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Abstract

We are interested in learning algorithms that opti-
mize revenue in repeated contextual posted-price
auctions where a single seller faces a single strate-
gic buyer. In our setting, the buyer maximizes
his expected cumulative discounted surplus, and
his valuation of a good is assumed to be a fixed
function of a d-dimensional context (feature) vec-
tor. We introduce a novel deterministic learning
algorithm that is based on ideas of the Bisection
method and has strategic regret upper bound of
O(log2 T ). Unlike previous works, our algorithm
does not require any assumption on the distribu-
tion of context information, and the regret guar-
antee holds for any realization of feature vectors
(adversarial upper bound). To construct our al-
gorithm we non-trivially adopted techniques of
integral geometry to act against buyer strategic-
ness and improved the penalization trick to work
in contextual auctions.

1. Introduction
Revenue maximization is a permanent development goal in
large Internet companies such as Real-time ad exchanges
(RTB) and web search engines (Aggarwal et al., 2006; Va-
nunts & Drutsa, 2019). Ad inventory is usually sold by
means of second-price auctions (He et al., 2013; Golrezaei
et al., 2019; Drutsa, 2020a) and their variations for multiple
ads per a web page, e.g., GSP (Varian, 2007) or VCG (Var-
ian, 2009). Reserve prices are mainly used to extract opti-
mal revenue in these online auction (Myerson, 1981; Cesa-
Bianchi et al., 2013). In the case of a single advertiser (a
frequent scenario in ad auctions (Amin et al., 2013; Mohri &
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Munoz, 2014; Drutsa, 2018)), a second-price auction with
reserve prices reduces to a posted-price auction. In this
mechanism, the auctioneer (the seller) sets a reserve price
for an advertisement space (a good) and the advertiser (the
buyer) decides whether to reject or accept this price: to bid
below or above it (Kleinberg & Leighton, 2003).

In this work, we focus on a scenario when a single seller
repeatedly interacts through posted-price auctions with the
same strategic buyer (Amin et al., 2013; 2014). In each
round, the currently offered good is described by a context
information (feature vector), which is observed by both the
buyer and the seller. The buyer holds a private (valuation)
function to calculate his valuation of a good from its fea-
ture vector. For instance, this scenario models well an Ad
exchange that sequentially offers different ad spaces to the
same advertiser, who values differently visit of different
users on different web sites. This dependence of the buyer’s
valuation on context is fixed and is unknown to the seller.
We assume that the valuation function is from a certain para-
metric class and, for sake of exposition, this is the class of
linear1 models, following (Amin et al., 2014; Cohen et al.,
2016; Leme & Schneider, 2018; Golrezaei et al., 2019).

The seller uses an online learning algorithm to set prices
in each round based on previous decisions of the buyer and
the observed context information of offered goods. This
pricing algorithm is announced to the buyer in advance,
and the strategic buyer seeks to maximize his expected
cumulative discounted surplus (Amin et al., 2013; Drutsa,
2017b) with respect to some private distributionD of feature
vectors (Amin et al., 2014; Golrezaei et al., 2019; Drutsa,
2020b). The seller is aimed to maximize her cumulative
revenue over a finite time horizon T via regret minimization,
i.e., she seeks for a pricing algorithm with a sublinear regret
on T (a no-regret pricing) (Amin et al., 2013; 2014; Mohri
& Munoz, 2014; Drutsa, 2018).

For this scenario, Amin et al. (2014) proposed the algo-
rithm LEAP, which is based on Gradient Descent and
has upper bound on expected strategic regret of the form
O(T 2/3

√
log T ). Golrezaei et al. (2019) recently improved

1However, the results of our study hold for a variety of non-
linear parametric functions (e.g., kernel models), see Sec. 7.
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this upper bound to O(log2 T ) by introducing the algo-
rithm CORP, which is based on techniques similar to EM-
algorithm and requires some assumptions on regularity
of the distribution D of feature vectors. Moreover, both
LEAP’s and CORP’s upper bounds were provided for ex-
pected regret with respect to the distribution D.

In our study, we propose a novel pricing algorithm that ex-
ploits ideas of Bisection method (Binary search) and its ex-
tensions (Kleinberg & Leighton, 2003; Drutsa, 2017b; Leme
& Schneider, 2018). This algorithm can be applied against
the strategic buyer with regret upper bound of O(log2 T )
(see Theorem 1), which is currently known as the best
asymptotic guarantee with respect to T , but, in contrast
to the CORP algorithm, does not require any assumption
on the buyer’s distribution D. Moreover, our regret upper
bound holds for any realization of feature vectors (worst-
case guarantee with respect to context information) what
is a stronger guarantee than the ones for expected regret
in (Amin et al., 2014; Golrezaei et al., 2019). This result
constitutes the main contribution of our work.

To construct our algorithm, we non-trivially upgrade
the approaches from the fixed valuation (non-contextual)
setup (Drutsa, 2017b) as follows: we inject penalizations
not only after rejection of a price, but after an acceptance as
well; dynamically increase the penalization rate; and intro-
duce novel bounds on the buyer’s contextual valuation (see
Proposition 1 and 2). We also introduce novel techniques
that are based on homothetic transformations and are vital
to restrict lying ability of the buyer (see Lemmas 2 and 3).
These methods are contributed by our work as well.

2. Setup of Repeated Contextual Auctions
We study the setting of repeated contextual posted-price
auctions which is similar to the one described by Amin et al.
(2014). Namely, a single seller repeatedly proposes goods
(e.g., ad opportunities) to a single buyer over T rounds (the
time horizon): one good per round. The good proposed
in a round t is represented by a unit d-dimensional feature
vector xt∈X :={x∈Rd :‖x‖=1}2 also referred to as the
context of the round t, d ∈ N. The buyer holds a private
parameter vector θ∗∈ [0, 1]d used in the valuation function
fθ∗:X→R+ to determine valuation of a good based on its
context, where fθ∗(x) = 〈x, θ∗〉=

∑d
i=1 xiθ

∗
i ∀x∈X. The

valuation parameter is fixed over all rounds and is unknown
to the seller. So, in each round t: both the seller and the
buyer observe context information xt∈X; the seller offers
a price pt∈R+; and the buyer takes an allocation decision
at ∈ {0, 1}: at = 1, when he accepts to buy the currently
offered good at price pt, and at=0, when he rejects it.

2From here on `2-norm is used: ‖x‖ :=
√∑d

i=1 x
2
i for x∈Rd.

We consider the deterministic online learning scenario when
the price pt in a round t ∈ {1, . . . , T} can depend only
on the buyer’s actions a1:t−13 during the previous rounds
and the observed context information x1:t up to the current
round. The rule on how the prices p1:T are set in response
to the buyer’s decisions a1:T and observed features x1:T are
referred to as a pricing algorithm.

Following, (Kleinberg & Leighton, 2003; Amin et al.,
2013; 2014; Mohri & Munoz, 2014; Drutsa, 2017b; 2018),
for a given play of the repeated game, the realized cu-
mulative revenue

∑T
t=1 atpt of the seller is compared to

the revenue that would have been earned by offering the
buyer’s valuations {vt := 〈xt, θ∗〉}Tt=1 if they were known
in advance to the seller. This is made via the regret
Reg(T,A, θ∗, a1:T , x1:T ) :=

∑T
t=1(vt−atpt), whereA is a

used algorithm, θ∗∈ [0, 1]d is a valuation parameter of the
buyer that has made decisions a1:T for goods x1:T .

We also assume that the seller’s algorithm A is announced
to the buyer in advance4 (Amin et al., 2013; 2014; Mohri
& Munoz, 2014; Drutsa, 2017b; Golrezaei et al., 2019).
Hence, in each round t, our buyer acts strategically against
this algorithm: given his belief about the distribution of
feature vectors in future rounds, the buyer makes the optimal
allocation decision5 at=aOpt

t (T,A, θ∗, γ, a1:t−1, x1:t, D),
that maximizes his expected future γ-discounted surplus
Ex1:T∼D[

∑T
s=t γ

s−1as(vs−ps) | x1, .., xt], γ∈ [0, 1] is the
buyer’s discount rate andD is a probability distribution over
the feature domain XT for goods x1:T (Amin et al., 2014).

Given T played rounds with realized feature vectors x1:T ,
the strategic regret of the algorithm A that faced the strate-
gic buyer with the valuation parameter θ∗∈ [0, 1]d over T
rounds is defined as

SReg(T,A, θ∗, γ, x1:T , D) :=

= Reg
(
T,A, θ∗, aOpt

1:T (T,A, θ∗, γ, x1:T , D), x1:T
)
.

We are interested in pricing algorithms that have o(T ) strate-
gic regret for the worst-case valuation parameter θ∗ ∈
[0, 1]d, the worst-case probability distribution D over the
feature domain, and the worst-case realization of feature
vectors x1:T ∈XT . Formally, an algorithm A is said to be
no-regret when

sup
x1:T∈XT ,θ∗∈[0,1]d,D

SReg(T,A, θ∗, γ, x1:T , D) = o(T ).

Note that SReg is a function of both a distribution D and
context vectors x1:T . The distribution dependency arises

3We use yt1:t2 := {yt}t2t=t1 as a part of a time series {yt}Tt=1.
4The seller is interested in commitment on algorithms, because

non-commitment scenarios results in quite low revenue (Devanur
et al., 2015; Vanunts & Drutsa, 2019; Golrezaei et al., 2019).

5Formally, the buyer applies an optimal strategy, where a strat-
egy starting at a round t is a map of each possible observation of
p1:T and goods x1:T to a sequence of allocation decisions at:T .
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when the buyer maximizes his surplus and the context vec-
tors dependency appear through the definition of the buyer’s
regret. We discuss this dependency in more details at Ap-
pendix C. Also we emphasize that an algorithm minimizing
worst-case regret have to be deterministic (it only depends
on the buyer’s decisions and sequence of context vectors)
and his regret does not depend on any randomness (it is not
true for (Amin et al., 2014; Golrezaei et al., 2019) setup).

So, the optimization goal is to find an algorithm with the best
possible asymptotic of the form O(f(T )), where T →∞.

3. Related Work and Background
Related work. There are two lines of works that are the
most relevant to ours. The first one dealt with contextual
pricing in repeated auctions (or multi-dimensional search in
an online manner). The works (Cohen et al., 2016; Leme
& Schneider, 2018; Mao et al., 2018; Javanmard & Naz-
erzadeh, 2019; Javanmard et al., 2019) assumed that the
buyer’s behavior is myopic (truthful) in a round, while our
study considers the seller’s interactions with a strategic
buyer that optimizes his cumulative future surplus. The
algorithms of (Cohen et al., 2016; Leme & Schneider, 2018;
Javanmard & Nazerzadeh, 2019; Javanmard et al., 2019)
search a valuation function as a parametric model, just as
in our case. The second line of works studied our strategic
setup with fixed private valuation, but in the non-contextual
case (all goods are equal, d = 1): (Amin et al., 2013; Mohri
& Munoz, 2014; Drutsa, 2017b; 2018; Schmidt, 1993; Hart
& Tirole, 1988; Devanur et al., 2015; Immorlica et al., 2017;
Vanunts & Drutsa, 2019; Drutsa, 2020a). The studies (Amin
et al., 2014; Golrezaei et al., 2019; Drutsa, 2020b) lie at the
intersection of both lines of works: their authors considered
contextual repeated auctions where the seller interacts with
the same strategic buyer. The algorithms of Amin et al.
(2014) and Golrezaei et al. (2019) also explicitly assume
that the valuation function is a particular parametric model,
while the algorithm of Drutsa (2020b) learns the valuation
function in a non-parametric way.

First, note that, in the setups considered by Amin
et al. (2014); Golrezaei et al. (2019), expected regret
supθ∗∈[0,1]d,D Ex1:T∼DSReg(T,A, θ, γ, x1:T , D) is mini-
mized. This statement of the problem is not equivalent
to ours. Recall that SReg is a function of both a distribu-
tion D (the buyer maximizes his surplus with the fixed
distribution D) and context vectors x1:T . Then, in the
case of expected regret, fixing the distribution, we com-
pute Ex1:T∼DSReg(T,A, θ, γ, x1:T , D) and lose an ability
to variate vectors x1:T . It is easy to see that an upper bound
for our worst-case regret implies the same upper bound
for expected regret (i.e., our regret guarantee is stronger).
Second, in the algorithm CORP (Golrezaei et al., 2019),
it is assumed that context vectors x1:T ∼ D are indepen-

dent and the probability distribution D is non-degenerate
(i.e., the second moment matrix of the distribution D is
positive definite). Our algorithm does not require these as-
sumptions. Third, our algorithm is deterministic, while the
ones from (Amin et al., 2014; Golrezaei et al., 2019) are
not. Fourth, the non-parametric approach of Drutsa (2020b)
can be applied to our scenario as well, but it will result
in O(T d/(d+1)) regret. In contrast, our algorithm provides
better regret asymptotic: O(log2 T ), see Theorem 1.

Background on bisection-based pricing algorithms. Our
scenario with d = 1 reduces to the setup of repeated non-
contextual posted-price auctions earlier introduced in (Amin
et al., 2013). In this case, pricing algorithms for worst-case
regret minimization were well studied (Amin et al., 2013;
Mohri & Munoz, 2014; Drutsa, 2017b; 2018). First, if the
buyer cumulative utility is not discounted over rounds (i.e.,
the discount rate γ = 1), then the strategic regret is linear:
its lower bound is Ω(T ) (Amin et al., 2013). Since, in our
setup, the features are chosen adversarially, this lower bound
holds in the studied repeated contextual auctions as well. For
other discounts γ ∈ [0, 1), the lower bound of Ω(log log T )
holds (Kleinberg & Leighton, 2003; Mohri & Munoz, 2014),
and two optimal algorithms with tight strategic regret bound
of Θ(log log T ) have been recently introduced for the non-
contextual setup (Drutsa, 2017b; 2018). Their construction
strongly relied on the technique of penalization (Mohri &
Munoz, 2014; Drutsa, 2017b).

The recent work (Leme & Schneider, 2018) studied a setup
of repeated contextual auctions with a buyer that holds a
fixed linear valuation. But, their scenario considered the
buyer that made decisions myopically (truthfully) in each
round, what is only the special case of our setup with γ=0.
An optimal algorithm with tight truthful regret bound of
Θ(log log T ) were proposed in that work. It is based on a
generalization of the non-contextual technique of reducing
the size of a feasible search interval (Kleinberg & Leighton,
2003; Drutsa, 2017b) via the intrinsic volumes of the knowl-
edge (search) set for the multidimensional parameter θ. Our
algorithm also use this generalized search approach, but, in
order to make it workable against the strategic buyer6, we
introduce novel multidimensional localization tools (other-
wise, he may mislead the algorithm). There is a trade-off
between the restriction of the buyer’s lying ability and the
increasing of the seller’s regret. As a payment of this bal-
ance we incur regret upper bound of O(log2 T ), which is
the best guarantee currently known for the contextual setup.

6Algorithms designed to act against a myopic buyer cannot be
straightforwardly used against a strategic one: it was shown for the
non-contextual setup (Drutsa, 2017b) and we discuss it in Sec. 5.
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Figure 1. An illustration of notations for a knowledge set St: xt
is a current feature vector; 〈xt, θ〉 = p

t
, 〈xt, θ〉 = pt are the

lowest and highest hyperplanes orthogonal to xt and intersecting
St; width(St, xt) is the width of St in the direction xt.

4. Auxiliary definitions and statements
The algorithms we consider keep track of a feasible knowl-
edge set aimed to locate the buyer’s valuation parameter
θ∗. This knowledge set is initialized by [0, 1]d at the first
round. Following (Cohen et al., 2016; Leme & Schnei-
der, 2018), in each round t with context xt, our algorithms
update the current knowledge set by intersecting it with
one of the halfspaces {〈xt, θ〉 ≥ p} or {〈xt, θ〉 ≤ p}
for some parameter p ∈ R+. Namely, let St denote
the current knowledge set, then the set St+1 in the next
round will remain the same or will be updated taking the
form of either S−t (p, xt) := {θ ∈ St : 〈xt, θ〉 ≤ p} or
S+
t (p, xt) := {θ∈St : 〈xt, θ〉 ≥ p} depending on buyer al-

location decision at. It is easy to see that St+1 ⊆ St, and St
is convex for any t (since S1 is initially convex and further
updates are intersections of convex sets).

Now we introduce several notations connected with geo-
metric characteristic of a knowledge set. Given a con-
text xt in a round t, we set p

t
:= minθ∈St

〈xt, θ〉, and
pt := maxθ∈St〈xt, θ〉. For a set S ⊆ [0, 1]d, we define
its diameter as diam(S) := maxθ1,θ2∈S ‖θ1 − θ2‖ and its
width in a direction x as width(S, x) := maxθ∈S〈x, θ〉 −
minθ∈S〈x, θ〉, where x ∈ X is a unit vector (for our ap-
proach, we have width(St, xt)=pt−pt). See Fig. 1 for an
illustration of introduced notations.

Now we introduce a class of algorithms, for which we will
provide Proposition 1 and 2 that are our localization tech-
niques for θ∗ and are vital to limit strategic behavior of the
buyer.

Definition 1. A pricing algorithm is said to be evaluating
if it keeps track of feasible sets S1:T s.t. St+1 ⊆ St for all
rounds t, and it sets a price pt s.t. pt ≥ pt in each round t.

Finally, we present the notion of an intrinsic volume (Klein-
berg, 1997) and introduce its most important properties for
our algorithm. Let Convd be the class of compact con-
vex sets in Rd. For a compact convex set K ∈ Convd,

its j-th intrinsic volume is the coefficient Vj(K), j =
0, ..., d, in the Steiner’s formula for the (classical) vol-
ume of the (Minkowski) sum K + εB: Vol(K + εB) =∑d
j=0 kd−jVj(K)εd−j ,where B is a unit ball, ε > 0, and

kd−j is the volume of the (d−j)-dimensional unit ball. The
intrinsic volumes also can be interpreted as the expected
volume of projection of the set K onto a random subspace
of corresponding dimension (Leme & Schneider, 2018, The-
orem 12). Note that V0(K) = 1 and Vd(K) equals to the
classical volume of K, denoted by Vol(K); while Vd−1 is
an analogue of the perimeter ofK for d = 2 and an analogue
of the surface area K for d = 3. Intrinsic volumes have im-
portant properties (Leme & Schneider, 2018) similar to the
ones of their analogues in the 2- and 3-dimensional cases.
Namely, for any j, the map Vj is: (a) additive, i.e., Vj(S1 ∪
S2) = Vj(S1)+Vj(S2) ∀S1, S2 ∈ Convd s.t. S1∩S2 = ∅;
(b) monotone, i.e., Vj(S1) ≤ Vj(S2) ∀S1, S2 ∈ Convd s.t.
S1 ⊆ S2; and (c) j-homogenous, i.e., Vj(αS) = αjVj(S)
∀α ∈ R+ ∀S ∈ Convd. The isoperimetric inequality holds:
(i!Vi(S))1/i ≥ ((i+1)!Vi+1(S))1/(1+i) ∀S∈Convd∀i≥1;

5. Localization of the buyer valuation
Drutsa (2017b, Theorem 4) showed that the strategic buyer
may mislead algorithms that are designed to act effectively
against myopic (truthful) buyers in non-contextual repeated
auctions (d = 0 in our setup). Namely, if an algorithm uses
a rejection of a currently offered price p as a signal that
the buyer valuation is less than p (left consistency (Drutsa,
2017b)), then the strategic buyer can exploit this property
to get surplus at least some ε > 0 in each future round,
what cause a linear strategic regret for the seller. Since the
features are chosen adversarially in our contextual setting,
the algorithms of (Cohen et al., 2016; Leme & Schneider,
2018) designed for a myopic (truthful) buyer7 and used by
the seller may have a linear regret against the strategic buyer.
In order to reveal information on the buyer valuation from
his binary decision at in a round t, the special trick (Drutsa,
2017b, Proposition 2) of penalization rounds is used in the
non-contextual setting. We significantly expand this notion
for our contextual case by using penalization not only in the
case of rejection but also in the acceptance case:

Definition 2. For a pricing algorithm A, a round τ is a
penalization one, if its price pτ = d+ 1 and, in the case of
acceptance of this price, this algorithm will offer only the
price ps = d + 1 in all future rounds s. A round t is said
to be the start of r-length penalization, if any next round s
such that t < s < t+ r is a penalization one.

Unlike previous works (Drutsa, 2017b; Mohri & Munoz,
2014) we conduct penalization after any buyer decision.

7These algorithms use the logic of left consistency: if a price
pt is rejected for a context xt, then 〈xt, θ∗〉 ≤ pt.
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Note that the strategic buyer will never accept the price in
a penalization round since, otherwise, the price of any of
future goods will be d+ 1, which exceeds his valuation. To
get an upper bound on the buyer’s valuation for a good xt
we prove contextual analogue of (Drutsa, 2017b, Prop. 2).

Proposition 1. Let γ ∈ [0, 1), A be an evaluating pricing
algorithm (see Def. 1) and a round t be the start of r-length
penalization. Then, if the price pt is rejected by the strategic
buyer with a linear valuation function 〈x, θ∗〉 and θ∗ ∈ St,
then the following inequality on his current valuation holds:

vt := 〈xt, θ∗〉 ≤ pt +
γr

1− γ
diam(St). (1)

Proof. Let σOpt be the optimal strategy of the buyer with
a start in the round t. Let σ′ be the strategy, where the
buyer accepts the good in the round t and rejects each future
good. So, let Sur(σ) denote the buyer’s expected future
surplus (see Sec. 2) when he follows a strategy σ. Since
σOpt is optimal, this implies that Sur(σ′) ≤ Sur(σOpt).
By the definition, Sur(σ′) = γt−1(〈xt, θ∗〉 − pt), while
the right-hand side of the previous inequality can be upper
bounded:

Sur(σOpt) = E[

T∑
s=t

γs−1as(vs − ps) | xt, σOpt] ≤

≤
T∑

s=t+r

γs−1diam(St) ≤
γt+r−1

1− γ
diam(St),

where we use that the rounds t + 1, . . . , t + r − 1 will
be penalization ones (the buyer will certainly reject them).
Also we use the facts θ∗ ∈ St, Sk ⊆ St, and pk ≥ p

k
for

k ≥ t since our algorithm is evaluating. So, we get the
following inequalities:

vs−ps≤width(St, xs)≤diam(St), s= t+ r, . . . , T.

Combining all inequalities, we get (vt − pt)γ
t−1 ≤

γt+r−1diam(St)/(1−γ), what implies Eq. 1 after dividing
by γt−1.

In the absence of context information for goods (d = 1),
the previous bound was enough to restrict the buyer’s lying
ability (Drutsa, 2017b), since the knowledge set is unidi-
mensional. In the multidimensional case, the situation is
completely different, we cannot be sure in the implication:
if a price pt is accepted for a context, then 〈xt, θ∗〉 ≥ pt, so
we need to obtain a lower bound on the valuation.

Proposition 2. Let γ ∈ [0, 1), A be an evaluating pricing
algorithm (see Def. 1) and a round t be the start of a r-length
penalization. Then, if the price pt is accepted by strategic
buyer with a linear valuation function 〈x, θ∗〉 and θ∗ ∈ St,

then the following inequality on his current valuation holds:

vt := 〈xt, θ∗〉 ≥ pt −
γr

1− γ
diam(St). (2)

Proof. The proof of this proposition follows the logic of the
previous one. Here we also consider the optimal strategy
of the buyer σOpt starting on the round t. Since σOpt is
optimal, we have 0 ≤ Sur(σOpt), because we can consider
the strategy where the buyer always reject the proposed
price. We upper bound Sur(σOpt) as follows:

Sur(σOpt) = E[

T∑
s=t

γs−1as(vs − ps) | xt, σOpt] ≤

≤ γt−1(vt − pt) +
γt+r−1

1− γ
diam(St),

where we use that the rounds t + 1, . . . , t + r − 1 will
be penalization ones (the buyer will certainly reject them)
and the buyer accepts the price pt at the round t. Also we
use the facts that θ∗ ∈ St and knowledge sets Sk ⊆ St
and pk ≥ pk for k ≥ t since our algorithm is evaluating:
vs−ps ≤ width(St, xs) ≤ diam(St) for s = t+ r, ..., T .
Combining inequalities for Sur(σOpt), one can see 0 ≤
γt−1(vt − pt) + γt+r−1diam(St)/(1− γ), what implies
Eq. 2 after dividing by γt−1.

6. Algorithm
In Algorithm 1 we present the pseudo-code of our algorithm.
At first we note that our algorithm consists of two parts:
the learning and exploiting phases. The exploiting phase
occurs when width(St, xt)/2 < 1/T . The main idea of
this phase as follows: after reducing of the knowledge set
and well approximating of the valuation parameter θ∗, we
propose the price pt that will be definitely accepted by the
buyer. Let us consider the learning phase (it occurs when
width(St, xt)/2 ≥ 1/T ). Constants c0 through cd−1 are
defined so that ci = 1/(2i+1i!), i = 0, ..., d− 1.

Following the isoperimetric inequality we keep track of
the following “potentials” (they vary with t but we omit
the subscript for notational convenience): ϕi =ϕi(St) :=
(i!Vi(St))

1/i. Since S1 = [0, 1]d, their initial values are
given by ϕi(S1) = (i!

(
d
i

)
)1/i<di< d2. Since those quan-

tities are monotone non-increasing (w.r.t. t), they are al-
ways in the interval [0, d2). As in the bucketing proce-
dure (Kleinberg & Leighton, 2003), we divide this interval
into ranges of exponential decreasing length. The ranges
will be (lk+1, lk], where lk=d2(1 + 1/d)−k, k ∈ Z+. For
each potential ϕi, we keep track of the index k(i) of the
interval that contains the potential, i.e., ϕi ∈ (lk(i)+1, lk(i)].
By the isoperimetric inequality we know that: ϕ1 ≥ ϕ2 ≥
. . . ≥ ϕd thus k(1) ≤ k(2) ≤ . . . ≤ k(d). So, each step
of the learning phase of our algorithm corresponds to a
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Algorithm 1 Pseudo-code of the algorithm

1: C = logγ(
(

8(1+1/d)d

8(1+1/d)d−1

)1/d
− 1) + logγ(1− (3/4)1/d)

2: t = 1; S1 = [0, 1]d

3: while t ≤ T do
4: the seller receives a unit context vector xt ∈ Rd
5: w := width(St, xt)/2
6: if w < 1/T then
7: offer price pt := p

t
8: St+1 := St; t := t+ 1
9: else

10: for all i ∈ {1, . . . , d} do
11: ϕi := (i!Vi(St))

1/i

12: find k(i) s.t. ϕi ∈ (lk(i)+1, lk(i)]

13: if Vi(St)− Vi(S+
t (pt, xt)) > lik(i)+1/(4i!) then

14: find pi s.t. Vi(St) − Vi(S
+
t (pi, xt)) =

lik(i)+1/(4i!)
15: else
16: pi := pt
17: end if
18: Ki := {θ ∈ St : 〈xt, θ〉 = pi}
19: Li := (Vi(Ki)/ci)

1/i (define L0 :=∞)
20: M(i) := max{j : k(i) = k(j)}
21: end for
22: find j s.t. Lj−1 > w ≥ LM(j)

23: J := M(j)
24: mt := dlogγ (1− γ) + logγ w− logγ diam(St) +Ce
25: offer price pt :=max(p

t
, pJ − γmtdiam(St)/(1− γ))

26: make penalization for mt rounds
27: if price pt accepted at the round t then
28: St+mt := S+

t (pt − γmtdiam(St)/(1− γ), xt)
29: else
30: St+mt := S−

t (pt + γmtdiam(St)/(1− γ), xt)
31: end if
32: t := t+mt

33: end if
34: end while

state, described by a series of the numbers {k(i)}di=1. Sim-
ilar to (Cohen et al., 2016; Leme & Schneider, 2018) we
try to reduce the knowledge set. Note that we use penal-
ization to evaluate the difference between vt and pt (and
shrink the knowledge set after that optimally). More pe-
nalization improves this evaluation, but increases the re-
gret. This approach allows us to shrink the gap between
S+
t (pJ , xt) and S+

t (pt − γmtdiam(St)/(1 − γ), xt), in-
creasing VJ(St)−VJ(S+

t (pt−γmtdiam(St)/(1−γ), xt)).
It is important to us, since the last difference allows us to
bound the number of steps required to leave the current
range in the acceptance case. Thus, in Sec. 6.2, we select
mt so that the number of such steps and the regret are small.

6.1. Properties of the Algorithm

The structure of our algorithm resembles the algo-
rithm (Leme & Schneider, 2018, Algorithm 5), what causes
the presence of similar properties. Formally, the guarantees
of (Leme & Schneider, 2018) cannot be directly used in our

case, and, hence, the following statements need to be proven
for our algorithm separately. However, the proofs of these
properties are very similar to those that are present in (Leme
& Schneider, 2018). Therefore, we briefly overview them,
while the full proofs can be found in Appendix A.1.

Statement 1. It is always possible to choose pi s.t. Vi(St)−
Vi(S

+
t (pi, xt))= lik(i)+1/(4i!), if Vi(St)−Vi(S+

t (pt, xt))>

lik(i)+1/(4i!). Also there is an index j s.t. Lj−1 > w ≥
LM(j).

The following statement will help8 us derive that, if we
receive a rejection, the quantity ϕJ jumps from the range
(lk(J)+1, lk(J)] to the next range (lk(J)+2, lk(J)+1].

Statement 2. For the price pJ chosen in Algorithm 1,
the following inequalities hold: [J !VJ(S−t (pJ , xt))]

1/J ≤
lk(J)+1 and VJ(KJ) ≤ lJk(J)+1/(2J !).

Statement 3 allows us to bound the number of times we can
potentially take acceptance before k(J) changes; bounds
the width of the knowledge set; and gives us an asymp-
totic upper bound on the number of learning steps of the
algorithm.

Statement 3. For the index J and the price pJ chosen in
Algorithm 1, the following equation and inequalities hold:
(a) VJ(St) − VJ(S+

t (pJ , xt)) = lJk(J)+1/(4J !); (b) w ≤
2lk(J); and (c) k(J)≤4(d log2 dT + 1) in the rounds where
w ≥ 1/T.

6.2. Localization technique in the algorithm

This is where the common features of our algorithm Al-
gorithm 1 and the one of (Leme & Schneider, 2018) end.
We noted in Section 5 that the strategic buyer may mislead
algorithms that are designed to act effectively against truth-
ful buyers. As one can see from our algorithm the main
technique that allows us to fight with a strategic buyer is
penalization rounds. First of all we show that our algorithm
is evaluating.

Lemma 1. Algorithm 1 is evaluating and θ∗ ∈ St for all t.

Proof. From the construction of the algorithm, pt ≥ p
t

and St+1 ⊆ St for all rounds t. Now we proof by induc-
tion that θ∗ ∈ St for all t. In the first round, it follows
from the definition of S1. Let θ∗ ∈ St at a round t. If
this round is exploiting, then St+1 = St and θ∗ ∈ St+1.
Otherwise, if the round t is learning, then we propose
the price pt to the buyer and make penalization for mt

rounds. These rounds give us bounds (see Proposition 1, 2)
between the real and the offered price for the good xt:

8As one can see later in Corollary 1, the price proposed to the
buyer is pt = pJ − γmtdiam(St)/(1− γ) ≥ p

t
and, thus, after

rejection we take St+mt = S−
t (pt + γmtdiam(St)/(1 − γ) =

pJ , xt).
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xt

pJpt

∆

St \ S+
t (pJ − 2∆, xt)

∆
St

Figure 2. Illustration of the set St \ S+
t (pJ − 2∆, xt) (the J-th

intrinsic volume of this set influences on change of potential ϕJ
after acceptance). Here we use the following notation: ∆ :=
γmt/(1− γ) diam(St).

(a) in the case of rejection and following mt penaliza-
tion rounds, we have: vt − pt ≤ γmtdiam(St)/(1 − γ)
and θ∗ ∈ S−t (pt + γmtdiam(St)/(1 − γ), xt) = St+mt ;
(b) in the case of acceptance and following mt penalization
rounds, we have: vt − pt ≥ −γmtdiam(St)/(1 − γ) and
θ∗ ∈ S+

t (pt − γmtdiam(St)/(1− γ), xt) = St+mt
.

As we will show later in Corollary 1, the proposed prise
is pt = pJ − γmtdiam(St)/(1 − γ) ≥ p

t
. In the case

of a rejection round t, this will allow us to make the con-
clusion that θ∗ ∈ S−t (pJ , xt) and ϕJ will jump from the
range (lk(J)+1, lk(J)] to the next range (lk(J)+2, lk(J)+1]
(see Statement 2). On the other hand, after an accep-
tance round, see Fig. 2, we will know that θ∗ ∈ S+

t (pJ −
2γmtdiam(St)/(1 − γ), xt), but we can only bound the
difference VJ(St) − VJ(S+

t (pJ , xt)), from Statement 3.
So, one needs one more result to be able to process accep-
tance rounds. Namely, we have to bound the gap between
S+
t (pJ , xt) and S+

t (pJ−2γmtdiam(St)/(1−γ), xt) in or-
der to have a tool that bounds the number of times we can
potentially face acceptance before k(J) changes.

We bound the distance between the top of St and the
hyperplane containing KJ . Here we use an idea: since
VJ(S+(pJ , xt)) has a lower bound (it follows from the
choice of pJ and from the definition of k(J), see Eq. 4),
this distance cannot be arbitrary small. We abbreviate
S−t (pJ , xt) and S+

t (pJ , xt) by S−t and S+
t respectively.

Lemma 2. Let P1 and P2 be hyperplanes orthogonal to the
vector xt: P1 := {θ ∈ Rd : 〈xt, θ〉 = pJ} and P2 := {θ ∈
Rd : 〈xt, θ〉 = pt}. Then, for the distance l between P1 and
P2, the following inequality holds: l ≥ 2w[1− (3/4)1/J ].

Proof. See Fig. 3. At first, from Statement 3, we get

VJ(St)− VJ(S+
t ) = lJk(J)+1/(4J !). (3)

Since ϕJ(St) ∈ (lk(J)+1,lk(J)], we have VJ(St) ≥
lJk(J)+1/J !. Substituting this inequality in the Eq. 3 we get

VJ(S+
t ) ≥ 3lJk(J)+1/(4J !). (4)

S−t S+
t

P
1

:
〈x
t
,θ
〉=

p
J

θ

l

P
2

:
〈x
t
,θ
〉=

p
t

xt

Figure 3. Here one can see the distance l between the hyperplane
P2 and the hyperplane P1, considering KJ . Since the set St is
convex, S+

t is a subset of a cone with a top θ and a bottom P2.

Now we give an upper bound on VJ(S+
t ). Let θ be a point

from argmin{〈xt, θ〉 : θ ∈ St} (in particular, 〈xt, θ〉 = p
t
)

and Cone := Cone(KJ , θ) be the cone whose base is
KJ ⊆ P1 and whose top is θ. Since St is convex, we
have that Cone ⊆ S−t . Let Hom : Rd → Rd be the homo-
thetic transformation with center at the point θ and scale
coefficient 2w/(2w − l). For Hom(Cone), convexity of St
implies that S+

t ⊆ (Hom(Cone) \ Cone) ∪KJ and, thus,

VJ(S+
t ) ≤ VJ(Hom(Cone))−VJ(Cone)+VJ(KJ). (5)

The last inequality holds, since the intrinsic volumes are
additive and monotone. Also from homogeneity of the
intrinsic volumes we have VJ(Hom(Cone)) = (2w/(2w−
l))JVJ(Cone). Substituting it in the Eq. 5 and using the
monotone we get

VJ(S+
t ) ≤ VJ(Cone)[(2w/(2w − l))J − 1] + VJ(KJ) ≤

≤ VJ(S−t )[(2w/(2w − l))J − 1] + VJ(KJ),

here we used that Cone ⊆ S−t , VJ(Cone) ≤ VJ(S−t ).

It remains to get an upper bound on VJ(S−t ) and VJ(KJ)
to bound the expression for VJ(S+

t ). The upper bound on
VJ(KJ) follows from Statement 2. Since VJ is additive and
S−t = (St \ S+

t ) ∪KJ , it follows that VJ(S−t )=VJ(St)−
VJ(S+

t )+VJ(KJ) ≤ lJk(J)+1/(4J !)+lJk(J)+1/(2J !). Here
we used Eq. 3 to bound VJ(St)−VJ(S+

t ). In result, we have

VJ(S+
t )≤

3lJk(J)+1

4J !

(
2w

2w − l

)J
−
lJk(J)+1

4J !
. (6)

Combining Eq. 4 and Eq. 6, we get our inequality.

Now we show that pJ − γmtdiam(St)/(1 − γ) ≥ p
t
. In

order to do this, we will prove a more general result for an
arbitrary value h (instead of γmtdiam(St)/(1− γ)):
Lemma 3. Let P3,h := {θ ∈ Rd : 〈xt, θ〉 = pJ − h}. If
the inequality

h ≤ 2w

[(
4(1 + 1/d)J

4(1 + 1/d)J − 1

)1/J

− 1

] [
1− (3/4)1/J

]
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h

K
J

θ

P
3
,h

:
〈x
t
,θ
〉=

p
J
−
h

xt

Dh

Figure 4. Here one can see the distance h between the hyperplane
P3,h and KJ . This cone is a result of homothety of a cone with
the same top and a bottom P1. Dh is a subset of a cone with a
top θ and a bottom P3,h. This cone is a result of homothety of the
cone with the same top and a bottom KJ .

holds then P3,h ∩ St 6= ∅.

Proof. See Fig. 4. Let θ be a point from argmax{〈xt, θ〉 :
θ ∈ St} (in particular, 〈xt, θ〉 = pt) and Cone :=
Cone(KJ , θ) be the cone whose base is KJ and whose
top is θ. Let Homh : Rd → Rd be the homothetic
transformation with center at the point θ and scale coef-
ficient (l + h)/l, where l is defined in Lemma 2. Define
Dh := Homh(Cone)∩{θ ∈ Rd : pJ−h ≤ 〈xt, θ〉 ≤ pJ}.
Note that, since St is convex and KJ is the base of Cone,
it is enough to show that VJ(Dh) ≤ VJ(S−t ) to prove our
statement. From homogeneity of the intrinsic volumes we
have VJ(Homh(Cone)) = ((l+h)/l)JVJ(Cone). Using
Cone⊆S+

t andDh=(Homh(Cone)\Cone)∪KJ , we get

VJ(Dh) ≤ VJ(Cone)[((l + h)/l)J − 1] + VJ(KJ) ≤
≤ VJ(S+

t )[((l + h)/l)J − 1] + VJ(KJ),

here we also used that the intrinsic volumes are monotone
and additive. So, we just have to show that

VJ(KJ) + VJ(S+
t )[

(
l + h

l

)J
− 1] ≤ VJ(S−t ) (7)

The upper bound on VJ(S+
t ) follows from Eq. 3

VJ(S+
t ) = VJ(St)−

lJk(J)+1

4J !
≤
lJk(J)

J !
−
lJk(J)+1

4J !
, (8)

since ϕJ(St) ∈ (lk(J)+1, lk(J)]. Substituting Eq. 8 in
Eq. 7 and using Eq. 3 after moving the term VJ(KJ) in
the right side of the inequality: VJ(S−t ) − VJ(KJ) =
VJ(St) − VJ(S+

t ) = lJk(J)+1/(4J !), we have to prove that

h ≤ l[
(

4lJk(J)/
(

4lJk(J)−l
J
k(J)+1

))1/J
−1]. It remains to

substitute the bound of l from Lemma 2 and the definition
of lk.

Corollary 1. Let the number of penalization rounds mt be
given as in Alg. 1. Then pJ−γmtdiam(St)/(1−γ) ≥ p

t
.

Proof Sketch. The full prove is in Appendix A.2.1. There
we apply Lemma 3, where h = γmtdiam(St)/(1−γ).

Now we are able to bound the difference between St and
S+
t (pt − γmtdiam(St)/(1 − γ), xt), where pt = pJ −
γmtdiam(St)/(1 − γ) is the price proposed to the buyer
in the algorithm, since pJ −γmtdiam(St)/(1−γ) ≥ p

t
from Corollary 1. This difference will help us to bound the
number of steps that we make before leaving the current
bucket in the acceptance case.

Corollary 2. Let the number of penalization rounds mt be
given as in Algorithm 1. Then

VJ(St)− VJ(S+
t (pJ − 2

γmt

1− γ
diam(St), xt)) ≥

lJk(J)+1

8J !
.

Proof Sketch. The full proof is in Appendix A.2.2. We
use the notations of Lemma 3 and the abbreviation S+

t for
S+
t (pJ , xt). Let h = 2γmt/(1−γ)diam(St). To prove this

statement we have to get an upper bound for S+
t (pJ−h, xt).

Indeed, since St is convex, we have S+
t (pJ−h, xt) ⊆ S+

t ∪
Dh ⊆ S+

t ∪(Homh(Cone)\Cone). Since Cone ⊆ S+
t , and

using monotone and homogeneity of the intrinsic volumes,
we get VJ(Homh(Cone))− VJ(Cone) = VJ(Cone)([(l +
h)/l]J − 1) ≤ VJ(S+

t )([(l + h)/l]J − 1).

Thus, using Eq. 3 to bound VJ(St)− VJ(S+
t ), we get

VJ(St) − VJ(S+
t (pJ − h, xt)) ≥ VJ(St) − VJ(S+

t ) −
VJ(S+

t )[((l+h)/l)J −1] = lJk(J)+1/(4J !)−VJ(S+
t )[((l+

h)/l)J − 1]. Therefore, we have to check that

VJ(S+
t (pJ , xt))

[(
l + h

l

)J
− 1

]
≤
lJk(J)+1

4J !
−
lJk(J)+1

8J !
,

that follows from the definition of mt and Eq. 8.

Remark 1. Let the number of penalization rounds mt be
given as in Alg. 1. Then mt ≤ O(logγ(1−γ) + logγ dT )9.

Proof Sketch. It follows from the fact that penalization
rounds occur in the case w ≥ 1/T and the inequality
diam(St) ≤ d+ 1. See App. A.2.3 for more details.

6.3. Main result

Theorem 1. Let A be Algorithm1 for a fixed time horizon
T. Then the seller’ total regret SReg(T,A, θ∗, γ, x1:T , D)
has an upper bound of

O(d3 log2
2(dT ) log2(γ) + d3 log2(dT ) logγ(1− γ)) (9)

for all θ∗ ∈ [0, 1]d, x1:T ∈ XT and all distributions D over
the feature domain XT .

9Hereafter, we leave γ, T and d dependency in asymptotic.
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Proof. We sum regret in different cases. The first one, when
w < 1/T and the algorithm sets the price p

t
. In this case,

the algorithm always sells since p
t
≤ vt and there is no

need to lie to the buyer in such rounds, because it does not
affects on the next rounds. The regret is at most 2w ≤ 2/T
per round, so the total regret is at most 2 in this case.

The second case comes when w ≥ 1/T, where we propose
the price pt = pJ−γmtdiam(St)/(1−γ) (see Corollary 1)
and the algorithm receives a rejection and does not sell. We
have mt penalization rounds after such round. Then θ∗ be-
longs to St+mt = S−t (pt+γ

mtdiam(St)/(1−γ) = pJ , xt)
(see Lemma 1), ϕJ goes from the bucket (lk(J)+1, lk(J)] to
the next bucket (lk(J)+2, lk(J)+1] (it follows from State-
ment 2). Since mt = O(logγ(1 − γ) + logγ(dT )) by
Remark 1, we get regret at most (d + 1)(1 + mt) =
O(d logγ(1−γ)+d logγ(dT )) (the loss of rejection and pe-
nalization rounds). Since k(J) ≤ O(d log2 dT ) (see State-
ment 3), this can happen at most O(d log2 dT ) times for
each index J . Since there are d such indices, the total regret
of this case has an upper bound of O(d3 log2(dT ) logγ(1−
γ) + d2 log2

2(dT ) log2(γ)).

The final case is when the algorithm receives an acceptance.
The loss in this case is bounded by 2w in the round of ac-
ceptance and by d + 1 in the penalization rounds. Let us
fix the selected index J and the index k(J). The loss af-
ter the acceptance and mt penalization rounds is at most
2w+mt(d+1) ≤ 4lk(J)+mt(d+1) by Statement 3. When
it happens, θ∗ ∈ St+mt = S+

t (pt − γmtdiam(St)/(1 −
γ), xt) by Lemma 1. Then, using Corollary 2, the J-
th intrinsic volume decreases by at least lJk(J)+1/(8J !).
Therefore, the total number of times it (acceptance and
following penalization) happens before leaving the current
range is lJk(J)/(l

J
k(J)+1/8) = 8(1 + 1/d)J = O(1). So,

the total regret of such event is at most (2w + mt(d +
1))lJk(J)/(l

J
k(J)+1/8) ≤ (4lk(J)+mt(d+1)) 8(1+1/d)J =

O(d logγ(1−γ)+d log2(dT )). By summing over all d pos-
sible values of J and all O(d log2 dT ) possible values of
k(J) we obtain the total loss of O(d3 log2(dT ) logγ(1 −
γ) + d2 log2

2(dT ) log2(γ)).

7. Discussion
Asymptotic: Note that the better a good should be described
the higher the dimension of a feature vector xt is required.
So, it is important that our algorithm has polynomial regret
on the dimension parameter d. Also note that this regret
blows up as γ tends to 1, but this is an expected behav-
ior since: (a) in non-contextual cases, upper bounds have
the same behavior (Mohri & Medina, 2014; Drutsa, 2017b;
2018); (b) for γ = 1, there does not exist a no-regret algo-
rithm (Amin et al., 2013).

Squaring trick: One can see that our algorithm requires

knowledge of the horizon T. To be free of this assumption,
we apply the standard technique “squaring trick” (Lin et al.,
2015; Cohen et al., 2016): if the learning algorithm has re-
gretO(logc T ), c > 0 then running of independent instances
of this algorithm during subsequent increasing phases (i-th
phase has length 22

i

) will have regret O(logc T ) as well.
This trick is applicable for the strategic buyer, since his deci-
sions during current phase does not affect on other (Drutsa,
2017b). We formally discuss it in Appendix B.1.

Extension to nonlinear models: Our setup focuses on lin-
ear valuation model, but it is easy to generalize our anal-
ysis to some of nonlinear models. Let us consider valu-
ation model vt := φ(〈ψ(xt), θ

∗〉), where ψ : X→ X is a
mapping and φ : R+ → R+ is an increasing function s.t.
φ(x) + h ≤ φ(x + h) for all x, h ≥ 0. After the change
of variables x̃t := ψ(xt) and ṽt := φ−1(vt), we return to
the problem discussed, but with ṽt=〈x̃t, θ∗〉. We discuss it
more formally in Appendix B.2.

Independence of γ: Let us assume that we do not know
the true value of the parameter γ, but its upper bound γ0
(s.t. γ ≤ γ0 < 1) is known. Note that bounds from Proposi-
tion 1, 2 are monotonous in the parameter γ and blows up
when γ → 1. Therefore, the bounds from these statements
are true for γ0. Using Algorithm 1 for the parameter γ0,
we get that the asymptotic of the seller’s regret still has the
form of O(log2 T ). From this, we can conclude that our
algorithm is also applicable in the situation when the true
value of the parameter γ is unknown and we just have its
upper bound. We discuss it more formally in Appendix B.3.

Possible ways to optimize constants in the regret upper
bound Eq. (9) can be seen in (Drutsa, 2017a), where such
constants have been minimized for the non-contextual algo-
rithm RPPFES.

8. Conclusion
We studied repeated contextual posted-price auctions with a
strategic buyer that discounted his cumulative surplus and
held a private valuation in the form of a parametric func-
tion of a d-dimensional context vector of a good. First, we
proposed a novel learning algorithm that can act against
the strategic buyer and has the best current upper bound of
O(log2 T ) for the seller’s regret. This bound is similar to
the bound of the algorithm CORP, but our algorithm is deter-
ministic and works for all distributions D over XT (unlike
the algorithm CORP). Second, we generalized the value-
localization approaches well know in the non-contextual
setting to the multidimensional case. Finally, novel tech-
niques were introduced: (a) the application of penalization
rounds in the case of acceptance; (b) dynamic increase of
the penalization rate; and (c) homothetic transformation
analysis to restrict lying ability of the buyer.
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