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Abstract
The objective of a reinforcement learning agent
is to behave so as to maximise the sum of a suit-
able scalar function of state: the reward. These
rewards are typically given and immutable. In
this paper, we instead consider the proposition
that the reward function itself can be a good lo-
cus of learned knowledge. To investigate this, we
propose a scalable meta-gradient framework for
learning useful intrinsic reward functions across
multiple lifetimes of experience. Through sev-
eral proof-of-concept experiments, we show that
it is feasible to learn and capture knowledge about
long-term exploration and exploitation into a re-
ward function. Furthermore, we show that unlike
policy transfer methods that capture “how” the
agent should behave, the learned reward functions
can generalise to other kinds of agents and to
changes in the dynamics of the environment by
capturing “what” the agent should strive to do.

1. Introduction
Reinforcement learning (RL) agents can store knowledge
in their policies, value functions, state representations, and
models of the environment dynamics. These components
can be the loci of knowledge in the sense that they are struc-
tures in which knowledge, either learned from experience by
the agent’s algorithm or given by the agent-designer, can be
deposited and reused. The objective of the agent is defined
by a reward function, and the goal is to learn to act so as to
maximise cumulative rewards. In this paper we consider the
proposition that the reward function itself is a good locus
of knowledge. This is unusual (but not novel) in that most
prior work treats the reward as given and immutable, at
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least as far as the learning algorithm is concerned. In fact,
agent designers often do find it convenient to modify the
reward function given to the agent to facilitate learning. It is
therefore useful to distinguish between two kinds of reward
functions (Singh et al., 2010): extrinsic rewards define the
task and capture the designer’s preferences over agent be-
haviour, whereas intrinsic rewards serve as helpful signals
to improve the learning dynamics of the agent.

Most existing work on intrinsic rewards falls into two broad
categories: task-dependent and task-independent. Both are
typically designed by hand. Hand-designing task-dependent
rewards can be fraught with difficulty as even minor mis-
alignment between the actual reward and the intended bi-
as/goals can lead to unintended and sometimes catastrophic
consequences (Clark & Amodei, 2016). Task-independent
intrinsic rewards are also typically hand-designed, often
based on an intuitive understanding of animal/human be-
haviour or on heuristics on desired exploratory behaviour.
It can, however, be hard to match such task-independent
intrinsic rewards to the specific learning dynamics induced
by the interaction between agent and environment. In this
paper, we are interested in the comparatively under-explored
possibility of learned (not hand-designed) task-dependent
intrinsic rewards. Although there have been a few attempts
to learn useful intrinsic rewards from experience (Singh
et al., 2009; Zheng et al., 2018), how to capture complex
knowledge such as exploration across episodes into a reward
function remains an open question.

We emphasise that it is not our objective to show that re-
wards are a better locus of learned knowledge than others;
the best locus likely depends on the kind of knowledge
that is most useful in a given task. In particular, knowl-
edge captured in rewards provides guidance on “what” the
agent should strive to do while knowledge captured in poli-
cies provides guidance on “how” an agent should behave.
Knowledge about “what” captured in rewards is indirect
and thus slower to make an impact on behaviour because it
takes effect through learning, while knowledge about “how”
can directly have an immediate impact on behaviour. At the
same time, because of its indirectness the former can gen-
eralise better to changes in dynamics and different learning
agents, as we empirically show in this paper.



What Can Learned Intrinsic Rewards Capture?

How should we measure the usefulness of a learned reward
function? Ideally, we would like to measure the effect the
learned reward function has on the learning dynamics. Of
course, learning happens over multiple episodes, indeed
it happens over an entire lifetime. Therefore, we choose
lifetime return, the cumulative extrinsic reward obtained by
the agent over its entire lifetime, as the main objective. To
this end, we adopt the multi-lifetime setting of the Optimal
Rewards Framework (Singh et al., 2009) in which an agent
is initialised randomly at the start of each lifetime and then
faces a stationary or non-stationary task drawn from some
distribution. In this setting, the only knowledge that is trans-
ferred across lifetimes is the reward instead of the policy.
Specifically, the goal is to learn a single intrinsic reward
function that, when used to adapt the agent’s policy using
a standard episodic RL algorithm, ends up optimising the
cumulative extrinsic reward over its lifetime.

In previous work, good reward functions were found via
exhaustive search, limiting the range of applicability. We
develop a more scalable gradient-based method for learning
intrinsic rewards by exploiting the fact that the interaction
between the policy update and the reward function is dif-
ferentiable (Zheng et al., 2018). Moreover, unlike the prior
work, we parameterise the reward function by a recurrent
neural network unrolled over the entire lifetime and train it
to maximise lifetime return, which is crucial for the reward
function to capture long-term temporal dependencies (e.g.,
novelty of states across episodes). To handle long-term
credit assignment that spans the lifetime, we use a lifetime
value function that estimates the remaining lifetime return.

Our main contributions and findings are as follows: (1)
Through carefully designed environments, we show that
learned intrinsic reward functions can capture a rich form
of knowledge such as long-term exploration (e.g., exploring
uncertain states) and exploitation (e.g., anticipating environ-
ment changes) across multiple episodes. To our knowledge,
this is the first work that shows the feasibility of learning
such complex knowledge into reward functions. (2) We
show that “what to do” knowledge captured by the reward
functions can generalise to changing dynamics of the envi-
ronment and new learning agents, whereas policy transfer
methods do not generalise well, which provides insights
into the usefulness of rewards as a locus of knowledge.

2. Related Work
Hand-designed Rewards There is a long history of work
on designing rewards to accelerate learning in reinforce-
ment learning. Reward shaping aims to design task-specific
rewards towards known optimal behaviours, typically re-
quiring domain knowledge. Both the benefits (Randlöv &
Alström, 1998; Ng et al., 1999; Harutyunyan et al., 2015)
and the difficulty (Clark & Amodei, 2016) of task-specific re-

ward shaping have been studied. On the other hand, many in-
trinsic rewards have been proposed to encourage exploration,
inspired by animal behaviours. Examples include prediction
error (Schmidhuber, 1991a;b; Oudeyer et al., 2007; Gordon
& Ahissar, 2011; Mirolli & Baldassarre, 2013; Pathak et al.,
2017), surprise (Itti & Baldi, 2006), deviation from a default
policy (Goyal et al., 2018), weight change (Linke et al.,
2019), and state-visitation counts (Sutton, 1990; Poupart
et al., 2006; Strehl & Littman, 2008; Bellemare et al., 2016;
Ostrovski et al., 2017). Although these kinds of intrinsic
rewards are not domain-specific, they are often not well-
aligned with the task that the agent is solving, and ignore
the effect on the agent’s learning dynamics. In contrast, our
work aims to learn intrinsic rewards from data that take into
account the agent’s learning dynamics without requiring
prior knowledge from a human.

Rewards Learned from Experience There have been a
few attempts to learn useful intrinsic rewards from data.
Singh et al. (2009) introduced the Optimal Reward Frame-
work which aims to find a good reward function that al-
lows agents to solve a distribution of tasks using exhaustive
search. The empirical study only showed simple intrinsic
reward functions such as preference over certain objects due
to the inefficient exhaustive search method employed. Al-
though there have been follow-up works (Sorg et al., 2010;
Guo et al., 2016) that use a gradient-based method, they
consider a non-parameteric policy using Monte-Carlo Tree
Search. Our work is closely related to LIRPG (Zheng et al.,
2018) which proposed a meta-gradient method to learn in-
trinsic rewards. However, LIRPG considers a single task
in a single lifetime with a myopic episode return objective,
which is limited in that it does not allow exploration across
episodes or generalisation to different agents. In contrast,
our approach takes into account both the long-term effect of
intrinsic rewards on the learning dynamics and the lifetime
history of the agent. We show this is crucial for captur-
ing long-term knowledge, such as seeking for novel states
across episodes, which is not achieved in previous work. Fi-
nally, unlike AGILE (Bahdanau et al., 2019) which showed
that a learned reward function can generalise to unseen in-
structions in instruction-following RL problems, our work
shows new and interesting kind of generalisation: to new
agent-environment interfaces and algorithms.

Meta-learning for Exploration and Task Adaptation
Meta-learning (Schmidhuber et al., 1996; Thrun & Pratt,
1998) has recently received considerable attention in RL.
Recent advances include few-shot adaptation (Finn et al.,
2017a), few-shot imitation (Finn et al., 2017b; Duan et al.,
2017), model adaptation (Clavera et al., 2019), and inverse
RL (Xu et al., 2019). In particular, our work is related to
the prior work on meta-learning good exploration strate-
gies (Wang et al., 2016; Duan et al., 2016; Stadie et al.,
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Figure 1. Illustration of the proposed intrinsic reward learning
framework. The intrinsic reward rη is used to update the agent’s pa-
rameter θi throughout its lifetime which consists of many episodes.
The goal is to find the optimal intrinsic reward parameters η∗

across many lifetimes that maximises the lifetime return (Glife)
given any randomly initialised agents and possibly non-stationary
tasks drawn from some distribution p(T ).

2018; Xu et al., 2018a) in that both perform temporal credit
assignment across episode boundaries by maximising re-
wards accumulated beyond an episode. Unlike the prior
work that aims to directly transfer an exploratory policy,
our framework indirectly drives exploration via a reward
function which can be reused by different learning agents.

Meta-learning Update Rules There have been a few
studies that directly meta-learn how to update the agent’s
parameters via meta-parameters including discount factor
and returns (Xu et al., 2018b), auxiliary tasks (Schlegel
et al., 2018; Veeriah et al., 2019), unsupervised learning
rules (Metz et al., 2019), and RL objectives (Bechtle et al.,
2019; Kirsch et al., 2019). Our work also belongs to this
category in that our meta-parameters are the reward function
used in the agent’s update. In particular, our multi-lifetime
formulation is similar to ML3 (Bechtle et al., 2019) and
MetaGenRL (Kirsch et al., 2019). However, ML3 can-
not generalise to different agent-environment interfaces,
whereas intrinsic rewards can as shown in Section 6. In
addition, we propose to use the lifetime return as opposed
to the myopic episodic objective of ML3 and MetaGenRL,
which is crucial for cross-episode exploration.

Cognitive Study on Exploration-Exploitation. Several
cognitive science studies on the exploration-exploitation
dilemma (Cohen et al., 2007; Wilson et al., 2014) have
shown that humans use both a random exploration strat-
egy (Thompson, 1933; Watkins, 1989) and an information-
seeking strategy (Gittins, 1974; 1979) when facing uncer-
tainty. Computationally, the former can be easily imple-
mented, whereas the latter usually requires carefully hand-
crafted methods to guide the agent’s behaviour. In this work,
we hypothesize and empirically verify that an information-
seeking intrinsic reward function can naturally emerge if it
is useful for solving the tasks. The condition of being useful
resembles a recent study (Dubey & Griffiths, 2019) which
posited that a rational agent should explore in a way such
that the usefulness of its knowledge is maximised.

3. The Optimal Reward Problem
We first introduce some terminology.

• Agent: A learning system interacting with an envi-
ronment. On each step t the agent selects an action
at and receives from the environment an observation
st+1 and an extrinsic reward rt+1 defined by a task T .
The agent chooses actions based on a policy πθ(at|st)
parameterised by θ.

• Episode: A finite sequence of agent-environment inter-
actions until the end of the episode defined by the task.
An episode return is defined as: Gep =

∑Tep−1
t=0 γtrt+1,

where γ is a discount factor, and the random vari-
able Tep gives the number of steps until the end of
the episode.

• Lifetime: A finite sequence of agent-environment in-
teractions until the end of training defined by an agent-
designer, which can consist of multiple episodes. The
lifetime return is Glife =

∑T−1
t=0 γtrt+1, where γ is a

discount factor, and T is the number of steps in the
lifetime.

• Intrinsic reward: A reward function
rη(τt+1) parameterised by η, where τt =
(s0, a0, r1, d1, s1, . . . , rt, dt, st) is a lifetime his-
tory with (binary) episode terminations di.

The Optimal Reward Problem (Singh et al., 2010), illus-
trated in Figure 1, aims to learn the parameters of the intrin-
sic reward such that the resulting rewards achieve a learning
dynamic for an RL agent that maximises the lifetime (extrin-
sic) return on tasks drawn from some distribution. Formally,
the objective function is defined as:

J(η) = Eθ0∼Θ,T ∼p(T )

[
Eτ∼pη(τ |θ0)

[
Glife]] , (1)

where Θ and p(T ) are an initial policy distribution and a
distribution over possibly non-stationary tasks respectively.
The likelihood of a lifetime history τ is pη(τ |θ0) =

p(s0)
∏T−1
t=0 πθt(at|st)p(dt+1, rt+1, st+1|st, at), where

θt = f(θt−1, η) is a policy parameter as updated with
update function f , which is policy gradient in this paper.1

Note that the optimisation of η spans multiple lifetimes,
each of which can span multiple episodes.

Using the lifetime return Glife as the objective instead of the
conventional episodic return Gep allows exploration across
multiple episodes as long as the lifetime return is maximised
in the long run. In particular, when the lifetime is defined as
a fixed number of episodes, we find that the lifetime return
objective is sometimes more beneficial than the episodic

1We assume that the policy parameter is updated after each
time-step throughout the paper for brevity. However, the parameter
can be updated less frequently in practice.
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Algorithm 1 Learning intrinsic rewards

Input: p(T ): Task distribution
Input: Θ: Randomly-initialised policy distribution
Initialise intrinsic reward η and lifetime value φ
repeat

Initialise task T ∼ p(T ) and policy θ ∼ Θ
while lifetime not ended do
θ0 ← θ
for k = 1, 2, . . . , N do

Generate a trajectory using πθk−1

Update policy θk ← θk−1 + α∇θk−1
Jη(θk−1)

using intrinsic rewards rη (Eq. 3)
end for
Update intrinsic reward function η using Eq. 4
Update lifetime value function φ using Eq. 6
θ ← θN

end while
until η converges

return objective, even for the episodic return performance
measure. However, different objectives (e.g., final episode
return) can be considered depending on the definition of
what a good reward function is.

4. Meta-Learning Intrinsic Reward
We propose a meta-gradient approach (Xu et al., 2018b;
Zheng et al., 2018) to solve the optimal reward problem. At
a high-level, we sample a new task T and a new random pol-
icy parameter θ at each lifetime iteration. We then simulate
an agent’s lifetime by updating the parameter θ using an in-
trinsic reward function rη (Section 4.1) with policy gradient
(Section 4.2). Concurrently, we compute the meta-gradient
by taking into account the effect of the intrinsic rewards on
the policy parameters to update the intrinsic reward function
with a lifetime value function (Section 4.3). Algorithm 1
gives an overview of our algorithm. The following sections
describe the details.

4.1. Architectures

The intrinsic reward function is a recurrent neural network
(RNN) parameterised by η, which produces a scalar reward
on arriving in state st by taking into account the history
of an agent’s lifetime τt = (s0, a0, r1, d1, s1, ..., rt, dt, st).
We claim that giving the lifetime history across episodes
as input is crucial for balancing exploration and exploita-
tion, for instance by capturing how frequently a certain state
is visited to determine an exploration bonus reward. The
lifetime value function is a separate recurrent neural net-
work parameterised by φ, which takes the same inputs as
the intrinsic reward function and produces a scalar value
estimation of the expected future return within the lifetime.

4.2. Policy Update

Each agent interacts with an environment and a task sampled
from a distribution T ∼ p(T ). However, instead of directly
maximising the extrinsic rewards defined by the task, the
agent maximises the intrinsic rewards (rη) by using policy
gradient (Williams, 1992; Sutton et al., 2000):

Jη(θ) = Eθ
[ Tep−1∑
t=0

γ̄trη(τt+1)

]
(2)

∇θJη(θ) = Eθ
[
Gep
η,t∇θ log πθ(a|s)

]
, (3)

where rη(τt+1) is the intrinsic reward at time t, and Gep
η,t =∑Tep−1

k=t γ̄k−trη(τk+1) is the return of the intrinsic rewards
accumulated over an episode with discount factor γ̄.

4.3. Intrinsic Reward and Lifetime Value Update

To update the intrinsic reward parameters η, we directly
take a meta-gradient ascent step using the overall objective
(Equation 1). Specifically, the gradient is (see the supple-
mentary material for derivation)

∇ηJ(η) = Eθt,T
[
Glife
t ∇θt log πθt(at|st)∇ηθt

]
, (4)

The chain rule is used to get the meta-gradient (∇ηθt) as in
previous work (Zheng et al., 2018). The computation graph
of this procedure is illustrated in Figure 1.

Computing the true meta-gradient in Equation 4 requires
backpropagation through the entire lifetime, which is in-
feasible as each lifetime can involve thousands of policy
updates. To partially address this issue, we truncate the
meta-gradient after N policy updates but approximate the
lifetime return Glife,φ

t ≈ Glife
t using a lifetime value func-

tion Vφ(τ) parameterised by φ, which is learned using a
temporal difference learning from n-step trajectory:

Glife,φ
t =

n−1∑
k=0

γkrt+k+1 + γnVφ(τt+n) (5)

φ′ = φ+ α′(Glife,φ
t − Vφ(τt))∇φVφ(τt), (6)

where α′ is a learning rate. In our empirical work, we found
that the lifetime value estimates were crucial to allow the
intrinsic reward to perform long-term credit assignments
across episodes (Section 5.6).

5. Empirical Investigations
We present the results from our empirical investigations in
two sections. In this section, the experiments and domains
are designed to answer the following research questions:
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(a) Empty Rooms
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B C
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B C
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Figure 2. Illustration of domains. (a) The agent needs to find the
goal location which gives a positive reward, but the goal is not
visible to the agent. (b) Each object (A, B, and C) gives rewards.
(c) The agent is required to first collect the key and visit one of
the boxes (A, B, and C) to receive the corresponding reward. All
objects are placed in random locations before each episode.

• What kind of knowledge is learned by the intrinsic
reward?

• How does the distribution of tasks influence the intrin-
sic reward?

• What is the benefit of the lifetime return objective over
the episode return?

• When is it important to provide the lifetime history as
input to the intrinsic reward?

5.1. Experimental Setup

We investigate these research questions in the grid-world
domains illustrated in Figure 2. For each domain, we trained
an intrinsic reward function across many lifetimes and eval-
uated it by training an agent using the learned reward. We
implemented the following baselines.

• Extrinsic-EP: A policy is trained with extrinsic rewards
to maximise the episode return.

• Extrinsic-LIFE: A policy is trained with extrinsic re-
wards to maximise the lifetime return.

• Count-based (Strehl & Littman, 2008): A policy is
trained with extrinsic rewards and count-based explo-
ration bonus rewards.

• ICM (Pathak et al., 2017): A policy is trained with
extrinsic rewards and curiosity rewards based on an
inverse dynamics model.

Note that these baselines, unlike the learned intrinsic re-
wards, do not transfer any knowledge across different life-
times. Throughout Sections 5.2-5.5, we focus on analysing
what kind of knowledge is learned by the intrinsic reward de-
pending on the nature of environments. We discuss the ben-
efit of using the lifetime return and considering the lifetime
history when learning the intrinsic reward in Section 5.6.
The details of implementation and hyperparameters are de-
scribed in the supplementary material.

5.2. Exploring Uncertain States

We designed ‘Empty Rooms’ (Figure 2a) to see whether the
intrinsic reward can learn to encourage exploration of un-
certain states like novelty-based exploration methods. The
goal is to visit an invisible goal location, which is fixed
within each lifetime but varies across lifetimes. An episode
terminates when the goal is reached. Each lifetime consists
of 200 episodes. From the agent’s perspective, its policy
should visit the locations suggested by the intrinsic reward.
From the intrinsic reward’s perspective, it should encourage
the agent to go to unvisited locations to locate the goal, and
then to exploit that knowledge for the rest of the lifetime.

Figure 3 shows that the learned intrinsic reward was more
efficient than extrinsic rewards and count-based exploration
when training a new agent. We observed that the intrinsic
reward learned two interesting strategies as visualised in Fig-
ure 4. While the goal is not found, it encourages exploration
of unvisited locations, because it learned the knowledge that
there exists a rewarding goal location somewhere. Once the
goal is found the intrinsic reward encourages the agent to
exploit it without further exploration, because it learned that
there is only one goal. This result shows that curiosity about
uncertain states can naturally emerge when various states
can be rewarding in a domain, even when the rewarding
states are fixed within an agent’s lifetime.

5.3. Exploring Uncertain Objects

In the previous domain, we considered uncertainty of where
the reward (or goal location) is. We now consider dealing
with uncertainty about the value of different objects. In
the ‘Random ABC’ environment (see Figure 2b), for each
lifetime the rewards for objects A, B, and C are uniformly
sampled from [−1, 1], [−0.5, 0], and [0, 0.5] respectively
but are held fixed within the lifetime. A good intrinsic
reward should learn that: 1) B should be avoided, 2) A
and C have uncertain rewards, hence require systematic
exploration (first go to one and then the other), and 3) once
it is determined which of the two A or C is better, exploit
that knowledge by encouraging the agent to repeatedly go
to that object for the rest of the lifetime.

Figure 3 shows that the agent learned a near-optimal
exploration-and-then-exploitation method with the learned
intrinsic reward. Note that the agent cannot pass informa-
tion about the reward for objects across episodes, as usual in
reinforcement learning. The intrinsic reward can propagate
such information across episodes and help the agent explore
or exploit appropriately. We visualised the learned intrin-
sic reward for different actions sequences in Figure 5. The
intrinsic rewards encourage the agent to explore towards A
and C in the first few episodes. Once A and C are explored,
the agent exploits the largest rewarding object. Throughout
training, the agent is discouraged to visit B through negative
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Figure 3. Evaluation of different reward functions averaged over 30 seeds. The learning curves show agents trained with our intrinsic
reward (blue), with the extrinsic reward using the episodic return objective (orange) or the lifetime return objective (brown), and with a
count-based exploration reward (green). The dashed line corresponds to a hand-designed near-optimal exploration strategy.

(a) Room (b) Intrinsic (c) Count (d) ICM

Figure 4. Visualisation of the first 3000 steps of an agent trained
with different reward functions in Empty Rooms. (a) The blue
and yellow squares represent the agent and the hidden goal, re-
spectively. (b) The learned reward encourages the agent to visit
many locations if the goal is not found (top). However, when the
goal is found early, the intrinsic reward makes the agent exploit it
without further exploration (bottom). (c-d) Both the count-based
and ICM rewards tend to encourage exploration (top) but hinders
exploitation when the goal is found (bottom).

intrinsic rewards. These results show that avoidance and
curiosity about uncertain objects can potentially emerge if
the environment has various or fixed rewarding objects.

5.4. Exploiting Invariant Causal Relationship

To see how the intrinsic reward deals with causal relation-
ship between objects, we designed ‘Key-Box’, which is
similar to Random ABC except that there is a key in the
room (see Figure 2c). The agent needs to collect the key
first to open one of the boxes (A, B, and C) and receive the
corresponding reward. The rewards for the objects are sam-
pled from the same distribution as Random ABC. The key
itself gives a neutral reward of 0. Moreover, the locations of
the agent, the key, and the boxes are randomly sampled for
each episode. As a result, the state space contains more than
3 billion distinct states and thus is infeasible to fully enu-
merate. Figure 3 shows that learned intrinsic reward leads to
a near-optimal exploration. The agent trained with extrinsic
rewards did not learn to open any box. The intrinsic reward

Episode 1

Episode 2 Episode 3

Vi
si

t A

Visit C

Episode 2 Episode 3

Visit C

Visit A

A=0.2   B=-0.5   C=0.1

Figure 5. Visualisation of the learned intrinsic reward in Random
ABC, where the extrinsic rewards for A, B, and C are 0.2, -0.5, and
0.1 respectively. Each figure shows the sum of intrinsic rewards
for a trajectory towards each object (A, B, and C). In the first
episode, the intrinsic reward encourages the agent to explore A. In
the second episode, the intrinsic reward encourages exploring C if
A is visited (top) or vice versa (bottom). In episode 3, after both A
and C are explored, the intrinsic reward encourages revisiting A
(both top and bottom).

captures that the key is necessary to open any box, which
is true across many lifetimes of training. This demonstrates
that the intrinsic reward can capture causal relationships
between objects when the domain has this kind of invariant
dynamics.

5.5. Dealing with Non-stationarity

We investigated how the intrinsic reward handles non-
stationary tasks within a lifetime in our ‘Non-stationary
ABC’ environment. Rewards are as follows: for A is either
1 or −1, for B is −0.5, for C is the negative value of the re-
ward for A. The rewards of A and C are swapped every 250
episodes. Each lifetime lasts 1000 episodes. Figure 3 shows
that the agent with the learned intrinsic reward quickly re-
covered its performance when the task changes, whereas the
baselines take more time to recover. Figure 6 shows how
the learned intrinsic reward encourages the learning agent
to react to the changing rewards. Interestingly, the intrin-
sic reward has learned to prepare for the change by giving
negative rewards to the exploitation policy of the agent a
few episodes before the task changes. In other words, the
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Figure 7. Evaluation of different intrinsic reward architectures and objectives. For ‘LSTM’ the reward network has an LSTM taking the
lifetime history as input. For ‘FF’ a feed-forward reward network takes only the current time-step. ‘Lifetime’ and ‘Episode’ means the
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intrinsic reward reduces the agent’s commitment to the cur-
rent best rewarding object, thereby increasing entropy in the
current policy in anticipation of the change, eventually mak-
ing it easier to adapt quickly. This shows that the intrinsic
reward can capture the (regularly) repeated non-stationarity
across many lifetimes and make the agent intrinsically moti-
vated not to commit too firmly to a policy, in anticipation of
changes in the environment.

5.6. Ablation Study

To study relative benefits of the proposed technical ideas,
we conducted an ablation study 1) by replacing the long-
term lifetime return objective (Glife) with the episodic return
(Gep) and 2) by restricting the input of the reward network
to the current time-step instead of the entire lifetime his-
tory. Figure 7 shows that the lifetime history was crucial to
achieve good performance. This is reasonable because all
domains require some past information (e.g., object rewards
in Random ABC, visited locations in Empty Rooms) to pro-
vide useful exploration strategies. It is also shown that the
lifetime return objective was beneficial on Random ABC,
Non-stationary ABC, and Key-Box. These domains require
exploration across multiple episodes in order to find the opti-
mal policy. For example, collecting an uncertain object (e.g.,
object A in Random ABC) is necessary even if the episode
terminates with a negative reward. The episodic value func-
tion would directly penalise such an under-performing ex-
ploratory episode when computing meta-gradient, which
prevents the intrinsic reward from learning to encourage

exploration across episodes. On the other hand, such be-
haviour can be encouraged by the lifetime value function,
as long as it provides useful information to maximise the
lifetime return in the long term.

6. Generalisation via Rewards
As noted above, rewards capture knowledge about what an
agent’s goals should be rather than how it should behave. At
the same time, transferring the latter in the form of policies
is also feasible in our domains presented above. Here we
confirm it by implementing and presenting results for the
following two meta-learning methods:

• MAML (Finn et al., 2017a): A policy meta-learned
from a distributions of tasks such that it can adapt
quickly to the given task after a few parameter updates.

• RL2 (Duan et al., 2016; Wang et al., 2016): An RNN
policy unrolled over the entire lifetime to maximise the
lifetime return, which is pre-trained on a distributions
of tasks.

Although all the methods we implemented including ours
are designed to learn useful knowledge from a distribution
of tasks, they have different objectives. Specifically, the
objective of our method is to learn knowledge that is useful
for training “randomly-initialised policies” by capturing
“what to do”, whereas the goal of policy transfer methods is
to directly transfer a useful policy for fast task adaptation
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Figure 9. Generalisation to new agent-environment interfaces in Random ABC. (a) ‘Permuted’ agents have different action semantics.
‘Extended’ agents have additional actions. (b) ‘AC-Intrinsic’ is the original actor-critic agent trained with the intrinsic reward. ‘Q-Intrinsic’
is a Q-learning agent with the intrinsic reward learned from actor-critic agents. ‘Q-Extrinsic’ is the Q-learning agent with the extrinsic
reward. (c) The performance of the policy transfer baselines with permuted actions during evaluation.

by transferring “how to do” knowledge. In fact, it can
be more efficient to transfer and reuse pre-trained policies
instead of restarting from a random policy and learning
using the learned rewards given a new task. Figure 8 indeed
shows that RL2 performs better than our intrinsic reward
approach. It is also shown that MAML and RL2 achieve
good performance from the beginning, as they have already
learned how to navigate the grid worlds and how to achieve
the goals of the tasks. In our method, on the other hand,
the agent starts from a random policy and relies on the
learned intrinsic reward which indirectly tells it what to do.
Nevertheless, our method outperforms MAML and achieves
a comparable asymptotic performance to RL2.

6.1. Generalise to New Agent-Environment Interfaces

In fact, our method can be interpreted as an instance of
RL2 with a particular decomposition of parameters (θ and
η), which uses policy gradient as a recurrent update (see
Figure 1). While this modular structure may not be more
beneficial than RL2 when evaluated with the same agent-
environment interface, such a decomposition provides clear
semantics of each module: the policy (θ) captures “how to
do” while the intrinsic reward (η) captures “what to do”,
and this enables interesting kinds of generalisations as we
show below. Specifically, we show that “what” knowledge
captured by the intrinsic reward can be reused by many
different learning agents as follows.

Generalise to Unseen Action Spaces We first evaluated
the learned intrinsic reward on new action spaces. Specifi-

cally, the intrinsic reward was used to train new agents with
either 1) permuted actions, where the semantics of left/right
and up/down are reversed, or 2) extended actions, with 4
additional actions that move diagonally. Figure 9a shows
that the intrinsic reward provided useful rewards to new
agents with different actions, though it was not trained with
those actions. This is feasible because the intrinsic reward
assigns rewards to the agent’s state changes rather than its
actions. The intrinsic reward captures “what to do”, which
makes it feasible to generalise to new actions, as long as the
goal remains the same. On the other hand, it is unclear how
to generalise RL2 and MAML in this way.

Generalise to Unseen Learning Algorithms We further
investigated how general the learned intrinsic reward is by
evaluating it on agents with different learning algorithms.
Specifically, after training the intrinsic reward from actor-
critic agents, we evaluated it by training new agents through
Q-learning while using the learned intrinsic reward as de-
noted by ‘Q-Intrinsic’ in Figure 9b. Interestingly, it turns
out that the learned intrinsic reward is general enough to be
useful for Q-learning agents, even though it was trained for
actor-critic agents. Again, it is unclear how to generalise
RL2 and MAML in this way.

Comparison to Policy Transfer Although it is impossi-
ble to apply the learned policy from RL2 and MAML when
we extend the action space or when we change the learning
algorithm, we can do so when we only permute the actions.
As shown in Figure 9c, both RL2 and MAML generalise



What Can Learned Intrinsic Rewards Capture?

poorly when the action space is permuted for Random ABC,
because the transferred policies are highly biased to the orig-
inal action space. Again, this result highlights the difference
between “what to do” knowledge captured by our approach
and “how to do” knowledge captured by policies.

7. Conclusion
We revisited the optimal reward problem (Singh et al., 2009)
and proposed a more scalable gradient-based method for
learning intrinsic rewards across lifetimes. Through sev-
eral proof-of-concept experiments, we showed that the
learned non-stationary intrinsic reward can capture regu-
larities within a distribution of environments or, over time,
within a non-stationary environment. As a result, they were
capable of encouraging both exploratory and exploitative
behaviour across multiple episodes. In addition, some task-
independent notions of intrinsic motivation such as curiosity
emerged when they were effective for the distribution over
tasks across lifetimes the agent was trained on. We also
showed that the learned intrinsic rewards can generalise
to different agent-environment interfaces such as different
action spaces and different learning algorithms, whereas pol-
icy transfer methods fail to generalise to such changes. This
highlights the difference between the “what” kind of knowl-
edge captured by rewards and the “how” kind of knowledge
captured by policies. The flexibility and range of knowledge
captured by intrinsic rewards in our proof-of-concept experi-
ments encourages further work towards combining different
loci of knowledge to achieve greater practical benefits.
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