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Abstract

We design and analyze CASCADEBALI, an algo-
rithm for finding the best set of K items, also
called an arm, within the framework of cascading
bandits. An upper bound on the time complex-
ity of CASCADEBALI is derived by overcoming a
crucial analytical challenge, namely, that of prob-
abilistically estimating the amount of available
feedback at each step. To do so, we define a
new class of random variables (r.v.’s) which we
term as left-sided sub-Gaussian r.v.’s; this class
is a relaxed version of the sub-Gaussian r.v.’s.
This enables the application of a sufficiently tight
Bernstein-type concentration inequality. We show,
through the derivation of a lower bound on the
time complexity, that the performance of CAS-
CADEBALI is optimal in some practical regimes.
Finally, extensive numerical simulations corrobo-
rate the efficacy of CASCADEBALI as well as the
tightness of our upper bound on its time complex-

1ty.

1. Introduction

Online recommender systems seek to recommend a small
list of items (such as movies or hotels) to users based on
a larger ground set [L] := {1,...,L} of items. In this
paper, we consider the cascading bandits model (Craswell
et al., 2008; Kveton et al., 2015a), which is widely used in
information retrieval and online advertising. Upon seeing
the chosen list, the user looks at the items sequentially. She
clicks on an item if she is attracted by it and skips to the
next one otherwise. This process stops when she clicks on
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one item in the list or if no item is clicked, it is deemed that
she is not attracted by any of the items. The items that are
in the ground set but not in the chosen list and those in the
list that come after the attractive one are unobserved.

Each item ¢ € [L], with a certain click probability w(i) €
[0, 1] which is unknown to the learning agent, attracts the
user independently of other items. Under this assumption,
the optimal solution is the list of items with largest w(i)’s.
Based on the chosen lists and obtained feedback in previous
steps, the agent tries to learn the click probabilities (explore
the combinatorial space) in order to find the optimal list
with high probability in as few time steps as possible.

Main Contributions. Given § > 0, a learning agent aims
to find a list of optimal items of size K with probability
at least 1 — ¢ in minimal time steps. To achieve a greater
generality, we provide results for identifying a list of near-
optimal items (Even-Dar et al., 2002; Mannor & Tsitsiklis,
2004; Kalyanakrishnan et al., 2012), where the notion of
near-optimality is precisely defined in Section 2. First, we
design CASCADEBAI(¢, §, K) and derive an upper bound
on its time complexity. Second, we establish a lower bound
on the time complexity of any best arm identification (BAI)
algorithm in cascading bandits, which implies that the per-
formance of CASCADEBAI(e, §, K) is optimal in some
regimes. Finally, our extensive numerical results corrobo-
rate the efficacy of CASCADEBAI(¢, §, K) and the tightness
of our upper bound on its time complexity.

Different from combinatorial semi-bandit settings, the
amount of feedback in cascading bandits is, in general,
random. The analysis of cascading bandits involves the
unique challenge in adapting to the variation of the amount
of feedback across time. To this end, we define a random
variable (r.v.) that describes the feedback from the user at
a step and bound its expectation. We define a novel class
of r.v.’s, known as left-sided sub-Gaussian (LSG) r.v.’s, and
apply a concentration inequality to quantify the variation of
the amount of feedback.

Bernstein-type concentration inequalities are applied in
many stochastic bandit problems and indicate that sub-
Gaussian (SG) distributions possess light tails (Audibert
& Bubeck, 2010). Since it turns out that we only need to
analyze a one-sided tail in this work, it suffices to consider
a one-sided SG condition, which motivates the definition
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of LSG. We also provide a general estimate of a certain
corresponding parameter in Theorem 5.4, which is crucial
for the utilization of the inequality. This may be of inde-
pendent interest. Summary and future work are deferred to
Appendix 7.

Literature review. In a stochastic combinatorial bandit
(SCB) model, an arm corresponds to a list of items in the
ground set, and each item is associated with an r.v. at each
time step. The corresponding reward depends on the con-
stituent items’ realizations. We first review the related works
on the BAI problem, in which a learning agent aims to iden-
tify an optimal arm, i.e., a list of optimal items. (i) Given
0 > 0, alearning agent aims to identify an optimal arm with
probability 1 — § in minimal time steps (Jamieson & Nowak,
2014; Kalyanakrishnan et al., 2012). (ii) Given B > 0,
an agent aims to maximize the probability of identifying
an optimal arm in B steps (Auer et al., 2002; Audibert &
Bubeck, 2010; Carpentier & Locatelli, 2016). These two
settings are known as the fixed-confidence and fixed-budget
setting respectively. Under the fixed-confidence setting, the
early works aim to identify only one optimal item (Audibert
& Bubeck, 2010) and the later ones aim to find an optimal
arm (Chen et al., 2014; Rejwan & Mansour, 2019). Besides,
Mannor & Tsitsiklis (2004); Kaufmann et al. (2016); Agar-
wal et al. (2017) provide problem-dependent lower bounds
on the time complexity when Kalyanakrishnan et al. (2012)
establishes a problem-independent one. All these existing
works above pertain to the semi-bandit feedback setting,
where an agent observes realizations of all pulled items.
Finally, we would like to highlight Kuroki et al. (2019) and
Rejwan & Mansour (2020) who consider the full-bandit
feedback setting, where an agent only observes the sums of
the realizations of all pulled items.

Secondly, we review the relevant works on the regret mini-
mization (RM) problem, in which an agent aims to maximize
his overall reward, or equivalently to minimize the so-called
cumulative regret. Under the semi-bandit feedback setting,
this problem has been extensively studied by Lai & Robbins
(1985); Anantharam et al. (1987); Kveton et al. (2014); Li
et al. (2010); Qin et al. (2014). Moreover, motivated by
numerous applications in clinical analysis and online ad-
vertisement, some researchers consider SCB models with
partial feedback, where an agent observes realizations of
only a portion of pulled items. One prime model that incor-
porates the partial feedback is cascading bandits (Craswell
et al., 2008; Kveton et al., 2015a). Recently, Kveton et al.
(2015b); Li et al. (2016); Zong et al. (2016); Wang & Chen
(2017); Cheung et al. (2019) studied this model and derived
various regret bounds.

When the RM problem is studied with both semi-bandit and
partial feedback, the BAI problem has only been studied in
the semi-bandit feedback setting thus far. Despite existing

works, analysis of the BAI problem in the more challenging
case of partial feedback is yet to be done. Our work fills in
this gap in the literature by studying the fixed-confidence
setting in cascading bandits, and our analysis provides tools
for handling the statistical dependence between the amount
of feedback and that of time steps in the cascading bandit
setting.

2. Problem Setup

For brevity, we denote the set {1,...,n} by [n] for any
n € N, and the set of all m-permutations of [n], i.e., all
ordered m-subsets of [n], by [n](™) for any m < n. Let
there be L € N ground items, contained in [L]. Each item
i € [L] is associated with a weight w(i) € [0, 1], signifying
the item’s click probability. We define an arm as a list of
K < L items in [L]¥). At each time step ¢, the agent
pulls an arm S; := (i%,...,i%) € [L]). Then the user
examines the items from i to i} one at a time, until one
item is clicked or all items are examined. For each item 7 €
[L], W.(i) ~ Bern(w(#)) are i.i.d. across time. The agent
observes W, (i) = 1 iff the user clicks on i. The feedback
O, from the user is defined as a vector in {0, 1,x}, where
0, 1, = represents observing no click, observing a click and
no observation respectively. For example, if K = 4 and
the user clicks on the third item at time step 2, we have
O, = {0,0,1,x}. Clearly, there is a one-to-one mapping
from Oy to the integer

ke :=min{l < k < K : W,(i%) = 1},

where we assume min () = co. If k; < oo (i.e., O; is not
the all-zero vector), the agent observes W, (if) = 0 for
1 < k < Kk, and also observes Wt(z% ) = 1, but does

not observe Wt(ﬁf) for k > I;t. Otherwise, we have l%t =
oo (i.e., O is the all-zero vector), then the agent observes
Wi(it) =0for1 < k < K. We denote w(i) = 1 — w(i),
w = (w(l),...,w(L)), and the probability law (resp. the
expectation) of the process ({W;(i)}i.1) by Py (resp. Eqp).

Without loss of generality, we assume w* := w(l) >
w(2) > ... > w(L) := w'. We say item i is optimal
if w(i) > w(K). We assume w(K) > w(K +1) to en-
sure there are exactly K optimal items. Next, we say
item i is e-optimal (¢ > 0) if w(i) > w(K) — € and set
K!:=max{i € [L] : w(i) > w(K) — e}. Then [K]] is the
set of all e-optimal items, [K](%) is the set of all optimal
arms S* (up to permutation), and [K!]5) is the set of all
e-optimal arms.

To identify an e-optimal arm, an agent uses an algorithm
« that decides which arms to pull, when to stop pulling,
and which arm S™ to choose eventually. A deterministic
and non-anticipatory online algorithm consists in a triple
m = ((m)s, T™, ¢™) in which:

e the sampling rule 7, determines, based on the observation
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history, the arm ST to pull at time step ¢; in other words, ST
is F;_1-measurable, with F; := o(ST,O7T,...,ST,OF);
o the stopping rule determines the termination of the algo-
rithm, which leads to a stopping time T™ with respect to
(Ft)ten satisfying P(T™ < +o0) = 1;

o the recommendation rule ¢™ chooses an arm S™, which is
F=-measurable.

We define the time complexity of 7 as T™. Under the fixed-
confidence setting, a risk parameter (failure probability) J €
(0,1) is fixed. We say an algorithm 7 is (e, 6, K)-PAC (prob-
ably approximately correct) if P, (S™ C [K']) > 1 —6. The
goal is to obtain an (e, d, K)-PAC algorithm 7 such that
E., 77 is small and 7™ is small with high probability. We
also define the optimal expected time complexity over all
(e, 9, K')-PAC algorithms as

T*(w, €, 6, K) := inf{E,, T™ : wis (¢, 0, K)-PAC}.
This measures the hardness of the problem. We abbreviate

(0,9, K)-PAC as (6, K)-PAC, E,, as E, P, as P, K/ as K,
T™as T, T*(w,e¢, d, K) as T* when there is no ambiguity.

3. Algorithm

Our algorithm CASCADEBAI(e, 6, K) is presented in Algo-
rithm 1. Intuitively, to identify an e-optimal arm, an agent
needs to learn the true weights w(4) of a number of items in
[L] by exploring the combinatorial arm space.

At each step t, we classify an item as surviving, accepted
or rejected. Initially, all items are surviving and belong to
the survival set D,. Over time, an item may be eliminated
from Dy, in which case we say that it is identified. Once
an item is identified, it can be moved to either the accept
set A, if it is deemed to be e-optimal, or the reject set R,
otherwise. (i) At step 1, all items are in D;. (ii) At each step
t, the agent selects min{ K, | D;|} surviving items with the
least number of previous observations, T3(¢)’s, pulls them
in ascending order of the T;(%), and gets cascading feedback
from the user in the form of the k;’s. Similarly to a Racing
algorithm (Even-Dar et al., 2002; Maron & Moore, 1994;
Heidrich-Meisner & Igel, 2009; Jun et al., 2016), this design
of S; increases the T3(4)’s of all surviving items almost
uniformly and avoids the wastage of time steps. (iii) Next,
we maintain upper and lower confidence bounds (UCB,
LCB) across time to facilitate the identification of items as
in Lines 13—17. The confidence radius is defined as follows:

Cy(i,8) = 4\/ log(log,[2T3(:)]/p(9)) K

T,(9) 0=\ 15r

We set Ci(i,0) = +o0o when T3(i) = 0. (iv) Lastly, the
algorithm stops once D; = 0, |A;| > K or |Ry| > L — K.

Algorithm 1 CASCADEBAI(e, §, K)

1: Input: risk 6, tolerance ¢, size of arm K.

2: Initialize t = 1, D, = [L],Al = @,Rl = (Z),To(@) =
0, o (i) = 0, Vi.

3: while D; 7é @, |At‘ < K and |Rt| <L—-K do

4:  Sort the items in D, according to the number of pre-
vious observations: T;_1(i¢) < ... < Tt,l(iltDtl).

5:  if |D;| > K then

6: pull arm Sy = (¢4, 4, ..., i%).

7. else

8: pull arm S; = (i%,4%,. .. ,z”‘thl,S{), where S; is

any (K — |Dy|)-subset of A; | R:.
9: endif

10:  Observe click k; € {1,..., K, o0}.
11:  Foreachi € Dy, if W,(4) is observed, set
iy (i) = B2 O 7y (5) = Ty (6) +1.
Otherwise, set Wy (i) = Wy—1(2), Ty (1) = Te—1 (7).
12: k=K —|A.
13:  Calculate the UCBs and LCBs for each 7 € D;:
U(i,0) = we(3) + Ci (1, 0),
Ly(i,6) = (i) — Ci(1,0).
14:  Find items in D, that have the k{* and (k;+ 1)

largest empirical means:

. k) g
j = argmax§etj)3t we (),

. ketl) - -
j :argmaxgetDt)wt(j).

15: At+1 :AtU{ZEDt |Lt(l,6) > Ut(j*,é)_e}

16: Rt+1 S Rt U {1 c Dt | Ut(z,5) < Lt(j/75) — 6}.

17: Dt+1 = Dt/(Rt+1 UAt+1)-

18: t=1t+1.

19: end while

20: If |A;| = K, output As; otherwise, output the first K
items that entered A;.

4. Main Results

We develop an upper bound on the time complexity of
CASCADEBAI(e, §, K) and a lower bound on the expected
time complexity of any (§, K)-PAC algorithm. We also
discuss the gap between the bounds. We use ¢y, ca, ... to
denote finite and positive universal constants whose values
may vary from line to line. The proofs are sketched in
Section 5 and more details are provided in Appendix D.

4.1. Upper Bound

The gaps between the click probabilities determine the hard-
ness to identify the items. The gaps are defined as
A ] wl) —w(K+1) 1<i<K
T w(K) —w(i) K<i<L”’
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A; = A — AN +e K<i<K'
A,;—e K,<Z§L

Here A; is a slight variation of A; that takes into account
the e-optimality of items. Moreover, to correctly identify
item ¢ with probability at least 1 — ¢/2, it suffices for our
algorithm to observe the item’s feedback at least

216 2 648
Tis:=1+ log | —=1lo _—
’ {Ai g(pw) g2<p<5>A%)>

(st [ (555)])

times. Similarly to existing works (Even-Dar et al., 2002;
Mannor & Tsitsiklis, 2004), we derive the upper bound with
A;’sand T; 5's. Alarger A; leads to a smaller T; s, implying
that it requires fewer observations to identify item ¢ correctly.
The permutation o defines the ordering of A: A o(1) =

> AU( ). Atstep ¢, we set kt as the number of surviving
items in S;, and X ot 3S the number of observations of them.

Note that I%t is an r.v. We lower bound EX},, with

k—1 o1
Hw +k]:[w >m1n{22*}

=1
and upper bound ]EXW with (k, w) = min{k, vV2/w'}.
We abbreviate T; 5 as T;, p(8) as p, pu(k, w) as g, v(k, w)
as v when there is no ambiguity. In anticipation of Theo-
rem 4.1, we define three more notations:

wlk,w):=

K :=max{ K’ — K, min{[1/w*|, K — 1} },
K+1-k K-k
Ky :=max{K' — K,1}, Mj := + - .
HK+1-k MK~k

Theorem 4.1. Assume K' < 2K — 1. With probability at
least 1 — 6, Algorithm 1 outputs an e-optimal arm after at
most (c1 N1 + coNa + c3N3) steps, where

K*KQ 2 1K7K2 'U%( o
lez Kk+1lg<5z 2—J+ >’

pt Wi k+1 = Pr—in
| LK
N2 = Ta i)
120:¢ ; @
2K pe )
N3 = [To(—k+%) — To(L—K+k-1)]
2 HE—k+1
“4.1)
K—K;—1
_ Ki+1 _
= Y MiT,-xen+ ( L 2) To(L-Ky)
b—1 MK 41
+ 2T (1 1) 4.2)
When e = 0, A; = A; foralli € [L] and K’ = K. We

note that it is a waste to pull identified items. This occurs
only when K’ < 2K — 1 (see Lemma 5.9) and this scenario

is more complicated to analyze. The scenario K’ > 2K — 1
is relatively easier to analyze and the result is deferred to
Proposition C.1 (see Appendix C).

Interpretation of the bound. The first term /Ny in the
bound is unique to the cascading model, which results from
the gap between X , and EXfmt. We can bound Nj in
terms of the maximum and minimum weights, w* and w’.

Proposition 4.2. Assume 0 < w' < w* < 1. We have

41K log (ﬂ)

0 g (457

0<w*<1/K,
1/K <w* < 1.

Next, recall that we say that an item is identified by time
t if it is put into A, or R, for some 7 < t. In the worst-
case scenario, the agent identifies items in descending or-
der of A;’s. With probability at least 1 — &, it costs at
most ¢ N steps to identify items o(1),...,0(L — K) and
c3 N3 is for identifying the remaining ones. More pre-
cisely, after item o(L — K —k—1) is identified, the num-
ber of steps required for identifying item o (L — K —k) is
(cs/pr—rr1) - (K =k 4+ V[ To—r1r) = To(i—x+6-1)];

we sum these steps up to obtain (4.1). Since the results in
many existing works (Even-Dar et al., 2002; Jun et al., 2016)
mainly involve T}’s, we show the dependence of N3 on T}’s
more concretely in (4.2).

Technique. The crucial analytical challenge to derive our
bound, especially to establish puy, vy, N1, is to quantify the
impact of partial feedback that results from the cascading
model. Firstly, we bound EX ot by exploiting some prop-
erties of the cascading feedback. Next, to bound the gap
between >, X; , and 371" | EX; ., for some n € N,
we propose a novel class of r.v.’s, known as LSG r.v.’s, pro-
vide an estimate of a certain LSG parameter, and utilize
a Berstein-type concentration inequality to bound the tail
probability of a certain LSG r.v.. Details are in Section 5.1.

To facilitate the remaining discussion in Section 4.1, we
specialize our analysis and results henceforth to the case of
€=0, in which A; =A, and the agent aims to find S*. The
remaining results in Section 4.1 can be directly generalized
to the scenario of € >0 by replacing A;’s with A;’s.

Comparison to the semi-bandit problem. A related algo-
rithm in the setting of semi-bandit feedback and € = 0 is
the BATCHRACING Algorithm, which was proposed by Jun
et al. (2016). This algorithm has three paramters k, r and b
which respectively represent the number of optimal items,
the maximum number of pulls of one item at one step and
the size of a pulled arm. When » = 1 and b = k, we denote
it as BATRAC(k). The fact that our algorithm observes be-
tween 1 and K items per step motivates a comparison among
CASCADEBAI(0, 4, K), BATRAC(K) and BATRAC(1).

Corollary 4.3. (i) If all w(i)’s are at most 1/ K, with prob-
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ability at least 1 — 9, Algorithm 1 outputs S* after at most

i=1
L-K
1 _9 L L
= O(K Z; Al log [(5 log <5Ai(i))]
+A7

1 £1 L
o(L-1) 0g S 0g 5A2 (L-1)

steps; (i) if all w(i)’s are at least 1/2, with probability at
least 1 — 9, Algorithm 1 outputs S* after at most
)

L—1
_ L
O( Z Tg(i)> < Z Ag(l log { log (6A2
i=1
steps.

The results of Corollary 4.3 are intuitive: (i) if all w(¢)’s
are close to 0 (i.e., at most 1/K), the bound on the time
complexity of CASCADEBAI(0, 6, K) is of the same order
as that of BATRAC(K); (ii) if all w(4)’s are close to 1 (i.e., at
least 1/2), the bound corresponds with that of BATRAC(1)
(Jun et al., 2016). We further upper bound the expected time
complexity of our algorithm (denoted by 7r1) in these cases.

Proposition 4.4. (i) If all w(i)’s are at most 1/ K,

IETm<c110g<) { ZAU()log[Llog<A§ )]
(1)

L
+A? log [L log < >} };
o(L-1) A2 (L-1)

(ii) if all w(i)’s are at least 1/2,
>} o (1>
Ao_(i) o

According to the definition of T* in Section 2, T* < ET ™
and hence also satisfies the above bounds. Corollary 4.3
and Proposition 4.4 indicate that the high probability upper
bound on 7™ and the upper bound on E7 ™ are of the same
order in the sense that (i) if all w(¢)’s are at most 1/ K, both
upper bounds are O((I/K) . ZL KA 2) JrAU(L 1)) (i)

if all w(i)’s are at least 1/2, both are O ( 37" Aaf)).

ET™ < co Z A 3 log {L log (

Specialization to the case of two click probabilities. We
consider a simplified scenario with the following assump-
tion; this allows us to present the upper bound on the time
complexity with greater clarity.

Assumption 4.5. With 0 < w' < w* < 1, the K optimal
and L — K suboptimal items have click probabilities w*
and w' respectively.

Proposition 4.6. Under Assumption 4.5, (i) if 0 < w* <
1/ K, with probability at least 1 — 0, Algorithm 1 outputs

S* after at most

O<K<wfwf>21°g ﬁ o (W)D

steps; (i) if 1/ K < w* < 1, with probability at least 1 — 6,
Algorithm 1 outputs S* after at most

of L ool Eroaf — L N]4¥10e (L
(w*7w1)2 0g ) 0g 5(11)*771)’)2 w/2 0g )

steps.

In the second case, if L > w* (w* — w’)? /w2, the first term
dominates the bound. For instance, w’ > 1/ V'L satisfies
this condition.

Proposition 4.7. Under Assumption 4.5, (i) if 0 <w* < V/K,
C1 L L ] 1 .
w* — ,w/)2 0g ) :

— = log| L1
K(w —w')? "g{ °g<<
(ii) if w' > 1/2 or w*/w' <2,
cow* L L 1
ET™ < ———= log|Llog| —— | |log| = |.
T < G o s () s ()

Proposition 4.7 also upper bounds T* since T* < E7 7. It,
together with Proposition 4.6 implies that the high probabil-
ity bound on 77 and the bound on E7 ™ are of the same
order in these cases.

ET™ <

4.2. Lower Bound

We set € = 0, in which scenario the agent aims to find an
optimal arm S*. We also upper bound the expected number
of observations of items per step by (K, w) where

k—1 i—1 k—1

=Y icw(L1-i) [ [ow+1-p+E] Jow+1-))
i=1 j=1 j=1

< min{l/w’, k}.

We write ji(k,w) = fg,d(m,n) = KL(w(m),w(n)),

where KL(p, q) = plogg + (1 —p)log 1;
Theorem 4.8. We have
K
log( 1/2 45)
'Jr*
ek Z 1

=K+1 J, K

Comparison to the semi-bandit problem. First, if w’ is
close to 1 (ie., w' > 1/2), ix = 1/w’ < 2, i.e., at one
step, the agent observes at most 2 items in expectation. We
can recover the lower bound in Kaufmann et al. (2016) by
replacing iz with 1, which is of the same order as our
bound in this case. Next, if w’ is close to 0 (i.e., w’ < 1/K),
the agent observes jix = K items in expectation. Then the
bound is the same as that incurred by pulling K items per
step and getting semi-bandit feedback, which is

Zde—i—l * Z dj,

=K+1

log( 1/2 40)
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Specialization to the case of two click probabilities.

Corollary 4.9. Under Assumption 4.5, we have

>KL(1—575) K L-K

- fK KL(w*,w’")  KL(w', w*)
. . Lu' 1

:Q(mln{w/,lfw }mlog |:g:|)

where fixg = [1 — (1 —w)E]/w" < 1/w'.

?I[‘*

4.3. Comparison of the Upper and Lower Bounds

To see whether the upper and lower bounds on T* match,
we set € = 0 and consider the following simplified cases.

Corollary 4.10. Sere = 0. (i) If 0 < w* < 1/K,

T* € Q((wL_w;,)Q> ﬂO(K(w*L—w’)Q);

(i) if 1 > w' > 1/2,

(50 L)

The upper bounds above are achieved by Algorithm 1.

In the first case, the gap between the upper and lower bounds
is manifested in the terms 1/K and w'?. In the second case,
the gap is manifested in w* and w’(1 — w*).

5. Proof Sketch

5.1. Analysis of Partial Feedback for Cascading
Bandits

At a high level, the time complexity 7 can be established
by analyzing Ztll Xf%;t and X . The first term is de-
termined by Ti,g’s, the number of observations that guaran-
tees the correct identification of items with high probability.
These Ti#g’s are invariant to the scenario whether the agent
receives semi-bandit or partial feedback from the user. The
second term X st equals to k, in the semi-bandit feedback
setting while it is an r.v. in the partial feedback setting. Since
ng’s have already been studied by a number of works on
the semi-bandit feedback (Even-Dar et al., 2002; Jun et al.,
2016), the crucial challenge of analyzing cascading bandits
is to estimate X Fust probabilitistically.

According to Algorithm 1, k; = min{ K, |D;|}. When k, =
K < |Dy|, the agent pulls K surviving (i.e., not identified)
items. Otherwise, the agent pulls all surviving items first
and then complements S; with some identified items. In
the cascading bandit setting, the agent observes only one
item when the first item ¢} is clicked, and the corresponding
probability is w(i}); the agent observes two items when
i% is not clicked but i} is clicked, and the probability is

[1 — w(i¢)]w(ib); and so on. Therefore,
k-1 i—1 k-1
EXj, = i [ 11 w(ig)w(ig)] +k [T o).
i=1 j=1 j=1
Since EX}, ., depends only on S; (the pulled arm at step t)
and S; is learnt online, it is difficult to estimate EX it for
each step separately. Therefore, the second best thing one
can do is to bound EX f0 88 @ function of k; and w. We
now present some properties of EX fust:

Theorem 5.1. Consider a set of items with weights u =
(u1,...,ux) such that uy > ... > uy, and let py(u, I) be
the expected number of observations when items are placed
with order 1. Let L. = (1,...,k), Iinc = (k,...,1), and
I be any order, then

(i) boundedness: Mk (U, Idec) < pg (u7 I) < pg (ua Iinc);

(ii) monotonicity: let v=(v1,...,vy) be another vector of
weights, then py(w, I) > g (v, I) if u; <v; for all i € [k].

Theorem 5.1 implies that when w is fixed, EX}., attains
its minimum when the agent pulls items 1,2, ..., k in this
order and attains its maximum when the agent pulls L, L —
1,...,L — K + 1 in this order. Moreover, if w(i) = w*
for all i € [k], EX}, is even smaller; if w(j) = w’ for
all j € {L—k+1,...,L}, EXy. is even larger. This
observation inspires Lemma 5.2.

Lemma 5.2. For any k,1,

min{ﬁ, L} <pp KEXp: < fp < min{i,k‘}.
27 2w ’ w’

Next, since Xy, instead of EX};, affects the dynamics,
we examine the gap between > ;- | Xy, and > ;| EX.
Clearly, a tight concentration inequality is essential to esti-
mate this gap well. Since X}, is a bounded r.v., there are
some applicable Bernstein-type inequalities. For instance,
we can apply Azuma’s inequality to analyze SG r.v.’s. How-
ever, (i) it is challenging to find an SG parameter of X},
that is good enough for our purpose (a more detailed ex-
planation is provided after Lemma 5.6), and (ii) we only
require a one-sided concentration inequality. Hence, we
resort to defining a new class of r.v.’s — known as LSG r.v.’s
— and provide an estimate of the relevant LSG parameter.

Definition 5.3 (LSG). An rv. X is v-LSG (v > 0) if
E[exp[A(X — EX)]] < exp(v?A?/2), VA <0.

Theorem 5.4. Let X be an almost surely bounded nonneg-
ative r.v.. IfIEX2 < v?, then X is v-LSG.

Furthermore, we bound EX ,flt (Lemma 5.5) and adapt a
variation of Azuma’s inequality as in Theorem B.1 (Shamir,
2011) to evaluate the dependence between the number of
observations and the number of time steps.

Lemma 5.5. Forany k,t, EX},, < v} = min{k?,2/w’ }.
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Lemma 5.6. For any k,t,6 > 0, set

= {ZX’W < nug — 1/2nvk log <(15> },
t=1

then Pr(E*) < 6. Further when E* holds, for any T > 0,
Sty Xt <T implies that n<2T [ +2log(1/8)vi /2.

Lemma 5.6 implies that with high probability, we can lower
bound the amount of observations on the surviving items
over the whole horizon. Subsequently, with probability at
least 1 — ¢, the agent would have received sufficiently many
observations on the surviving items to return an e-optimal
arm after at most (c1 N1 + caNa + ¢3N3) time steps (see
Theorem 4.1). The lemma also indicates that a smaller
LSG/SG parameter of X}, leads to a smaller upper bound
on the number of time steps. Since we can show X} is
v-LSG but cannot show it is v,-SG (a detailed discussion
is deferred to Appendix D.9), it is beneficial to consider
the class of LSG distributions for our problem. The class
of LSG r.v.’s and the general estimate of the LSG parame-
ter, which is crucial for the utilization of the concentration
inequality, may be of independent interest.

5.2. Proof Sketch of Theorem 4.1

Concentration. As the algorithm proceeds, the agent
moves items from D; to A; or R; according to the con-
fidence bounds of all surviving items in D;. This motivates
us to define a “nice event”

E(1,0) :={Vt > 1, Ls(4,6) < (i) < Up(4,9)}.
To show that ﬂle £(1, ) holds with high probability, we
utilize Theorem B.2 (Jamieson et al., 2014; Jun et al., 2016)
and the SG property of W;(4) (the r.v. that reflects whether
item ¢ is clicked at time step t).

Lemma 5.7. Foranyd€[0,1], P((2, £(5,0)) > 1-4§/2.

Sufficient observations. Next, we assume (._, £(i,0)
holds and find the number of observations that guarantees
the correct identification of an item. To facilitate the analy-
sis of the expected time complexity (Proposition 4.4, 4.7),
we assume ﬂle E(i,¢") holds for a fixed &' € (0,4] in
Lemma 5.8, which generalizes Jun et al. (2016, Lemma 2).
Lemma 5.8. Fix any 0< ¢’ <4, assume ﬂiL:l E(i,8") holds.
Set T} := min;ep, T1(4), then for any time step t,
Vi<K',T'(t)>T;5 = Li(i,0) > U (5% 0)—€ = i € Ay,
Vi>K' T'(t)>T; 5 = Ui, ) < L(j,6) —e = i € Ry.

Lemmas 5.7 and 5.8 imply that with sufficiently many ob-
servations, the agent can correctly identify items with prob-
ability at least 1—4§/2.

Time complexity. Subsequently, we observe that our algo-
rithm stops before identifying all items.

Lemma 5.9. Assume ﬂiLzl E(1,0) holds. Algorithm 1 stops
after identifying at most L — max{K' — K, 1} items.

Lemma 5.9 indicates that it suffices to count the number of
time steps needed to identify at most L — K’ + K items.

We consider the worst case in which the agent identifies
items in descending order of the A;’s. We divide the whole
horizon into several phrases according to | D;|, the number
of surviving items. During each phrase, we upper bound
the required number of observations with Lemma 5.8; then
Lemma 5.6 helps to upper bound the required number of
time steps with high probability. Lastly, we bound the total
error probability by /2 and utilize the Lagrange multipliers
to solve the following problem:

2K—K'’ 902 2K—K'’
max Z #logék s.t Z o < 4/2.
0k:1<k<2K—-K 1 uK—k+1 1

Altogether, we upper bound the time complexity.

5.3. Proof Sketch of Theorem 4.8

Construct instances. To begin, we fix o > 0 and define a
class of L + 1 instances, indexed by £ = 0, 1,.. ., L:

e under instance 0, we have {w(1), w(2), ..., w(L)}
e under instance ¢, we have {w(1), w(2),. ,w(€ 1),
w®(0), wl +1),...,w(L)};

where we define wéz
1<i<K: w9() <wK+1),
KL(w(d), w(K + 1)) < KL(w(i), w™ (7)),
KL(w(i), w? (i) < KL(w(i), w(K + 1)) + «
K <j<L:w9(j)>wkK),
KL(w(j), w(K)) < KL(w(j), v (5)),
KL(w(j), w9 (j)) < KL(w(j), w(K)) + a.

In particular, S* € [K]%) is optimal under instance 0,
while suboptimal under instance 1 < ¢ < L. Bearing
the risk of overloading the notations, under instance ¢, we
denote S*¢ as an optimal arm, St7r * as the arm chosen
by algorithm 7 at step ¢ and O} * as the corresponding
stochastic outcome (see its definition in Section 2).

’s so that they satisfy

S*(1<i<K) |4 i—1| i |i+1| ... |EK-1| K |K41| ... | d

S*i(k<i<r) |4 i-1| ¢ |i+1 K-1K |K+1| . |
Figure 5.1: Optimal set S** in instance ¢ (shaded in green)
KL divergence. We first apply chain rule to decompose
KL( {87, 07} 1, {7,071, ).

Lemma 5.10 (Cheung et al. (2018, Lemma 6.4)). For any
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1</<L,
w0 7,0 ml AL
KL( {St 7Ot }Z-:h {St 7Ot }tT:I )
-
= E z PI‘[SZT’O — St]KL(PO”'OLS‘"’”(' | St)HPquS"-Z(' ‘ St)).
=1 5,€[L]0) t t t t

Next, we lower bound E[T7(¢)] with the KL divergence by
applying a result from Kaufmann et al. (2016).

Lemma 5.11. Forany1 < (<L,

KL( {StTr,()? OZT’O}tT:l? {SZT)Z7 O:’Z}Z—ﬂ )

= E[Tr(0)] - KL(w(£), w (£)) > sup KL(Po(E), Py(€)).
EeT

Define the event £ := {S™ € [K]K)} € Fr. We estab-
lish that, for any (9, K')-PAC algorithm, Py(€) > 1 -6
and Py(£) < 6 (V1 < ¢ < L). Lastly, by revisiting the
definition of X}, in Section 4.1, we see that jix also upper
bounds the expected number of observations of items at
one step for any (9, K')-PAC algorithm (Lemma 5.2). This
allows us to lower bound T*.

6. Experiments

We evaluate the performance of CASCADEBAI(e, d, K') and
some related algorithms. For each choice of algorithm and
instance, we run 20 independent trials. The standard devia-
tions of the time complexities of our algorithm are negligible
compared to the averages, and therefore are omitted from
the plots. More details are provided in Appendix E.

6.1. Order of Pulled Items

-CagcadeBAI(e,d,K) tIAsc 1 (2) -Asc Uy(i,6) ElAsc it(i,é)
B Dec u(i)

Il Dec Uy(4,8) E@Dec Ly(i,d)

J
(=}
<1

= =
S o
T >

Averaged time complexity
2

(0.45,0.05)

(0.95,0.85)

(0.95,0.25)

Figure 6.1: Average time complexity incurred by different
sorting order of S;: ascending order of T;(t) (Algorithm 1),
ascending/descending order of /i, (¢) /Uy (2)/ Ly (7) with L =
64, K = 16,9 = 0.1 and € = 0 in the cascading bandits.

As shown in Lines 5-9 of Algorithm 1,
CASCADEBAI(¢, 6, K) sorts items in S; based on
ascending order of T;_1(i)’s. This order is crucial for
proving our theoretical results. To learn the impact of
ordering on the time complexity, we evaluate the empirical
performance of sorting S; in descending or ascending
order of 1y (i)’s, U(i,0)’s or L:(i,6)’s. We compare

these methods under various problem settings and set
the maximum time step as 107. Figure 6.1 shows that
CASCADEBAI(e, §, K) empirically performs as well as the
best among the other heuristics, but CASCADEBAI(e, 6, K)
is the only one with a theoretical guarantee.

6.2. Comparison to Semi-feedback Setting

We compare CASCADEBAI(0, §, K), BATRAC(K) and
BATRAC(1) (Jun et al., 2016) empirically. In Figure 6.2,
if w*, w’ are sufficiently small as the parameters shown in
subfigure (a), CASCADEBAI(0, 4, K') performs similarly
to BATRAC(K); if w*, w' are large as in subfigure (b), it
behaves similarly to BATRAC(1). This corroborates the
implications of Corollary 4.3.

10 =100

g PP £ =

e e 2

Z107 -7 — -BatRac(1) 5107

b —CascadeBAI(c,6,K)| o

g —--BatRac(K) g

3 b

15

g 2

g g

2 2

< 10° < 10°

20 30 40 50 60 20 30 40 50 60
K K
x_ 1,1 1 * 1 ’ 1

Figure 6.2: Average time complexity of

CASCADEBAI(¢, 6, K), BATRAC(1), BATRAC(K)
with L =128, =0.1,e =0, K = 20,...,60.

6.3. Further Empirical Evidence

Our analysis of the cascading feedback involves vy, g in
the upper bound of the time complexity; these parameters
depend strongly on w*, w’ and K (Lemma 5.2, 5.5). Hence,
to assess the tightness of our analyses, we consider sev-
eral simplified cases by choosing w*, w’ as functions of K
and examine whether the dependence of the resultant time
complexity (Proposition 4.6) on K is materialized through
numerical experiments.

Table 6.1: Upper bounds on the time complexity of Al-
gorithm 1 with L = 128, K = 20,...,60, § = 0.1,
€ = 0 (Proposition 4.6), and their fitting results.

w* w' Upper bound ~ Fit. model ~ R2-stat.
1/K 1/K? O(K) aK4c 0999
1-1/K?* 1-1/K O(K?) aK?+cy  0.999
1/VK 1/K O(K) aK e 0973
1-1/K 1-1/VK O(K) eK4c¢  1.000
1-1/K 1/K O(K?) aK?+cy  0.992

We fit a model to the averaged time complexity under each
setting as stated in Table 6.1. In each case, the R2-statistic is
almost 1, implying that the variability of the time complex-
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ity is almost fully explained by the proposed polynomial
model (Glantz et al., 1990). Therefore, the empirical results
show that the dependence of the upper bound on K (Propo-
sition 4.6) is rather tight, which implies that using the new
concept of LSG r.v.’s, our quantifications of the cascading
feedback are also rather tight.

X
I
o
X
o
=)

o
R
*

E10 5

Averaged time complexity
)
?
L
Averaged time complexity
o IS
)
A
LY
[N

o
S
=
S
)
S

30 40 50 30 40 50 60
K

1 /

(@) w'=+,w'= b w=1-X w=1-3%

1 1
K2 K2 K

Figure 6.3: Fit the averaged time complexity with functions
of K for two cases. Fix L = 128, § = 0.1, ¢ = 0. Blue dots
are the averaged time complexity, red line is the fitted curve,

and cyan dashed lines show the 95% confidence interval.

7. Summary and Future Work

This work presents the first theoretical analysis of best arm
identification problem with partial feedback. We also show
that the upper bound for the CASCADEBAI(¢, 4, K) algo-
rithm closely matches the lower bound in some cases. Em-
pirical experiments further support the theoretical analysis.
Moreover, the relation between the second moment and
the LSG property of a bounded random variable may be of
independent mathematical interest.

The assumption of w* < 1/K (ensuring tightness of the
sample complexity in Corollary 4.10) is relevant in practical
applications since CTRs are low in real applications. For
most applications (e.g. online advertising), K is small (= 5-
10), so our assumption is reasonable. We are cautiously
optimistic that, the framework could be enhanced for better
bounds in the remaining less practically relevant regime,
which is an avenue for future work.

The following are some more avenues for further investi-
gations. First, we note that estimating the number of ob-
servations per time step is key to establishing a high prob-
ability bound on the total number of time steps. In this
work, we bound the expectation of this term with w* and
w’ (Lemma 5.2). This bound is tight in some cases (cf.
Corollary 4.10). These include the difficult case where all
click probabilities w(4)’s are close to one another and hence
the gaps are small. Nevertheless, a tighter bound for each
individual time step may improve the results; this, however,
will require a more elaborate and delicate analysis of the
stochastic outcomes and their impacts at each time step.
This is especially so since the order of selected items also

affects the number of observations in the cascading bandit
setting. Secondly, this work focuses on the fixed-confidence
setting of the BAI problem. We see that the consideration
of the fixed-budget setting for cascading bandits is still not
available. It is envisioned that the analysis of the statistical
dependence between the number of observations and time
steps would be non-trivial. Thirdly, we envision that the
analysis may be generalized to the contextual setting (Soare
et al., 2014; Tao et al., 2018; Degenne et al., 2020).
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