
−3/2L−3/2[log(TKL2/δ)]3/2 ≤ τ ≤ C̄2L

−6[logm]−3/2,

then with probability at least 1− δ, for all θ̃, θ̂ satisfying ‖θ̃ − θ0‖2 ≤ τ, ‖θ̂ − θ0‖2 ≤ τ and j ∈ [TK] we have∣∣∣f(xj ; θ̃)− f(xj ; θ̂)− 〈g(xj ; θ̂), θ̃ − θ̂〉
∣∣∣ ≤ C̄3τ

4/3L3
√
m logm.

Lemma B.5 (Theorem 5, Allen-Zhu et al. (2019)). There exist constants {C̄i}3i=1 > 0 such that for any δ ∈ (0, 1), if τ
satisfies that

C̄1m
−3/2L−3/2 max{log−3/2m, log3/2(TK/δ)} ≤ τ ≤ C̄2L

−9/2 log−3m,

then with probability at least 1− δ, for all ‖θ − θ0‖2 ≤ τ and j ∈ [TK] we have

‖g(xj ;θ)− g(xj ;θ0)‖2 ≤ C̄3

√
logmτ1/3L3‖g(xj ;θ0)‖2.

Lemma B.6 (Lemma B.3, Cao & Gu (2019)). There exist constants {C̄i}3i=1 > 0 such that for any δ > 0, if τ satisfies that

C̄1m
−3/2L−3/2[log(TKL2/δ)]3/2 ≤ τ ≤ C̄2L

−6[logm]−3/2,

then with probability at least 1− δ, for any ‖θ − θ0‖2 ≤ τ and j ∈ [TK] we have ‖g(xj ;θ)‖F ≤ C̄3

√
mL.

Proof of Lemma 5.3. We follow the regret bound analysis in Abbasi-Yadkori et al. (2011); Valko et al. (2013). Denote
a∗t = argmaxa∈[K] h(xt,a) and Ct = {θ : ‖θ − θt‖Zt ≤ γt/

√
m}. By Lemma 5.2, for all 1 ≤ t ≤ T , we have

‖θt − θ0‖2 ≤ 2
√
t/(mλ) and θ∗ ∈ Ct. By the choice of m, Lemmas B.4, B.5 and B.6 hold. Thus, h(xt,a∗

t
)− h(xt,at) can
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be bounded as follows:

h(xt,a∗
t
)− h(xt,at

)

= 〈g(xt,a∗
t
;θ0),θ∗ − θ0〉 − 〈g(xt,at

;θ0),θ∗ − θ0〉
≤ 〈g(xt,a∗

t
;θt−1),θ∗ − θ0〉 − 〈g(xt,at

;θt−1),θ∗ − θ0〉
+ ‖θ∗ − θ0‖2(‖g(xt,a∗

t
;θt−1)− g(xt,a∗

t
;θ0)‖2 + ‖g(xt,at

;θt−1)− g(xt,at
;θ0)‖2)

≤ 〈g(xt,a∗
t
;θt−1),θ∗ − θ0〉 − 〈g(xt,at ;θt−1),θ∗ − θ0〉+ C1

√
h>H−1hm−1/6

√
logmt1/6λ−1/6L7/2

≤ max
θ∈Ct−1

〈g(xt,a∗
t
;θt−1),θ − θ0〉 − 〈g(xt,at

;θt−1),θ∗ − θ0〉︸ ︷︷ ︸
I1

+C1

√
h>H−1hm−1/6

√
logmt1/6λ−1/6L7/2, (B.11)

where the equality holds due to Lemma 5.1, the first inequality holds due to triangle inequality, the second inequality holds
due to Lemmas 5.1, B.5, B.6, the third inequality holds due to θ∗ ∈ Ct−1. Denote

Ũt,a = 〈g(xt,a;θt−1),θt−1 − θ0〉+ γt−1

√
g(xt,a;θt−1)>Z−1

t−1g(xt,a;θt−1)/m,

then we have Ũt,a = maxθ∈Ct−1
〈g(xt,a;θt−1),θ − θ0〉 due to the fact that

max
x:‖x−b‖A≤c

〈a,x〉 = 〈a,b〉+ c
√

a>A−1a.

Recall the definition of Ut,a from Algorithm 1, we also have

|Ut,a − Ũt,a| =
∣∣f(xt,a;θt−1)− 〈g(xt,a;θt−1),θt−1 − θ0〉

∣∣
=
∣∣f(xt,a;θt−1)− f(xt,a;θ0)− 〈g(xt,a;θt−1),θt−1 − θ0〉

∣∣
≤ C2m

−1/6
√

logmt2/3λ−2/3L3, (B.12)

where C2 > 0 is a constant, the second equality holds due to f(xj ;θ0) = 0 by the random initialization of θ0, the inequality
holds due to Lemma B.4 with the fact ‖θt−1 − θ0‖2 ≤ 2

√
t/(mλ)). Since θ∗ ∈ Ct−1, then I1 in (B.11) can be bounded as

max
θ∈Ct−1

〈g(xt,a∗
t
;θt−1),θ − θ0〉 − 〈g(xt,at

;θt−1),θ∗ − θ0〉

= Ũt,a∗
t
− 〈g(xt,at ;θt−1),θ∗ − θ0〉

≤ Ut,a∗
t
− 〈g(xt,at

;θt−1),θ∗ − θ0〉+ C2m
−1/6

√
logmt2/3λ−2/3L3

≤ Ut,at
− 〈g(xt,at

;θt−1),θ∗ − θ0〉+ C2m
−1/6

√
logmt2/3λ−2/3L3

≤ Ũt,at
− 〈g(xt,at

;θt−1),θ∗ − θ0〉+ 2C2m
−1/6

√
logmt2/3λ−2/3L3, (B.13)

where the first inequality holds due to (B.12), the second inequality holds since at = argmaxa Ut,a, the third inequality
holds due to (B.12). Furthermore,

Ũt,at
− 〈g(xt,at

;θt−1),θ∗ − θ0〉
= max

θ∈Ct−1

〈g(xt,at
;θt−1),θ − θ0〉 − 〈g(xt,at

;θt−1),θ∗ − θ0〉

= max
θ∈Ct−1

〈g(xt,at
;θt−1),θ − θt−1〉 − 〈g(xt,at

;θt−1),θ∗ − θt−1〉

≤ max
θ∈Ct−1

∥∥θ − θt−1

∥∥
Zt−1
‖g(xt,at ;θt−1)‖Z−1

t−1
+
∥∥θ∗ − θt−1

∥∥
Zt−1
‖g(xt,at ;θt−1)‖Z−1

t−1

≤ 2γt−1‖g(xt,at
;θt−1)/

√
m‖Z−1

t−1
, (B.14)
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where the first inequality holds due to Hölder inequality, the second inequality holds due to Lemma 5.2. Combining (B.11),
(B.13) and (B.14), we have

h(xt,a∗
t
)− h(xt,at

)

≤ 2γt−1‖g(xt,at
;θt−1)/

√
m‖Z−1

t−1
+ C1

√
h>H−1hm−1/6

√
logmt1/6λ−1/6L7/2

+ 2C2m
−1/6

√
logmt2/3λ−2/3L3

≤ min

{
2γt−1‖g(xt,at ;θt−1)/

√
m‖Z−1

t−1
+ C1

√
h>H−1hm−1/6

√
logmt1/6λ−1/6L7/2

+ 2C2m
−1/6

√
logmt2/3λ−2/3L3, 1

}
≤ min

{
2γt−1‖g(xt,at ;θt−1)/

√
m‖Z−1

t−1
, 1

}
+ C1

√
h>H−1hm−1/6

√
logmt1/6λ−1/6L7/2

+ 2C2m
−1/6

√
logmt2/3λ−2/3L3

≤ 2γt−1 min

{
‖g(xt,at ;θt−1)/

√
m‖Z−1

t−1
, 1

}
+ C1

√
h>H−1hm−1/6

√
logmt1/6λ−1/6L7/2

+ 2C2m
−1/6

√
logmt2/3λ−2/3L3, (B.15)

where the second inequality holds due to the fact that 0 ≤ h(xt,a∗
t
)− h(xt,at

) ≤ 1, the third inequality holds due to the fact
that min{a+ b, 1} ≤ min{a, 1}+ b, the fourth inequality holds due to the fact γt−1 ≥

√
λS ≥ 1. Finally, by the fact that√

2hH−1h ≤ S, the proof completes.

B.4. Proof of Lemma 5.4

In this section we prove Lemma 5.4, we need the following lemma from Abbasi-Yadkori et al. (2011).

Lemma B.7 (Lemma 11, Abbasi-Yadkori et al. (2011)). We have the following inequality:
T∑

t=1

min

{
‖g(xt,at

;θt−1)/
√
m‖2

Z−1
t−1

, 1

}
≤ 2 log

det ZT

detλI
.

Proof of Lemma 5.4. First by the definition of γt, we know that γt is a monotonic function w.r.t. det Zt. By the definition
of Zt, we know that ZT � Zt, which implies that det Zt ≤ det ZT . Thus, γt ≤ γT . Second, by Lemma B.7 we know that

T∑
t=1

min

{
‖g(xt,at ;θt−1)/

√
m‖2

Z−1
t−1

, 1

}
≤ 2 log

det ZT

detλI

≤ 2 log
det Z̄T

detλI
+ C1m

−1/6
√

logmL4T 5/3λ−1/6, (B.16)

where the second inequality holds due to Lemma B.3. Next we are going to bound log det Z̄T . Denote G =
[g(x1;θ0)/

√
m, . . . ,g(xTK ;θ0)/

√
m] ∈ Rp×(TK), then we have

log
det Z̄T

detλI
= log det

(
I +

T∑
t=1

g(xt,at
;θ0)g(xt,at

;θ0)>/(mλ)

)

≤ log det

(
I +

TK∑
i=1

g(xi;θ0)g(xi;θ0)>/(mλ)

)
= log det

(
I + GG>/λ

)
= log det

(
I + G>G/λ

)
, (B.17)
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where the inequality holds naively, the third equality holds since for any matrix A ∈ Rp×TK , we have det(I + AA>) =
det(I + A>A). We can further bound (B.17) as follows:

log det

(
I + G>G/λ

)
= log det

(
I + H/λ+ (G>G−H)/λ

)
≤ log det

(
I + H/λ

)
+ 〈(I + H/λ)−1, (G>G−H)/λ〉

≤ log det

(
I + H/λ

)
+ ‖(I + H/λ)−1‖F ‖G>G−H‖F /λ

≤ log det

(
I + H/λ

)
+
√
TK‖G>G−H‖F

≤ log det

(
I + H/λ

)
+ 1

= d̃ log(1 + TK/λ) + 1, (B.18)

where the first inequality holds due to the concavity of log det(·), the second inequality holds due to the fact that
〈A,B〉 ≤ ‖A‖F ‖B‖F , the third inequality holds due to the facts that I + H/λ � I, λ ≥ 1 and ‖A‖F ≤

√
TK‖A‖2

for any A ∈ RTK×TK , the fourth inequality holds by Lemma B.1 with the choice of m, the fifth inequality holds by the
definition of effective dimension in Definition 4.3, and the last inequality holds due to the choice of λ. Substituting (B.18)
into (B.17), we obtain that

log
det Z̄T

detλI
≤ d̃ log(1 + TK/λ) + 1. (B.19)

Substituting (B.19) into (B.16), we have

T∑
t=1

min

{
‖g(xt,at ;θt−1)/

√
m‖2

Z−1
t−1

, 1

}
≤ 2d̃ log(1 + TK/λ) + 2 + C1m

−1/6
√

logmL4T 5/3λ−1/6. (B.20)

We now bound γT , which is

γT =

√
1 + C1m−1/6

√
logmL4T 7/6λ−7/6

·
(
ν

√
log

det ZT

detλI
+ C2m−1/6

√
logmL4T 5/3λ−1/6 − 2 log δ +

√
λS

)
+ (λ+ C3TL)

[
(1− ηmλ)J/2

√
T/(mλ) +m−2/3

√
logmL7/2T 5/3λ−5/3(1 +

√
T/λ)

]
≤
√

1 + C1m−1/6
√

logmL4T 7/6λ−7/6

·
(
ν

√
log

det Z̄T

detλI
+ 2C2m−1/6

√
logmL4T 5/3λ−1/6 − 2 log δ +

√
λS

)
+ (λ+ C3TL)

[
(1− ηmλ)J/2

√
T/(mλ) +m−2/3

√
logmL7/2T 5/3λ−5/3(1 +

√
T/λ)

]
, (B.21)
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where the inequality holds due to Lemma B.3. Finally, we have√√√√ T∑
t=1

γ2
t−1 min

{
‖g(xt,at

;θt−1)/
√
m‖2

Z−1
t−1

, 1

}

≤ γT

√√√√ T∑
t=1

min

{
‖g(xt,at

;θt−1)/
√
m‖2

Z−1
t−1

, 1

}

≤
√

log
det Z̄T

detλI
+ C1m−1/6

√
logmL4T 5/3λ−1/6

[√
1 + C1m−1/6

√
logmL4T 7/6λ−7/6

·
(
ν

√
log

det Z̄T

detλI
+ 2C2m−1/6

√
logmL4T 5/3λ−1/6 − 2 log δ +

√
λS

)
+ (λ+ C3TL)

[
(1− ηmλ)J/2

√
T/(mλ) +m−3/2

√
logmL7/2T 5/3λ−5/3(1 +

√
T/λ)

]]
≤
√
d̃ log(1 + TK/λ) + 1 + C1m−1/6

√
logmL4T 5/3λ−1/6

[√
1 + C1m−1/6

√
logmL4T 7/6λ−7/6

·
(
ν

√
d̃ log(1 + TK/λ) + 1 + 2C2m−1/6

√
logmL4T 5/3λ−1/6 − 2 log δ +

√
λS

)
+ (λ+ C3TL)

[
(1− ηmλ)J/2

√
T/(mλ) +m−3/2

√
logmL7/2T 5/3λ−5/3(1 +

√
T/λ)

]]
,

where the first inequality holds due to the fact that γt−1 ≤ γT , the second inequality holds due to (B.20) and (B.21), the
third inequality holds due to (B.19). This completes our proof.

C. Proofs of Technical Lemmas in Appendix B
C.1. Proof of Lemma B.1

In this section we prove Lemma B.1, we need the following lemma from Arora et al. (2019):

Lemma C.1 (Theorem 3.1, Arora et al. (2019)). Fix ε > 0 and δ ∈ (0, 1). Suppose that

m = Ω

(
L6 log(L/δ)

ε4

)
,

then for any i, j ∈ [TK], with probability at least 1− δ over random initialization of θ0, we have

|〈g(xi;θ0),g(xj ;θ0)〉/m−Hi,j | ≤ ε. (C.1)

Proof of Lemma B.1. Taking union bound over i, j ∈ [TK], we have that if

m = Ω

(
L6 log(T 2K2L/δ)

ε4

)
,

then with probability at least 1− δ, (C.1) holds for all (i, j) ∈ [TK]× [TK]. Therefore, we have

‖G>G−H‖F =

√√√√TK∑
i=1

TK∑
j=1

|〈g(xi;θ0),g(xj ;θ0)〉/m−Hi,j |2 ≤ TKε.
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C.2. Proof of Lemma B.2

In this section we prove Lemma B.2. During the proof, for simplicity, we omit the subscript t by default. We define the
following quantities:

J(j) =
(
g(x1,a1

;θ(j)), . . . ,g(xt,at
;θ(j))

)
∈ R(md+m2(L−2)+m)×t,

H(j) = [J(j)]>J(j) ∈ Rt×t,

f (j) = (f(x1,a1 ;θ(j)), . . . , f(xt,at ;θ
(j)))> ∈ Rt×1,

y = (r1,a1
, . . . , rt,at

) ∈ Rt×1.

Then the update rule of θ(j) can be written as follows:

θ(j+1) = θ(j) − η
[
J(j)(f (j) − y) +mλ(θ(j) − θ(0))

]
. (C.2)

We also define the following auxiliary sequence {θ̃(k)} during the proof:

θ̃(0) = θ(0), θ̃(j+1) = θ̃(j) − η
[
J(0)([J(0)]>(θ̃(j) − θ̃(0))− y) +mλ(θ̃(j) − θ̃(0))

]
.

Next lemma provides perturbation bounds for J(j),H(j) and ‖f (j+1) − f (j) − [J(j)]>(θ(j+1) − θ(j))‖2.

Lemma C.2. There exist constants {C̄i}6i=1 > 0 such that for any δ > 0, if τ satisfies that

C̄1m
−3/2L−3/2[log(TKL2/δ)]3/2 ≤ τ ≤ C̄2L

−6[logm]−3/2,

then with probability at least 1 − δ, if for any j ∈ [J ], ‖θ(j) − θ(0)‖2 ≤ τ , we have the following inequalities for any
j, s ∈ [J ], ∥∥J(j)

∥∥
F
≤ C̄4

√
tmL, (C.3)

‖J(j) − J(0)‖F ≤ C̄5

√
tm logmτ1/3L7/2, (C.4)∥∥f (s) − f (j) − [J(j)]>(θ(s) − θ(j))

∥∥
2
≤ C̄6τ

4/3L3
√
tm logm, (C.5)

‖y‖2 ≤
√
t. (C.6)

Next lemma gives an upper bound for ‖f (j) − y‖2.

Lemma C.3. There exist constants {C̄i}4i=1 > 0 such that for any δ > 0, if τ, η satisfy that

C̄1m
−3/2L−3/2[log(TKL2/δ)]3/2 ≤ τ ≤ C̄2L

−6[logm]−3/2, ,

η ≤ C̄3(mλ+ tmL)−1,

τ8/3 ≤ C̄4m(λη)2L−6t−1(logm)−1,

then with probability at least 1− δ, if for any j ∈ [J ], ‖θ(j)− θ(0)‖2 ≤ τ , we have that for any j ∈ [J ], ‖f (j)−y‖2 ≤ 2
√
t.

Next lemma gives an upper bound of the distance between auxiliary sequence ‖θ̃(j) − θ(0)‖2.

Lemma C.4. There exist constants {C̄i}3i=1 > 0 such that for any δ ∈ (0, 1), if τ, η satisfy that

C̄1m
−3/2L−3/2[log(TKL2/δ)]3/2 ≤ τ ≤ C̄2L

−6[logm]−3/2, ,

η ≤ C̄3(tmL+mλ)−1,

then with probability at least 1− δ, we have that for any j ∈ [J ],∥∥θ̃(j) − θ(0)
∥∥

2
≤
√
t/(mλ),∥∥θ̃(j) − θ(0) − Z̄−1b̄/
√
m
∥∥

2
≤ (1− ηmλ)j/2

√
t/(mλ)
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With above lemmas, we prove Lemma B.2 as follows.

Proof of Lemma B.2. Set τ = 2
√
t/(mλ). First we assume that ‖θ(j) − θ(0)‖2 ≤ τ for all 0 ≤ j ≤ J . Then with this

assumption and the choice of m, τ , we have that Lemma C.2, C.3 and C.4 hold. Then we have∥∥θ(j+1) − θ̃(j+1)
∥∥

2
=
∥∥θ(j) − θ̃(j) − η(J(j) − J(0))(f (j) − y)− ηmλ(θ(j) − θ̃(j))

− ηJ(0)(f (j) − [J(0)]>(θ̃(j) − θ(0)))
∥∥

2

=
∥∥∥(1− ηmλ)(θ(j) − θ̃(j))− η(J(j) − J(0))(f (j) − y)

− ηJ(0)
[
f (j) − [J(0)]>(θ(j) − θ(0)) + [J(0)]>(θ(j) − θ̃(j))

]∥∥∥
2

≤ η
∥∥(J(j) − J(0))(f (j) − y)

∥∥
2︸ ︷︷ ︸

I1

+ η‖J(0)‖2
∥∥f (j) − [J(0)](θ(j) − θ(0))

∥∥
2︸ ︷︷ ︸

I2

+
∥∥[I− η(mλI + H(0))

]
(θ̃(j) − θ(j))

∥∥
2︸ ︷︷ ︸

I3

, (C.7)

where the inequality holds due to triangle inequality. We now bound I1, I2 and I3 separately. For I1, we have

I1 ≤ η
∥∥J(j) − J(0)

∥∥
2
‖f (j) − y‖2 ≤ ηC2t

√
m logmτ1/3L7/2, (C.8)

where C2 > 0 is a constant, the first inequality holds due to the definition of matrix spectral norm and the second inequality
holds due to (C.4) in Lemma C.2 and Lemma C.3. For I2, we have

I2 ≤ η
∥∥J(0)

∥∥
2

∥∥∥f (j) − J(0)(θ(j) − θ(0))
∥∥∥

2
≤ ηC3tmL

7/2τ4/3
√

logm, (C.9)

where C3 > 0, the first inequality holds due to matrix spectral norm, the second inequality holds due to (C.3) and (C.5) in
Lemma C.2 and the fact that f (0) = 0 by random initialization over θ(0). For I3, we have

I3 ≤
∥∥I− η(mλI + H(0))

∥∥
2

∥∥θ̃(j) − θ(j)
∥∥

2
≤ (1− ηmλ)

∥∥θ̃(j) − θ(j)
∥∥

2
, (C.10)

where the first inequality holds due to spectral norm inequality, the second inequality holds since

η(mλI + H(0)) = η(mλI + [J(0)]>J(0)) � η(mλI + C1tmLI) � I,

for some C1 > 0, the first inequality holds due to (C.3) in Lemma C.2, the second inequality holds due to the choice of η.

Substituting (C.8), (C.9) and (C.10) into (C.7), we obtain∥∥θ(j+1) − θ̃(j+1)
∥∥

2
≤ (1− ηmλ)

∥∥θ(j) − θ̃(j)
∥∥

2
+ C4

(
ηt
√
m logmτ1/3L7/2 + ηtmL7/2τ4/3

√
logm

)
, (C.11)

where C4 > 0 is a constant. By recursively applying (C.11) from 0 to j, we have

∥∥θ(j+1) − θ̃(j+1)
∥∥

2
≤ C4

ηt
√
m logmτ1/3L7/2 + ηtmL7/2τ4/3

√
logm

ηmλ

= C5m
−2/3

√
logmL7/2t5/3λ−5/3(1 +

√
t/λ)

≤ τ

2
, (C.12)

where C5 > 0 is a constant, the equality holds by the definition of τ , the last inequality holds due to the choice of m, where

m1/6 ≥ C6

√
logmL7/2t7/6λ−7/6(1 +

√
t/λ),

and C6 > 0 is a constant. Thus, for any j ∈ [J ], we have

‖θ(j) − θ(0)‖2 ≤ ‖θ̃(j) − θ(0)‖2 + ‖θ(j) − θ̃(j)‖2 ≤
√
t/(mλ) + τ/2 = τ, (C.13)
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where the first inequality holds due to triangle inequality, the second inequality holds due to Lemma C.4. (C.13) suggests
that our assumption ‖θ(j) − θ(0)‖2 ≤ τ holds for any j. Note that we have the following inequality by Lemma C.4:∥∥θ̃(j) − θ(0) − (Z̄)−1b̄/

√
m
∥∥

2
≤ (1− ηmλ)j

√
t/(mλ). (C.14)

Using (C.12) and (C.14), we have∥∥θ(j) − θ(0) − Z̄−1b̄/
√
m
∥∥

2
≤ (1− ηmλ)j/2

√
t/(mλ) + C5m

−2/3
√

logmL7/2t5/3λ−5/3(1 +
√
t/λ).

This completes the proof.

C.3. Proof of Lemma B.3

In this section we prove Lemma B.3.

Proof of Lemma B.3. Set τ = 2
√
t/(mλ). By Lemma B.2 we have that ‖θi − θ0‖2 ≤ τ for i ∈ [t]. ‖Zt‖2 can be bounded

as follows.

‖Zt‖2 =

∥∥∥∥λI +

t∑
i=1

g(xi,ai ;θi−1)g(xi,ai ;θi−1)>/m

∥∥∥∥
2

≤ λ+

∥∥∥∥λI +

t∑
i=1

g(xi,ai ;θi−1)g(xi,ai ;θi−1)>/m

∥∥∥∥
2

≤ λ+

t∑
i=1

∥∥g(xi,ai ;θi−1)
∥∥2

2
/m

≤ λ+ C0tL,

where C0 > 0 is a constant, the first inequality holds due to the fact that ‖aa>‖F = ‖a‖22, the second inequality holds due
to Lemma B.6 with the fact that ‖θi − θ0‖2 ≤ τ . We bound ‖Zt − Z̄t‖2 as follows. We have

‖Zt − Z̄t‖F =

∥∥∥∥ t∑
i=1

(
g(xi,ai ;θ0)g(xi,ai ;θ0)> − g(xi,ai ;θi)g(xi,ai ;θi)

>
)
/m

∥∥∥∥
F

≤
t∑

i=1

∥∥∥g(xi,ai ;θ0)g(xi,ai ;θ0)> − g(xi,ai ;θi)g(xi,ai ;θi)
>
∥∥∥
F
/m

≤
t∑

i=1

(∥∥g(xi,ai ;θ0)
∥∥

2
+
∥∥g(xi,ai ;θi)

∥∥
2

)∥∥g(xi,ai ;θ0)− g(xi,ai ;θi)
∥∥

2
/m, (C.15)

where the first inequality holds due to triangle inequality, the second inequality holds the fact that ‖aa> − bb>‖F ≤
(‖a‖2 + ‖b‖2)‖a− b‖2 for any vectors a,b. To bound (C.15), we have∥∥g(xi,ai ;θ0)

∥∥
2
,
∥∥g(xi,ai ;θi)

∥∥
2
≤ C1

√
mL, (C.16)

where C1 > 0 is a constant, the inequality holds due to Lemma B.6 with the fact that ‖θi − θ0‖2 ≤ τ . We also have∥∥g(xi,ai
;θ0)− g(xi,ai

;θi)
∥∥

2
≤ C2

√
logmτ1/3L3‖g(xj ;θ0)‖2 ≤ C3

√
m logmτ1/3L7/2, (C.17)

where C2, C3 > 0 are constants, the first inequality holds due to Lemma B.5 with the fact that ‖θi − θ0‖2 ≤ τ , the second
inequality holds due to Lemma B.6. Substituting (C.16) and (C.17) into (C.15), we have

‖Zt − Z̄t‖F ≤ C4t
√

logmτ1/3L4,

where C4 > 0 is a constant. We now bound log det Z̄t− log det Zt. It is easy to verify that Z̄t = λI+ J̄J̄>, Zt = λI+JJ>,
where

J̄ =
(
g(x1,a1

;θ0), . . . ,g(xt,at
;θ0)

)
/
√
m,

J =
(
g(x1,a1

;θ0), . . . ,g(xt,at
;θt−1)

)
/
√
m.
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We have the following inequalities:

log
det(Z̄t)

det(λI)
− log

det(Zt)

det(λI)
= log det(I + J̄J̄>/λ)− log det(I + JJ>/λ)

= log det(I + J̄>J̄/λ)− log det(I + J>J/λ)

≤ 〈(I + J>J/λ)−1, J̄>J̄− J>J〉
≤ ‖(I + J>J/λ)−1‖F ‖J̄>J̄− J>J‖F
≤
√
t‖(I + J>J/λ)−1‖2‖J̄>J̄− J>J‖F

≤
√
t‖J̄>J̄− J>J‖F , (C.18)

where the second equality holds due to the fact that det(I + AA>) = det(I + A>A), the first inequality holds due to
the fact that log det function is convex, the second inequality hold due to the fact that 〈A,B〉 ≤ ‖A‖F ‖B‖F , the third
inequality holds since I + J>J/λ is a t-dimension matrix, the fourth inequality holds since I + J>J/λ � I. We have

‖J̄>J̄− J>J‖F

≤ t max
1≤i,j≤t

∣∣∣g(xi,ai
;θ0)>g(xj,aj

;θ0)− g(xi,ai
;θi)

>g(xj,aj
;θj)

∣∣∣/m
≤ t max

1≤i,j≤t

∥∥g(xi,ai ;θ0)− g(xi,ai ;θi)
∥∥

2

∥∥g(xj,aj ;θj)
∥∥

2
/m

+
∥∥g(xj,aj

;θ0)− g(xj,aj
;θj)

∥∥
2

∥∥g(xi,ai
;θ0)

∥∥
2
/m

≤ C5t
√

logmτ1/3L4, (C.19)

where C5 > 0 is a constant, the first inequality holds due to the fact that ‖A‖F ≤ tmax |Ai,j | for any A ∈ Rt×t, the
second inequality holds due to the fact |a>a′ − b>b′| ≤ ‖a− b‖2‖b′‖2 + ‖a′ − b′‖2‖a‖2, the third inequality holds due
to (C.16) and (C.17). Substituting (C.19) into (C.18), we obtain

log
det(Z̄t)

det(λI)
− log

det(Zt)

det(λI)
≤ C5t

3/2
√

logmτ1/3L4.

Using the same method, we also have

log
det(Zt)

det(λI)
− log

det(Z̄t)

det(λI)
≤ C5t

3/2
√

logmτ1/3L4.

This completes our proof.

D. Proofs of Lemmas in Appendix C
D.1. Proof of Lemma C.2

In this section we give the proof of Lemma C.2.

Proof of Lemma C.2. It can be verified that τ satisfies the conditions of Lemmas B.4, B.5 and B.6. Thus, Lemmas B.4, B.5
and B.6 hold. We will show that for any j ∈ [J ], the following inequalities hold. First, we have∥∥J(j)

∥∥
F
≤
√
tmax
i∈[t]

∥∥g(xi,ai
;θ(j))

∥∥
2
≤ C1

√
tmL, (D.1)

where C1 > 0 is a constant, the first inequality holds due to the fact that ‖J(j)‖F ≤
√
t‖J(j)‖2,∞, the second inequality

holds due to Lemma B.6.

We also have

‖J(j) − J(0)‖F ≤ C2

√
logmτ1/3L3‖J(0)‖F ≤ C3

√
tm logmτ1/3L7/2, (D.2)
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where C2, C3 > 0 are constants, the first inequality holds due to Lemma B.5 with the assumption that ‖θ(j) − θ(0)‖2 ≤ τ ,
the second inequality holds due to (D.1).

We also have ∥∥f (s) − f (j) − [J(j)]>(θ(s) − θ(j))
∥∥

2

≤ max
i∈[t]

√
t
∣∣f(xi,ai ;θ

(s))− f(xi,ai ;θ
(j))− 〈g(xi,ai ;θ

(j)),θ(s) − θ(j)〉
∣∣

≤ C4τ
4/3L3

√
tm logm,

where C4 > 0 is a constant, the first inequality holds due to the the fact that ‖x‖2 ≤
√
tmax |xi| for any x ∈ Rt, the second

inequality holds due to Lemma B.4 with the assumption that ‖θ(j) − θ(0)‖2 ≤ τ, ‖θ(s) − θ(0)‖2 ≤ τ .

For ‖y‖2, we have ‖y‖2 ≤
√
tmax1≤i≤t |r(xi,ai

)| ≤
√
t. This completes our proof.

D.2. Proof of Lemma C.3

Proof of Lemma C.3. It can be verified that τ satisfies the conditions of Lemma C.2, thus Lemma C.2 holds. Recall that the
loss function L is defined as

L(θ) =
1

2
‖f(θ)− y‖22 +

mλ

2
‖θ − θ(0)‖22.

We define J(θ) and f(θ) as follows:

J(θ) =
(
g(x1,a1

;θ), . . . ,g(xt,at
;θ)
)
∈ R(md+m2(L−2)+m)×t,

f(θ) = (f(x1,a1 ;θ), . . . , f(xt,at ;θ))> ∈ Rt×1.

Suppose ‖θ − θ(0)‖2 ≤ τ . Then by the fact that ‖ · ‖22/2 is 1-strongly convex and 1-smooth, we have the following
inequalities:

L(θ′)− L(θ)

≤ 〈f(θ)− y, f(θ′)− f(θ)〉+
1

2

∥∥f(θ′)− f(θ)
∥∥2

2
+mλ〈θ − θ(0),θ′ − θ〉+

mλ

2

∥∥θ′ − θ∥∥2

2

= 〈f(θ)− y, [J(θ)]>(θ′ − θ) + e〉+
1

2

∥∥[J(θ)]>(θ′ − θ) + e
∥∥2

2

+mλ〈θ − θ(0),θ′ − θ〉+
mλ

2

∥∥θ′ − θ∥∥2

2

= 〈J(θ)(f(θ)− y) +mλ(θ − θ(0)),θ′ − θ〉+ 〈f(θ)− y, e〉

+
1

2

∥∥[J(θ)]>(θ′ − θ) + e
∥∥2

2
+
mλ

2

∥∥θ′ − θ∥∥2

2

= 〈∇L(θ),θ′ − θ〉+ 〈f(θ)− y, e〉+
1

2

∥∥[J(θ)]>(θ′ − θ) + e
∥∥2

2
+
mλ

2

∥∥θ′ − θ∥∥2

2︸ ︷︷ ︸
I1

, (D.3)

where e = f(θ′)− f(θ)− J(θ)>(θ′ − θ). I1 can be bounded as follows:

I1 ≤ ‖f(θ)− y‖2‖e‖2 + ‖J(θ)‖22‖θ′ − θ‖22 + ‖e‖22 +
mλ

2

∥∥θ′ − θ∥∥2

2

≤ C1

2

(
(mλ+ tmL)

∥∥θ′ − θ∥∥2

2

)
+ ‖f(θ)− y‖2‖e‖2 + ‖e‖22, (D.4)

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds due to the fact that
‖J(θ)‖2 ≤ C2

√
tmL with ‖θ − θ(0)‖2 ≤ τ by (C.3) in Lemma C.2. Substituting (D.4) into (D.3), we obtain

L(θ′)− L(θ) ≤ 〈∇L(θ),θ′ − θ〉+
C1

2

(
(mλ+ tmL)

∥∥θ′ − θ∥∥2

2

)
+ ‖f(θ)− y‖2‖e‖2 + ‖e‖22. (D.5)
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Taking θ′ = θ − η∇L(θ), then by (D.5), we have

L
(
θ − η∇L(θ)

)
− L(θ) ≤ −η‖∇L(θ)‖22

[
1− C1(mλ+ tmL)η

]
+ ‖f(θ)− y‖2‖e‖2 + ‖e‖22. (D.6)

By the 1-strongly convexity of ‖ · ‖22, we further have

L(θ′)− L(θ)

≥ 〈f(θ)− y, f(θ′)− f(θ)〉+mλ〈θ − θ(0),θ′ − θ〉+
mλ

2

∥∥θ′ − θ∥∥2

2

= 〈f(θ)− y, [J(θ)]>(θ′ − θ) + e〉+mλ〈θ − θ(0),θ′ − θ〉+
mλ

2

∥∥θ′ − θ∥∥2

2

= 〈∇L(θ),θ′ − θ〉+
mλ

2

∥∥θ′ − θ∥∥2

2
+ 〈f(θ)− y, e〉

≥ 〈∇L(θ),θ′ − θ〉+
mλ

2

∥∥θ′ − θ∥∥2

2
− ‖f(θ)− y‖2‖e‖2

≥ −‖∇L(θ)‖22
2mλ

− ‖f(θ)− y‖2‖e‖2, (D.7)

where the second inequality holds due to Cauchy-Schwarz inequality, the last inequality holds due to the fact that 〈a,x〉+
c‖x‖22 ≥ −‖a‖22/(4c) for any vectors a,x and c > 0. Substituting (D.7) into (D.6), we obtain

L
(
θ − η∇L(θ)

)
− L(θ)

≤ 2mλη(1− C1(mλ+ tmL)η)
[
L(θ′)− L(θ) + ‖f(θ)− y‖2‖e‖2

]
+ ‖f(θ)− y‖2‖e‖2 + ‖e‖22

≤ mλη
[
L(θ′)− L(θ) + ‖f(θ)− y‖2‖e‖2

]
+ ‖f(θ)− y‖2‖e‖2 + ‖e‖22

≤ mλη
[
L(θ′)− L(θ) + ‖f(θ)− y‖22/8 + 2‖e‖22

]
+mλη‖f(θ)− y‖22/8 + 2‖e‖22/(mλη) + ‖e‖22

≤ mλη
(
L(θ′)− L(θ)/2

)
+ ‖e‖22

(
1 + 2mλη + 2/(mλη)

)
, (D.8)

where the second inequality holds due to the choice of η, third inequality holds due to Young’s inequality, fourth inequality
holds due to the fact that ‖f(θ)− y‖22 ≤ 2L(θ). Now taking θ = θ(j) and θ′ = θ(0), rearranging (D.8), with the fact that
θ(j+1) = θ(j) − η∇L(θ(j)), we have

L(θ(j+1))− L(θ(0))

≤ (1−mλη/2)
[
L(θ(j))− L(θ(0))

]
+mλη/2L(θ(0)) + ‖e‖22

(
1 + 2mλη + 2/(mλη)

)
≤ (1−mλη/2)

[
L(θ(j))− L(θ(0))

]
+mλη/2 · t+mλη/2 · t

≤ (1−mλη/2)
[
L(θ(j))− L(θ(0))

]
+mληt, (D.9)

where the second inequality holds due to the fact that L(θ(0)) = ‖f(θ(0))− y‖22/2 = ‖y‖22/2 ≤ t, and(
1 + 2mλη + 2/(mλη)

)
‖e‖22 ≤ 3/(mλη) · C2τ

8/3L6tm logm ≤ tmλη/2, (D.10)

where the first inequality holds due to (C.5) in Lemma C.2, the second inequality holds due to the choice of τ . Recursively
applying (D.9) for u times, we have

L(θ(j+1))− L(θ(0)) ≤ mληt

mλη/2
= 2t,

which implies that ‖f (j+1) − y‖2 ≤ 2
√
t. This completes our proof.

D.3. Proof of Lemma C.4

In this section we prove Lemma C.4.

Proof of Lemma C.4. It can be verified that τ satisfies the conditions of Lemma C.2, thus Lemma C.2 holds. It is worth
noting that θ̃(j) is the sequence generated by applying gradient descent on the following problem:

min
θ
L̃(θ) =

1

2
‖[J(0)]>(θ − θ(0))− y‖22 +

mλ

2

∥∥θ − θ(0)
∥∥2

2
.
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Then ‖θ(0) − θ̃(j)‖2 can be bounded as

mλ

2
‖θ(0) − θ̃(j)‖22 ≤

1

2
‖[J(0)]>(θ̃(j) − θ(0))− y‖22 +

mλ

2

∥∥θ̃(j) − θ(0)
∥∥2

2

≤ 1

2
‖[J(0)]>(θ̃(0) − θ(0))− y‖22 +

mλ

2

∥∥θ̃(0) − θ(0)
∥∥2

2

≤ t/2,

where the first inequality holds trivially, the second inequality holds due to the monotonic decreasing property brought by
gradient descent, the third inequality holds due to (C.6) in Lemma C.2. It is easy to verify that L̃ is a mλ-strongly convex
and function and C1(tmL+mλ)-smooth function, since

∇2L̃ �
(∥∥J(0)

∥∥2

2
+mλ

)
I � C1(tmL+mλ),

where the first inequality holds due to the definition of L̃, the second inequality holds due to (C.3) in Lemma C.2. Since we
choose η ≤ C2(tmL+mλ)−1 for some small enough C2 > 0, then by standard results of gradient descent on ridge linear
regression, θ̃(j) converges to θ(0) + (Z̄)−1b̄/

√
m with the convergence rate∥∥θ̃(j) − θ(0) − Z̄−1b/

√
m
∥∥2

2
≤ (1− ηmλ)j · 2

mλ
(L(θ(0))− L

(
θ(0) + Z̄−1b/

√
m
)
)

≤ 2(1− ηmλ)j

mλ
L(θ(0))

=
2(1− ηmλ)j

mλ
· ‖y‖

2
2

2

≤ (1− ηmλ)jt,

where the first inequality holds due to the convergence result for gradient descent and the fact that θ(0) + (Z̄)−1b̄/
√
m is

the minimal solution to L, the second inequality holds since L ≥ 0, the last inequality holds due to Lemma C.2.

E. A Variant of NeuralUCB
In this section, we present a variant of NeuralUCB called NeuralUCB0. Compared with Algorithm 1, The main differences
between NeuralUCB and NeuralUCB0 are as follows: NeuralUCB uses gradient descent to train a deep neural network to
learn the reward function h(x) based on observed contexts and rewards. In contrast, NeuralUCB0 uses matrix inversions to
obtain parameters in closed forms. At each round, NeuralUCB uses the current DNN parameters (θt) to compute an upper
confidence bound. In contrast, NeuralUCB0 computes the UCB using the initial parameters (θ0).
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Algorithm 3 NeuralUCB0

1: Input: number of rounds T , regularization parameter λ, exploration parameter ν, confidence parameter δ, norm
parameter S, network width m, network depth L

2: Initialization: Generate each entry of Wl independently from N(0, 2/m) for 1 ≤ l ≤ L− 1, and each entry of WL

independently from N(0, 1/m). Define φ(x) = g(x;θ0)/
√
m, where θ0 = [vec(W1)>, . . . , vec(WL)>]> ∈ Rp

3: Z0 = λI, b0 = 0
4: for t = 1, . . . , T do
5: Observe {xt,a}Ka=1 and compute

(at, θ̃t,at) = argmax
a∈[K],θ∈Ct−1

〈φ(xt,a),θ − θ0〉 (E.1)

6: Play at and receive reward rt,at

7: Compute

Zt = Zt−1 + φ(xt,at)φ(xt,at)
> ∈ Rp×p, bt = bt−1 + rt,atφ(xt,at) ∈ Rp

8: Compute θt = Z−1
t bt + θ0 ∈ Rp

9: Construct Ct as

Ct = {θ : ‖θt − θ‖Zt
≤ γt}, where γt = ν

√
log

det Zt

detλI
− 2 log δ +

√
λS (E.2)

10: end for


