Robust Graph Representation Learning via Neural Sparsification

S1. More Details on Transaction Dataset

In this section, we provide additional details about the
Transaction datasets in our experiments. The Transaction
dataset contains an attributed graph that records transac-
tion history between organizations in two years: 2014 and
2015. Each node represents an organization and each di-
rected edge indicates a transaction between two organiza-
tions. Node attributes include organization information like
account balance, cash research, etc. Under the inductive
experimental setting, We use the 47,772 organization data
of the year 2014 for training and remaining data are hid-
den from the model. The 9,554 organizations are used for
validation and 38,218 for testing. Validation and testing
node sets are from the year 2015 and are not connected to
the nodes in the training set. Like the PPI dataset, models
need to generalize to the unseen graph when testing on the
Transaction dataset.

S2. Experimental Settings

In this section, we provide more details about our imple-
mentation and experiments in favor of reproducibility.

S2.1. Hardware

All experiments are run on a Linux machine with 16 In-
tel(R) Xeon(R) CPU (E5-2637 v4 @ 3.50GHz) and 128GB
RAM. Some models (e.g. NeuralSparse and GCN) are ac-
celerated by 4 NVIDIA GeForce GTX1080Ti GPU with
11GB RAM.

S2.2. Implementations of NeuralSparse

We implement the proposed NeuralSparse in tensorflow
framework for efficient GPU computation. In particu-
lar, the multi-layer neural network (Equation 4) in the
sparsification network is implemented by two-layer feed-
forward neural networks in all experiment, where the
hyper-parameter £ is searched between 2 and 50 for the op-
timal performance. We employ cross-entropy to formulate
the loss function and apply Adam optimizer for training.
The learning rate of Adam optimizer is initially set to be
a = 1.0 x 1073, We initial the weight matrices in the
proposed NeuralSparse model with Xavier initialization.

In the following, we detail the network structures of Neu-
ralSparse used on individual datasets. FC(a, b, f) means
a fully-connected layer with a input neurons and b output
neurons activated by function f (none means no activation
function is used). GNN(a, b,) means a Graph Neural Net-
work layer with input dimension a, output dimension b, and
activation function f. We implement the GNN layer with
GCN, GraphSAGE, GAT, GIN in the experiments.

Reddit The sparsification network runs with: FC(1204,
16, ReLU)-FC(16, 1, Gumbel-Softmax). The structure of
GNN is GNN(602, 128, ReLU)-GNN(128, 64, ReLU)-
FC(64, 41, softmax).

PPL.! The sparsification network runs with: FC(100, 16,
ReLU)-FC(16, 1, Gumbel-Softmax). The structure of
GNN is GNN(50, 128, ReLU)-GNN(128, 128, ReLU)-
FC(128, 121, softmax).

Transaction. The sparsification network runs with:
FC(243, 16, ReLU)-FC(16, 1, Gumbel-Softmax). The
structure of GNN is GNN(121, 128, ReLU)-GNN(128,
32, ReLU)-FC(32, 2, softmax). Note that there is
one-dimensional edge attribute indicating the transaction
amount in this dataset.

Cora The sparsification network runs with: FC(2866,
32, ReLU)-FC(32, 1, Gumbel-Softmax). The structure of
GNN is GNN(1433, 128, ReLU)-GNN(128, 64, ReLU)-
FC(64, 7, softmax).

Citeseer.” The sparsification network runs with: FC(7406,
64, ReLLU)-FC(64, 1, Gumbel-Softmax). The structure of
GNN is GNN(3703, 128, ReLU)-GNN(128, 64, ReLU)-
FC(64, 6, softmax).

As the spectral sparsification models cannot be jointly
trained with subsequent GNN module, the sparsification
process is treated as a preprocessing step. For Spectral
Sparsifier (SS), € is set to 0.4 in all datasets. For the Rank
Degree algorithm (RD), we select 1% of nodes as the ini-
tial seeds and adopt p € {0.1,0.2,---,0.8} for the best
results.

S3. Experiment with Similar Numbers of
Trainable Parameters

In this section, we evaluate the impact brought by reducing
the number of parameters in a GNN with NeuralSparse so
that the numbers of trainable parameters in a NeuralSparse
GNN and an original GNN are similar. In particular, we
focus on GCN in this set of experiments. Using the same
notation in NeuralSparse-GCN-Compact is imple-
mented as follows.

Reddit. NeuralSparse-GCN-Compact runs with: FC(1204,
8, ReLU)-FC(8, 1, Gumbel-Softmax) and GCN(602, 112,
ReLU)-GCN(112, 64, ReLLU)-FC(64, 41, softmax). The
total number of trainable parameters is 86,856 in the
NeuralSparse-GCN-Compact, while it is 87,872 in the
original GCN.

PPI. NeuralSparse-GCN-Compact runs with: FC(100, 16,
ReLU)-FC(16, 1, Gumbel-Softmax) and GCN(50, 118,

"http://snap.stanford.edu/graphsage/
“https://github.com/tkipf/gen

Robust Graph Representation Learning via Neural Sparsification

Table S1. Node classification performance with similar numbers of trainable parameters

Dataset Reddit PPI Transaction Cora Citeseer
Metrics Micro-F1 Micro-F1 AUC Accuracy Accuracy
GCN 0.922 £ 0.041 0.532+0.024 0.564 +£0.018 0.810 £0.027 0.694 + 0.020
Ne“rélcsgarse' 0.946 +0.020 0.600 +0.014 0.610+0.022 0.821 +£0.014 0.715+0.014
gg‘;\]raésoﬁfct 0.943 £0.018 0.601 £0.021 0.605+0.013 0.820£0.012 0.713 % 0.009
ReLU)-GCN(118, 128, ReLU)-FC(128, 121, softmax). e
The total number of trainable parameters is 38,108 in 175 = ﬁ;ﬁ:fs‘ﬁr‘gﬁram
the NeuralSparse-GCN-Compact, while it is 38,272 in the 150 =5~ NeuralSparse-Val
original GCN. 1.25
Transaction. NeuralSparse-GCN-Compact runs with: B :j:
FC(243, 16, ReLU)-FC(16, 1, Gumbel-Softmax) and '
GCN(121, 100, ReLU)-GCN(100, 32, ReLLU)-FC(32, 2, 050
softmax). The total number of trainable parameters is 025

19,268 in the NeuralSparse-GCN-Compact, while it is
19,648 in the original GCN.

Cora. NeuralSparse-GCN-Compact runs with: FC(2866,
8, ReLU)-FC(8, 1, Gumbel-Softmax) and GCN(1433, 115,
ReLU)-GCN(115, 32, ReLU)-FC(32, 7, softmax). The
total number of trainable parameters is 191,635 in the
NeuralSparse-GCN-Compact, while it is 192,064 in the
original GCN.

Citeseer. NeuralSparse-GCN-Compact runs with:
FC(7406, 32, ReLU)-FC(32, 1, Gumbel-Softmax) and
GCN(3703, 64, ReLU)-GCN(64, 32, ReLU)-FC(32, 6,
softmax). The total number of trainable parameters is
476,256 in the NeuralSparse-GCN-Compact, while it is
482,560 in the original GCN.

From the evaluation results shown in Table we draw
the following observations. First, both NeuralSparse-
GCN and NeuralSparse-GCN-Compact consistently
outperform GCN on all the datasets. Second, compared
with NeuralSparse-GCN, NeuralSparse-GCN-Compact
achieves comparable prediction accuracy with smaller
variance in most cases.

S4. Convergence Analysis

We analyze the convergence properties of NeuralSparse
and DropEdge on Citeseer. The results, as shown in Fig-
ure[ST] demonstrate that NeuralSparse converges faster and
achieves better performance than DropEdge.

0 50 100 150 200

NN 0.7 W e
\
N N REN
> 0.7 BN >0.6 N AN
9 AN o= \ w
© \ oSN S ~
S o = N So
o \ ~ o \ o
Sos NS Sos LN ~<
\ -\ So S
) S - h S
~& GCN N 0.4 - GCN S~o
05 _@ DS PN ‘| = LDS .
NeuralSparse-GCN \: NeuralSparse-GCN ‘\.

100% 200% 300% 400% 500%
Total Edges / Original Edges

(a) Cora

100% 200% 300% 400% 500%
Total Edges / Original Edges

(b) Citeseer

Figure S2. Node classification performance when adding noise to
graph structure.

SS. More Empirical Comparison between
NeuralSparse and LDS

S5.1. Random Edge Addition to Cora and Citeseer

We further compare NeuralSparse and LDS (Franceschi
et al., [2019) on the node classification tasks where origi-
nal graph structure is available but more random edges are
introduced as noise. Starting from the original graphs, we
add edges by randomly sampling two nodes u, v from node
set V and connecting them.

The results are shown in Figure |S_7L In both datasets, Neu-
ralSparse achieves better performance compared with LDS
as the noise level goes beyond 200%. When the amount of
noise increases, the classification accuracy of LDS drops

Robust Graph Representation Learning via Neural Sparsification

Table S2. Percentage of edges connecting nodes of the same labels

Reddit PPI Transaction Cora Citeseer
Original 53.1% 55.0% 67.3% 82.2% 73.1%
SS 509% 52.8% 62.8% 79.8% 75.6%
RD 498% 53.5% 63.4% 84.8% 72.3%
NeuralSparse 59.6% 61.5% 76.8% 93.1% 87.4%

significantly. This result confirms our conjecture that Neu-
ralSparse is more robust to random edges, compared to
LDS.

S5.2. Complete Graphs

We compare the NeuralSparse and LDS in the case of com-
plete graphs suggested in (Franceschi et al., 2019). As
shown in Table we observe that NeuralSparse consis-
tently performs better.

Table S3. Node classification performance with complete graphs

Cora Citeseer
GCN 0.580 4 0.037 0.493 £+ 0.026
LDS 0.684 +£0.029 0.656 + 0.039

NeuralSparse-GCN 0.691 + 0.016 0.679 £ 0.033

S6. Validation Performance as
hyper-parameter £ Changes

0.68 P e
4
& -
Ne w" "R g -
g /."" \YA\'"\ -
_k - /’ u
V'e L e al =k O
0.66 g ,A\ /A—" AmA-Aea_
o (g A X
S A=
< ‘/
/
4
«?
£
0.64 .
x
~#- NeuralSparse-GAT in Testing
== NeuralSparse-GAT in Validation
NeuralSparse-GraphSAGE in Testing
—A- NeuralSparse-GraphSAGE in Validation
0.62
3 6 9 12 15 18

Hyper-parameter k

Figure S3. Impact from hyper-parameter k on validation and test-
ing on the Transaction dataset

In this section, we demonstrate how the hyper-parameter
k impacts the performance of NeuralSparse-GAT and
NeuralSparse-GraphSAGE in both validation and testing
on the Transaction dataset. In terms of validation, as shown
in Figure [S3] the validation performance increases when k

ranges from 2 to 10 with more available graph data. After
k exceeds 10, the increase in validation performance slows
down and turns to be saturated. In terms of testing perfor-
mance, it shares a similar trend when k ranges from 2 to
10. Meanwhile, the testing performance drops more after k
exceeds 10.

S7. Quantitative Edge Sampling Evaluation

In Section we qualitatively demonstrate the difference
by Figure a) original graph, (b) NeuralSparse, (c) SS,
and (d) RD. In addition, we provide quantitative analysis
in Table [S2| where we report the percentage of edges that
connect nodes of same class labels in sparsified graphs.
Both qualitative and quantitative results suggest a common
trend: NeuralSparse prefers to select neighbors with the
same labels compared with the baseline methods.

	Introduction
	Related Work
	Proposed Method: NeuralSparse
	Sparsification Network

	Experimental Study
	Datasets
	Experimental Setup
	Classification Performance
	Sensitivity to Hyper-parameters and the Sparsified Subgraphs
	Conclusion
	More Details on Transaction Dataset

	Experimental Settings
	Hardware
	Implementations of NeuralSparse

	Experiment with Similar Numbers of Trainable Parameters
	Convergence Analysis
	More Empirical Comparison between NeuralSparse and LDS
	Random Edge Addition to Cora and Citeseer
	Complete Graphs
	Validation Performance as hyper-parameter k Changes
	Quantitative Edge Sampling Evaluation

