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1. Additional (Synthetic) Experiment for Validation of the Bound
In Section 2.3 of the submitted manuscript, we used the output of deep neural networks f as an approximation of η on the
CIFAR10 dataset. We provided empirical estimates of the constants C and λ in the Tsybakov condition for η, as well as
estimates of the probability Pr[ỹ = h∗(x), fỹ(x) < ∆].

In this section, we provide additional experiments on a synthetic data set generated using a mixture-of-Gaussians distribution.
In this ideal setting, we know η, τ01, τ10, η̃ exactly. We can a) use η̃ as the classifier and b) evaluate the constants in
Tsybakov condition for η in order to evaluate the upper bound in Theorem 1.

Estimation of Tsybakov condition constants. We let Pr(x) be a mixture of Gaussian distribution in a 10 dimensional
feature space, x ∼ 1

2N (0, I10×10) + 1
2N (1, I10×10). We sample from the two components with equal probability. If x

comes from component N (0, I10×10), it is given label 0. Otherwise, if x comes from component N (1, I10×10), it is given

label 1. The true conditional distribution is η(x) =
exp{− 1

2 ||x−1||
2}

exp{− 1
2 ||x||2}+exp{− 1

2 ||x−1||2}
.

Following the idea of our experiment on CIFAR10 in the manuscript (Section 2.4), we estimate Pr
[
|η(x)− 1

2 | ≤ t
]

for
values of t sampled between 0 and 0.9 using the empirical frequency pt = 1

n

∑n
i=1 1{|η(x)−1/2|≤t}(x). Note that if the

Tsybakov condition is tight, log(pt) approximates log(Ctλ). The samples for log(t) and correspondingly, log(Ctλ) ≈
log(pt) are drawn as blue dots in Figure 1(a). The ordinary least square (OLS) linear regression results is drawn as a red
line. We found the estimated values of C and λ to be 0.58 and 1.27 respectively. The estimation is high is confidence: the
determinant coefficient R2 equals 0.904, and we have a p-value which is less than 10−4.

Estimation of the error bound, and its tightness. We also introduce label noise using predefined transition probability τ01
and τ10. We can estimate C and λ as mentioned above, and know τ01, τ10, η(x), and thus, η̃(x). Therefore we can evaluate
the error bound in Theorem 1. We plot the error bound as a function of ε in Figures 1(b) and (c) (drawn green curves).

Finally, we assume a perfect noisy classifier f = η̃. In other words, ε = 0. We empirically show that when f(x) < ∆, the
probability of ỹ being correct (i.e., ỹ = h∗(x)) is zero (blue lines in Figures 1(b) and (c)).

Validation of the label-correction algorithm. To the same synthetic dataset, we also apply our LRT-Correction algorithm
and validate the bound in Corollary 1. Since we know η̃(x), τ01 and τ10, we calculate the correction error bound of Corollary
1 in closed form. We draw the bound w.r.t. the error ε in orange curves in Figure 2. Finally, we run our label correction
algorithm using the perfect noisy classifier f = η̃ and validate that the corrected labels are very close to clean (the success
rate is limited by the asymmetry level of the noise pattern). See blue lines in Figure 2.

1Department of Applied Mathematics and Statistics, Stony Brook University, NY, USA 2Department of Computer Science,
Rutgers University, NJ, USA 3Bain & Company, Bangalore, India. 4Department of Computer Science, City University of New
York, NY, USA 5Department of Biomedical Informatics, Stony Brook University, NY, USA. Correspondence to: Songzhu Zheng
<zheng.songzhu@stonybrook.edu>.

Proceedings of the 37 th International Conference on Machine Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by the
author(s).



Supplementary Material

(a) (b) (c)
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Figure 1. Synthetic experiment using Mixture of Gaussian at noise level 20%. (a): Check of Tsybakov condition using linear regression,
where y-axis is the proportion of data points at distance t from decision boundary. (b): Proportion of labels that are not correct (not
consistent with Bayes optimal decision rule) and the proposed upper bound. (c): Same as (b) but labels are corrupted with aysmmetric
noise. (d): t-SNE of the clean data. (e): t-SNE of the data with symmetric noise. (f): t-SNE of the data with asymmetric noise.

(a) (b)

(c) (d)

Figure 2. Performance of LRT algorithm given η̃(x) v.s the proposed upper bound. (a): Symmetric noise (τ10 = τ01 = 0.3). (b):
Asymmetric noise (τ10 = 0.2, τ01 = 0.3). (c): Asymmetric noise (τ10 = 0.1, τ01 = 0.3). (d): Asymmetric noise (τ10 = 0.3, τ01 = 0)
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(a) (b) (c)

Figure 3. Label Correction Result Using LRT-Correct. (a): Clean data as it in Fig 1d. (b): Labels after correction for data in Fig 1e. (c):
Labels after correction for data in Fig 1f.

2. Proof of Theorem 2
Define mx := arg max

i
fi(x), ux := arg max

i
ηi(x) and sx := arg max

i6=ux

ηi(x). Let [Nc] := {1, 2, · · · , Nc}. Finally,

define εi(x) := |fi(x)− η̃i(x)| and ε := max
x,i

εi(x).

For multi-class scenario, we know ∀i ∈ [Nc], η̃i(x) =
∑

j∈[Nc]
τjiηj(x). We also restate the multi-class Tsybakov condition

here:

Assumption 1 (Multi-class Tsybakov Condition). ∃C, λ > 0 and t0 ∈ (0, 1] such that for all t ≤ t0,

Pr [|ηux(x)− ηsx(x)| ≤ t] ≤ Ctλ

Theorem 2. Assume η(x) fulfills multi-class Tsybakov condition for constant C, λ > 0 and t0 ∈ (0, 1]. Assume that

ε ≤ t0 min
i
τi,i. For ∆ = min

[
1,min

x
[τỹ,ỹηsx(x) +

∑
j 6=ỹ

τj,ỹηj(x)]

]
:

Pr
(x,y)∼D

[
ỹ = h∗(x), fỹ(x) < ∆

]
≤ C [O(ε)]

λ

Proof.

Pr [ỹ = h∗(x), fỹ(x) < ∆] = Pr [ηỹ(x) ≥ ηsx(x), fỹ(x) < ∆]

≤ Pr [ηỹ(x) ≥ ηsx(x), η̃ỹ(x) < ∆ + εỹ]

≤ Pr [ηỹ(x) ≥ ηsx(x), η̃ỹ(x) < ∆ + ε]

= Pr

ηỹ(x) ≥ ηsx(x),
∑
j∈[Nc]

τj,ỹηỹ(x) < ∆ + ε


= Pr

ηỹ(x) ≥ ηsx(x), ηỹ(x) <

∆−
∑
j 6=ỹ

τj,ỹηj(x) + ε

τỹ,ỹ


= Pr

ηsx(x) ≤ ηỹ(x) <

∆−
∑
j 6=ỹ

τj,ỹηj(x)

τỹ,ỹ
+

ε

τỹ,ỹ

 (1)

Remember that ∆ = min

[
1,min

x
[τỹ,ỹηsx(x) +

∑
j 6=ỹ

τj,ỹηj(x)]

]
≤ τỹ,ỹηsx(x) +

∑
j 6=ỹ

τj,ỹηj(x). Then if we substitute ∆

in (1) with τỹ,ỹηsx(x) +
∑
j 6=ỹ

τj,ỹηj(x), continuing the derivation of (1), we will end up with:
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Pr [ỹ = h∗(x), fỹ(x) < ∆]

≤ Pr

ηsx(x) ≤ ηỹ(x) <

∆−
∑
j 6=ỹ

τj,ỹηj(x)

τỹ,ỹ
+

ε

τỹ,ỹ


≤ Pr

[
ηsx(x) ≤ ηỹ(x) < ηsx(x) +

ε

τỹ,ỹ

]
≤ C

(
ε

τỹ,ỹ

)λ
Notice that Tsybakov condition holds here because ε ≤ t0 min

i
τi,i, which implies that ε

τỹ,ỹ
≤ t0. This complete the proof

for this case.

3. Proof of Theorem 3
Lemma 1. (Algorithm Multiclass-Theorem Guarantee). Assume η(x) fulfills multi-class Tsybakov condition for constant
C > 0, λ > 0 and t0 ∈ (0, 1]. Assume that ε ≤ t0 min

i
τii. Let ỹnew denote the output of the LRT-Correction with x,

ỹx, f , and the given δ, then:

1. Sensitivity Optimized Critical Value. Let δ = min
x

[
τỹ,ỹηsx (x)+

∑
j 6=ỹ

τj,ỹηj(x)

fmx (x)

]
then :

Pr
(x,y)∼D

[ỹnew 6= h∗(x), ỹ is rejected] ≤ C [O(ε)]
λ

+ Pr
(x,y)∼D

[ux 6= mx, ux 6= ỹ]

2. Specificity Optimized Critical Value. Let δ = max
x

[
fỹ(x)

τmx,mxηsx (x)+
∑

j 6=mx

τj,mxηj(x)

]
then :

Pr
(x,y)∼D

[ỹnew 6= h∗(x), ỹ is accepted] ≤ C [O(ε)]
λ

+ Pr
(x,y)∼D

[ux 6= mx, ux 6= ỹ]

Proof. First look at cases where ỹ is rejected.

Pr [ỹnew 6= h∗(x), ỹ is rejected]

= Pr

[
ỹnew 6= h∗(x),

fỹ(x)

fmx(x)
< δ

]
= Pr

[
ỹnew = mx 6= h∗(x) = ỹ,

fỹ(x)

fmx(x)
< δ

]
+ Pr

[
ỹnew = mx 6= h∗(x) = ux, ux 6= ỹ,

fỹ(x)

fmx(x)
< δ

]
≤ Pr

[
h∗(x) = ỹ,

fỹ(x)

fmx(x)
< δ

]
+ Pr

[
ỹnew = mx 6= h∗(x) = ux, ux 6= ỹ,

fỹ(x)

fmx(x)
< δ

]
(2)

For the first term in (2), we have:

Pr

[
h∗(x) = ỹ,

fỹ(x)

fmx(x)
< δ

]
= Pr [h∗(x) = ỹ, fỹ(x) < δfmx(x)]

≤ Pr [ηỹ(x) ≥ ηsx(x), η̃ỹ(x)− ε < δfmx(x)]

≤ Pr

ηsx(x) ≤ ηỹ(x) <

δfmx(x)−
∑
j 6=ỹ

τj,ỹηj(x)

τỹ,ỹ
+

ε

τỹ,ỹ

 (3)
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We substitute δ in (3) with
τỹ,ỹηsx (x)+

∑
j 6=ỹ

τj,ỹηj(x)

fmx (x) and continue the calculation:

Pr

[
h∗(x) = ỹ,

fỹ(x)

fmx(x)
< δ

]

≤ Pr

ηsx(x) ≤ ηỹ(x) <

δfmx(x)−
∑
j 6=ỹ

τj,ỹηj(x)

τỹ,ỹ
+

ε

τỹ,ỹ


≤ Pr

[
ηsx(x) ≤ ηỹ(x) ≤ ηsx(x) +

ε

τỹ,ỹ

]
≤ C

(
ε

τỹ,ỹ

)λ
(4)

In (4), the Tsybakov condition holds here because ε ≤ t0 min
i
τii, which implies ε

τỹ,ỹ
≤ t0.

For the second term in (2), we have:

Pr

[
ỹnew = mx 6= h∗(x) = ux, ux 6= ỹ,

fỹ(x)

fmx(x)
< δ

]
≤ Pr [ux 6= mx, ux 6= ỹ] (5)

for which our algorithm currently doesn’t have a good way to deal with and we will leave it as future research problem.

Finally, summarize every piece and we finished the proof for cases where ỹ is rejected:

Pr [ỹnew 6= h∗(x), ỹ is rejected] ≤ (2)

≤ (4) + (5)

≤ C
[

ε

τux,ux

]λ
+ Pr [ux 6= mx, ux 6= ỹ]

= C [O(ε)]
λ

+ Pr [ux 6= mx, ux 6= ỹ]

For cases where ỹ is accepted:

Pr [ỹnew 6= h∗(x), ỹ is accepted] = Pr

[
ỹnew 6= h∗(x),

fỹ(x)

fmx(x)
≥ δ
]

= Pr

[
ỹnew = ỹ 6= h∗(x) = mx,

fỹ(x)

fmx(x)
≥ δ
]

+ Pr

[
ỹnew = ỹ 6= h∗(x),mx 6= h∗(x),

fỹ(x)

fmx(x)
≥ δ
]

= Pr [ηmx(x) ≥ ηsx(x), fmx(x) ≤ fỹ(x)/δ] + Pr [ux 6= mx, ux 6= ỹ] (6)

For the first term in (6), we have:

Pr [ηmx(x) ≥ ηsx(x), fmx(x) ≤ fỹ(x)/δ] ≤ Pr [ηmx(x) ≥ ηsx(x), η̃mx(x)− ε ≤ fỹ(x)/δ]

= Pr

ηsx(x) ≤ ηmx(x) ≤
fỹ(x)/δ −

∑
j 6=mx

τj,mxηj(x)

τmx,mx

+
ε

τmx,mx

 (7)

Firstly, observe that if δ > 1, then Pr
[
ỹnew = ỹ 6= h∗(x),

fỹ(x)
fmx (x) ≥ δ

]
= 0 due to the definition of mx.

Then notice that δ = max
x

fỹ(x)
τmx,mxηsx (x)+

∑
j 6=mx

τj,mxηj(x)
≥ fỹ(x)

τmx,mxηsx (x)+
∑

j 6=mx

τj,mxηj(x)
. If we substitute δ in (7) with
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fỹ(x)
τmx,mxηsx (x)+

∑
j 6=mx

τj,mxηj(x)
and continuing the calculation, we will have:

Pr [ηmx(x) ≥ ηsx(x), fmx(x) ≤ fỹ(x)/δ]

≤ Pr

ηsx(x) ≤ ηmx(x) ≤
fỹ(x)/δ −

∑
j 6=mx

τj,mxηj(x)

τmx,mx

+
ε

τmx,mx


≤ Pr

[
ηsx(x) ≤ ηmx(x) ≤ ηsx(x) +

ε

τmx,mx

]
≤ C

[
ε

τmx,mx

]λ
(8)

For the second term in (6), our algorithm cannot deal with it properly. We will leave it as the future research problem.

Now we summarize all pieces and we get:

Pr [ỹnew 6= h∗(x), ỹ is accepted] = (6)

≤ (8) + Pr [ux 6= mx, ux 6= ỹ]

≤ C
[

ε

τux,ux

]λ
+ Pr [ux 6= mx, ux 6= ỹ]

which compete the proof for cases that are accepted.

We give following several facts based on our theorem:

1. For binary case, if we set δ = 1−|τ10−τ01|
1+|τ10−τ01| and further assume ε ≤ t0(1− τ10 − τ01)− |τ10−τ01|2 , we have:

Pr
(x,y)∼D

[ỹnew 6= h∗(x)] ≤ C
[∣∣∣∣ τ10 − τ01

2(1− τ10 − τ01)

∣∣∣∣+
ε

1− τ10 − τ01

]λ

Proof. For binary case, we have:

Pr
(x,y)∼D

[ỹnew 6= h∗(x)] = Pr
(x,y)∼D

[ỹnew 6= h∗(x), ỹ is rejected] + Pr
(x,y)∼D

[ỹnew 6= h∗(x), ỹ is accepted]

= Pr

[
ηỹ(x) >

1

2
,
fỹ(x)

fmx(x)
< δ

]
+ Pr

[
ηỹ(x) ≤ 1

2
,
fỹ(x)

fmx(x)
≥ δ
]

≤ Pr

[
ηỹ(x) >

1

2
,

fỹ(x)

1− fỹ(x)
< δ

]
+ Pr

[
ηỹ(x) ≤ 1

2
,

fỹ(x)

1− fỹ(x)
≥ δ
]

≤ Pr

[
ηỹ(x) >

1

2
, η̃ỹ(x) <

δ

1 + δ
+ ε

]
+ Pr

[
ηỹ(x) ≤ 1

2
, η̃ỹ(x) ≥ δ

1 + δ
− ε
]

= Pr

[
1

2
< ηỹ(x) <

δ
1+δ − τ1−ỹ,ỹ
1− τ10 − τ01

+
ε

1− τ10 − τ01

]
+ Pr

[
δ

1+δ − τ1−ỹ,ỹ
1− τ10 − τ01

− ε

1− τ10 − τ01
≤ ηỹ(x) ≤ 1

2

]
(9)

Observe that δ = 1−|τ10−τ01|
1+|τ10−τ01| ≤

1−τỹ,1−ỹ+τ1−ỹ,ỹ
1+τỹ,1−ỹ−τ1−ỹ,ỹ . We also have δ

1+δ = 1−|τ10−τ01|
2 ≤ 1

2 . Now we substitute

δ =
1−τỹ,1−ỹ+τ1−ỹ,ỹ
1+τỹ,1−ỹ−τ1−ỹ,ỹ in the first term of (9) and substitute δ

1+δ with 1
2 in the second term of (9), by algebra we know
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that :

Pr
(x,y)∼D

[ỹnew 6= h∗(x)] = Pr
(x,y)∼D

[ỹnew 6= h∗(x), ỹ is rejected] + Pr
(x,y)∼D

[ỹnew 6= h∗(x), ỹ is accepted]

≤ Pr

[
1

2
< ηỹ(x) <

1

2
+

ε

1− τ10 − τ01

]
+ Pr

[
1/2−max(τ10, τ01)

1− τ10 − τ01
− ε

1− τ10 − τ01
≤ ηỹ(x) ≤ 1

2

]
≤ C

[∣∣∣∣ τ10 − τ01
2(1− τ10 − τ01)

∣∣∣∣+
ε

1− τ10 − τ01

]λ
Tsybakov assumption holds because ε

1−τ10−τ01 + |τ10−τ01|
2(1−τ10−τ01) ≤

t0(1−τ10−τ01)− |τ10−τ01|2

1−τ10−τ01 + |τ10−τ01|
2(1−τ10−τ01) ≤ t0.

2. For symmetric noise τij = τji = τ,∀i, j ∈ [Nc] and further assume (besides the assumption we made in Lemma 1)
ε ≤ 1

2 min
x

[η̃ux(x)− η̃sx(x)], we have:

(a) Sensitivity Optimized Critical Value. Let δ = min
x

[
τỹ,ỹηsx (x)+

∑
j 6=ỹ

τj,ỹηj(x)

fmx (x)

]
then :

Pr
(x,y)∼D

[ỹnew 6= h∗(x), ỹ is rejected] ≤ C [O(ε)]
λ

(b) Specificity Optimized Critical Value. Let δ = max
x

[
fỹ(x)

(τmx,mx−τỹ,mx )ηsx (x)+τỹ,mx

]
then :

Pr
(x,y)∼D

[ỹnew 6= h∗(x), ỹ is accepted] ≤ C [O(ε)]
λ

Proof. Observe that under symmetric noise scenario, ∀i ∈ [Nc], ηux(x) ≥ ηi(x) will implies that η̃ux(x) ≥ η̃i(x),
i.e. h∗(x) = h̃∗(x). To show this:

ηux(x) ≥ ηi(x)

⇐⇒ [1−Ncτ ]ηux(x) ≥ [1−Ncτ ]ηui(x)

⇐⇒ [1− (Nc − 1)τ ]ηux(x)− τηux(x) ≥ [1− (Nc − 1)τ ]ηi(x)− τηi(x)

⇐⇒ [1− (Nc − 1)τ ]ηux(x) + τηi(x) ≥ [1− (Nc − 1)τ ]ηi(x) + τηux(x)

⇐⇒ [1− (Nc − 1)τ ]ηux(x) + τηi(x) + τ
∑

j 6=ux,j 6=i

ηj(x) ≥ [1− (Nc − 1)τ ]ηi(x) + τηux(x) + τ
∑

j 6=ux,j 6=i

ηj(x)

⇐⇒ [1− (Nc − 1)τ ]ηux(x) + τ
∑
j 6=ux

ηj(x) ≥ [1− (Nc − 1)τ ]ηi(x) + τ
∑
j 6=i

ηj(x)

⇐⇒
∑
j∈[Nc]

τj,uxηj(x) ≥
∑
j∈[Nc]

τjiηi(x)

⇐⇒ η̃ux(x) ≥ η̃i(x)

Since η̃ux(x) ≥ η̃sx(x) + 2ε, then η̃ux(x) − ε ≥ η̃i(x) + ε and thus fux ≥ fi(x) ∀i ∈ [Nc], which implies
fmx(x) = fux(x). As a result, second term in (2) and second term in (6) will be 0.

Theorem 3. Assume η and f satisfy the same conditions as Lemma 1. Also assume ξ < δ and further assume that

ε ≤ min

(
t0δ

2 min
i
τii−ξ2−ξ

δ2 , (t0 − ξ) min
i
τii

)
. Let ỹnew be the output of the LRT-Correction with (x, ỹ), f , and the

approximate δ̂. Then:

1. Sensitivity Optimized Critical Value. Let δ = min
x

[
τỹ,ỹηsx (x)+

∑
j 6=ỹ

τj,ỹηj(x)

fmx (x)

]
then :

Pr
(x,y)∼D

[ỹnew 6= h∗(x), ỹ is rejected] ≤ C [O(max(ε, ξ))]
λ

+ Pr [ux 6= mx, ux 6= ỹ]
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2. Specificity Optimized Critical Value. Let δ = max
x

fỹ(x)
τmx,mxηsx (x)+

∑
j 6=mx

τj,mxηj(x)
then :

Pr
(x,y)∼D

[ỹnew 6= h∗(x), ỹ is accepted] ≤ C [O(max(ε, ξ))]
λ

+ Pr [ux 6= mx, ux 6= ỹ]

Proof. The proof will be similar to the proof of Lemma 1, but we need to adjust the error introduced by picking δ̂. Recall
that ξ and ε are both less than one.

If we pick δ̂ instead of δ, then for (3) in Lemma 1, we have:

Pr

[
h∗(x) = ỹ,

fỹ(x)

fmx(x)
< δ̂

]
= Pr

[
h∗(x) = ỹ, fỹ(x) < δ̂fmx(x)

]
≤ Pr

[
ηỹ(x) ≥ ηsx(x), η̃ỹ(x)− ε < δ̂fmx(x)

]

≤ Pr

ηsx(x) ≤ ηỹ(x) <

δ̂fmx(x)−
∑
j 6=ỹ

τj,ỹηj(x)

τỹ,ỹ
+

ε

τỹ,ỹ


≤ Pr

ηsx(x) ≤ ηỹ(x) <

(δ + ξ)fmx(x)−
∑
j 6=ỹ

τj,ỹηj(x)

τỹ,ỹ
+

ε

τỹ,ỹ


≤ Pr

ηsx(x) ≤ ηỹ(x) <

δfmx(x)−
∑
j 6=ỹ

τj,ỹηj(x)

τỹ,ỹ
+
ε+ ξ

τỹ,ỹ


≤ C

[
ε+ ξ

τỹ,ỹ

]λ
(10)

The same upper bound holds for (5) with the same reason. Then:

Pr [ỹnew 6= h∗(x), ỹ is rejected] ≤ (10) + Pr [ux 6= mx, ux 6= ỹ]

= C [O(max(ε, ξ))]
λ

+ Pr [ux 6= mx, ux 6= ỹ]

We next analyze (7) in Lemma 1:

Pr
[
ηmx(x) ≥ ηsx(x), fmx(x) ≤ fỹ(x)/δ̂

]
≤ Pr

[
ηmx(x) ≥ ηsx(x), η̃mx(x)− ε ≤ fỹ(x)/δ̂

]
= Pr

ηsx(x) ≤ ηmx(x) ≤
fỹ(x)/δ̂ −

∑
j 6=mx

τj,mxηj(x)

τmx,mx

+
ε

τmx,mx


≤ Pr

ηsx(x) ≤ ηmx(x) ≤
fỹ(x)/(δ − ξ)−

∑
j 6=mx

τj,mxηj(x)

τmx,mx

+
ε

τmx,mx


= Pr

0 < ηmx(x)− ηsx(x) <

fỹ(x)/δ −
∑

j 6=mx

τj,mxηj(x)

τmx,mx

− ηsx(x) +
ε

τmx,mx

+

ξfỹ(x)
δ(δ−ξ)

τmx,mx


Observe that ξ

δ(δ−ξ) = δ
(δ−ξ)

ξ
δ2 = [1 +O(ξ)] ξ

δ2 , where second equality comes from Taylor expansion. Then we substitute
the δ as what we did in Lemma 1 and continue the calculation:
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Pr
[
ηmx(x) ≥ ηsx(x), fmx(x) ≤ fỹ(x)/δ̂

]
≤ Pr

0 < ηmx(x)− ηsx(x) <

fỹ(x)/δ −
∑

j 6=mx

τj,mxηj(x)

τmx,mx

− ηsx(x) +
ε

τmx,mx

+

ξfỹ(x)
δ(δ−ξ)

τmx,mx


≤ Pr

[
0 ≤ ηmx(x)− ηsx(x) ≤ ε

τmx,mx

+
ξfỹ(x)

δ2τmx,mx

+
ξO(ξ)fỹ(x)

δ2τmx,mx

]
≤ Pr

[
0 ≤ ηmx(x)− ηsx(x) ≤ ε

τmx,mx

+
ξ

δ2τmx,mx

+
ξ2

δ2τmx,mx

]
≤ C

[
ε

τmx,mx

+
ξ

δ2τmx,mx

+
ξ2

δ2τmx,mx

]λ
(11)

Here Tsybakove condition hold, because ε
τmx,mx

+ ξ
δ2τmx,mx

+ ξ2

δ2τmx,mx
≤

t0δ
2 min

i
τii−ξ2−ξ

δ2τmx,mx
+ ξ
δ2τmx,mx

+ ξ2

δ2τmx,mx
≤ t0.

As a result:

Pr [ỹnew 6= h∗(x), ỹ is accepted]

≤ (11) + Pr [ux 6= mx, ux 6= ỹ]

≤ C [O(max(ε, ξ))]
λ

+ Pr [ux 6= mx, ux 6= ỹ]

which compete the proof for cases that are accepted.

Other terms will not be affected by the choice of δ. By now we completes the proof.


