
Sharp Composition Bounds for Gaussian Differential Privacy via Edgeworth Expansion

A. The Edgeworth Approximation

We can apply Edgeworth expansion to approximate eFn directly, following the techniques introduced in Hall (2013). Let us
assume x ⇠ Q. Denote

XQ =
Tn � EQ[Tn]p

VarQ(Tn)
=

Pn
i=1(Li � µi)pPn

i=1 �
2
i

, (A.1)

where µi and �2
i are the mean and variance of Li under the distribution Qi. The characteristic function of XQ is
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where ̃r(XQ) is the r-th cumulant of XQ. Details of how to compute the cumulants are summarized in Appendix B. Let
�n =

pPn
i=1 �

2
i . Particularly we have

̃1(XQ) = EQ(XQ) = 0,

̃2(XQ) = VarQ(XQ) = 1,

...
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(A.2)

We will denote the sum of n cumulants by ̃r =
Pn

i=1 ̃r(Li). Under the series expansion of the exponential function, we
will have
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(A.3)

Since �n(t) =
R
eithd eFn(h) and e�t2/2 =

R
eithd�(h), we can obtain the corresponding “inverse” expansion:

eFn(h) ⇡ �(h) + ��3
n · R1(h) + ��4

n · R2(h) + ��6
n · R3(h), (A.4)

and Rj(h) is a function whose Fourier-Stieljes transform equals rj(it)e�t2/2:
Z 1

�1
eithdRj(h) = rj(it)e

�t2/2.

Let D denote the differential operator d/dh. We have

e�t2/2 = (�it)�j

Z 1

�1
eithd

�
Dj�(h)

 

and hence Z 1

�1
eithd

�
(�D)j�(h)

 
= (it)je�t2/2.
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Let us interpret rj(�D) as a polynomial in D, we then obtain
Z 1

�1
eithd {rj(�D)�(h)} = rj(it)e

�t2/2.

Consequently,
Rj(h) = rj(�D)�(h). (A.5)

It is well known that for j � 1,
(�D)j�(h) = �Hej�1(h)�(h) (A.6)

and Hejs are the Hermite polynomials:

He0(h) = 1,

He1(h) = h,

He2(h) = h2 � 1,

He3(h) = h3 � 3h,

He4(h) = h4 � 6h2 + 3,

He5(h) = h5 � 10h3 + 15h,

He6(h) = h6 � 15h4 + 45h2 � 15,

He7(h) = h7 � 21h5 + 105h3,

. . .

(A.7)

Combine equations A.4, A.5, A.6 and A.7 we can deduce the final result:
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(A.8)

In A.3, the truncation happens in both the second and third line. In the second line, we truncated terms where r � 5. In the
following line, we apply the series expansion to the exponential function, and we stopped after taking t1 := ��3

n · 1
6 ̃3(it)3,

t2 := ��4
n · 1

24 ̃4(it)4 and the square of t1.

The error stems from truncating r � 5 terms in the second line will be dominated by
1

120
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n ̃5(it)5 in the series expansion.

The error stems from truncating the expansion of r = 3, 4 terms in the following line will be dominated by the square of t2:
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2
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8.

Since all Li’s are identically distributed, the cumulants of L1, . . . Ln take the same value for any fixed order. Therefore,
�1 = · · · = �n = � and ̃r = ̃r(L1) = · · · = ̃r(Ln). As a consequence, we have �n =

p
n� and ̃r = n̃r. This leads

to
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(A.9)

Hence the error for approximating �n(t) is upper bounded by O
�
n�2(it)8 + n�3/2(it)5

�
. Next, we connect the char-

acteristic function to CDF eFn(h). From equations A.5 and A.6, we know the error term will be transformed into
O
�
n�2He7(h) + n�3/2He4(h)

�
as approximating eFn(h), which is O

�
n�2h7 + n�3/2h3

�
.
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B. Computing Cumulants From Moments
The cumulants of a random variable X are defined using the cumulant-generating function K(t). It is the natural logarithm
of the moment-generating function:

K(t) = logE
�
etX

�
,

and the cumulants are the coefficients in the Taylor expansion of K(t) about the origin:

K(t) = logE
�
etX

�
=

1X

r=0

rt
r/r!.

For any integer r � 0, the r-th order non-central moment of X is µr = E(Xr). Recall the Taylor expansion of the
moment-generating function M(t) about the origin

M(t) = E
�
etX

�
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1X
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µrt
r/r! = exp (K(t)) .

The cumulants can be recovered in terms of the moments and vice versa. In general,

r =
rX

k=1

(�1)k�1(k � 1)!Br,k(µ1, . . . , µr�k+1)

where Bn,k are Bell polynomials. The relationship between the first few cumulants and moments is as the following:

0 = 0,

1 = µ1,

2 = µ2 � µ2
1,

3 = µ3 � 3µ2µ1 + 2µ3
1,

4 = µ4 � 4µ3µ1 � 3µ2
2 + 12µ2µ

2
1 � 6µ4

1.

C. N (0, 1) vs pN (µ, 1) + (1 � p)N (0, 1))

Let P be the standard normal distribution N (0, 1) and Q be a mixture model pN (µ, 1) + (1 � p)N (0, 1) with µ > 0. We
now show that
Lemma C.1.

T (P,Q) = pGµ + (1 � p)Id.

Proof. The likelihood ratio between Q and P is

pe�
1
2 (x�µ)2+ 1

2x
2

+ 1 � p = peµx�
1
2µ

2

+ 1 � p.

Since µ > 0, likelihood ratio tests are thresholding, i.e., {x : x > h}. The type I and type II errors are

↵ = P{x : x > h} = 1 � �(h),

� = Q{x : x 6 h}
= pEx⇠N (µ,1)[1{x:x6h}] + (1 � p)Ex⇠N (0,1)[1{x:x6h}]

= p�(h � µ) + (1 � p)�(h).

Inverting the first formula, we have h = ��1(1 � ↵). So

� = p�(h � µ) + (1 � p)�(h) = p�(��1(1 � ↵) � µ) + (1 � p)(1 � ↵)

Making use of the known expression Gµ(↵) = �
�
��1(1 � ↵) � µ

�
and Id(↵) = 1 � ↵, we have

T (P,Q)(↵) = � = pGµ(↵) + (1 � p)Id(↵).
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D. Details of the Numerical Method
D.1. Proof of Lemma 5.1

Proof. By definition of convex conjugacy, � > �1(") if and only if f(x) > 1� �� e"x for all x 2 [0, 1]. Since f = T (P,Q)
characterizes optimal testing rules, f(x) > 1� �� e"x for any x 2 [0, 1] if and only if for any event E, Q[E] 6 e"P [E]+ �.
That is,

�1(") = min{� : Q[E] 6 e"P [E] + �, 8E}
= max

E
Q[E] � e"P [E]

= max
E

Z

E

⇥
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dµ(x).

Obviously, the maximum is attained at the event that the integrand being non-negative. That is, E = {x : q(x)�e"p(x) > 0}.
Therefore,

�1(") =

Z �
q � e"p

�
+
dµ.

D.2. Proof of Lemma 5.2

Proof. By definition of ⌦ and Lemma 5.1, we have
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=

Z
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h Z �
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�
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dy (Fubini)

=

Z
q2(y) · �1

�
" � L2(y)

�
dy. (Lemma 5.1 on �1)

E. Privacy Guarantees for Noisy SGD with Sampling Rate p = 0.5p
n

In Section 5.3 we present the result when the sampling rate p = 0.5/n
1
4 . Since the convergence of CLT requires the

assumption p
p
n ! ⌫ > 0 (Bu et al., 2019), that is a regime where the performance of CLT does not have theoretical

guarantees. Here we present the results when p = 0.5/n
1
2 , where the convergence of CLT is guaranteed. However, we still

observe that Edgeworth outperforms CLT . See Figure E.1 and E.2 for the comparison.
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Figure E.1. The estimation of 0.5/n
1
2 (G1 + Id)⌦n.
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Figure E.2. The estimation of the privacy bound for n-step noisy SGD. The sampling rate is p = 0.5/n
1
2 and the noise scale is � = 1.


