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A. Derivations of the ELBO
For a singe task, we begin with maximizing log-likelihood of the conditional distribution p(y|x,S) to derive the ELBO of
MetaVRF. By leveraging Jensen’s inequality, we have the following steps as

log p(y|x,S) = log

∫
p(y|x,S,ω)p(ω|x,S)dω (1)

= log

∫
p(y|x,S,ω)p(ω|x,S)qφ(ω|S)

qφ(ω|S)
dω (2)

≥
∫

log

[
p(y|x,S,ω)p(ω|x,S)

qφ(ω|S)

]
qφ(ω|S)dω (3)

= Eqφ(ω|S) log [p(y|x,S,ω)]−DKL[qφ(ω|S)||p(ω|x,S)]︸ ︷︷ ︸
ELBO

. (4)

The ELBO can also be derived from the perspective of the KL divergence between the variational posterior qφ(ω|S) and the
posterior p(ω|y,x,S):

DKL[qφ(ω|S)||p(ω|y,x,S)] = Eqφ(ω|S) [log qφ(ω|S)− log p(ω|y,x,S)]

= Eqφ(ω|S)
[
log qφ(ω|S)− log

p(y|ω,x,S)p(ω|x,S)
p(y|x,S)

]
= log p(y|x,S) + Eqφ(ω|S) [log qφ(ω|S)− log p(y|ω,x,S)− log p(ω|x,S)]
= log p(y|x,S)− Eqφ(ω|S) [log p(y|ω,x,S)] +DKL[qφ(ω|S)||p(ω|x,S)] ≥ 0.

(5)

Therefore, the lower bound of the log p(y|x,S) is

log p(y|x,S) ≥ Eqφ(ω|S) log [p(y|x,S,ω)]−DKL[qφ(ω|S)||p(ω|x,S)], (6)

which is consistent with (4).

B. Cross attention in the prior network
In p(ω|x,S), both x and S are inputs of the prior network. In order to effectively integrate the two conditions, we adopt
the cross attention (Kim et al., 2019) between x and each element in S. In our case, we have the key-value matrices
K = V ∈ RC×d, where d is the dimension of the feature representation, and C is the number of categories in the support
set. We adopt the instance pooling by taking the average of samples in each category when the shot number k > 1.

For the query Qi = x ∈ Rd, the Laplace kernel returns attentive representation for x:

Laplace(Qi,K, V ) := WiV ∈ Rd, Wi := softmax(−‖Qi −Kj.‖1)
C
j=1 (7)

The prior network takes the attentive representation as the input.
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C. More experimental details
We train all models using the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.0001. The other training
setting and network architecture for regression and classification on three datasets are different as follows.

C.1. Inference networks

The architecture of the inference network with vanilla LSTM for the regression task is in Table C.1. The architecture of the
inference network with bidirectional LSTM for the regression task is in Table C.2. For few-shot classification tasks, all
models share the same architecture with vanilla LSTM, as in Table C.3, For few-shot classification tasks, all models share
the same architecture with bidirectional LSTM, as in Table C.4.

C.2. Prior networks

The architecture of the prior network for the regression task is in Table C.5. For few-shot classification tasks, all models
share the same architecture, as in Table C.6.

C.3. Feature embedding networks

Regression. The fully connected architecture for regression tasks is shown in Table D.7. We train all three models (3-shot,
5-shot, 10-shot) over a total of 20, 000 iterations, with 6 episodes per iteration.

Classification. The CNN architectures for Omniglot, CIFAR-FS, and miniImageNet are shown in Table D.8, D.9, and D.10.
The difference of feature embedding architectures for different datasets is due the different image sizes.

Table C.1. The inference network φ(·) based on the vanilla LSTM used for regression.

Output size Layers

40 Input samples feature
40 fully connected, ELU
40 fully connected, ELU
40 LSTM cell, Tanh to µw, log σ2

w

Table C.2. The inference network φ(·) based on the bidirectional LSTM for regression.

Output size Layers

80 Input samples feature
40 fully connected, ELU
40 fully connected, ELU
40 LSTM cell, Tanh to µw, log σ2

w

Table C.3. The inference network φ(·) based on the vanilla LSTM for Omniglot, miniImageNet, CIFAR-FS.

Output size Layers

k × 256 Input feature
256 instance pooling
256 fully connected, ELU
256 fully connected, ELU
256 fully connected, ELU
256 LSTM cell, tanh to µw, log σ2

w

D. Few-shot classification datasets
Omniglot (Lake et al., 2015) is a benchmark of few-shot learning that contain 1623 handwritten characters (each with 20
examples). All characters are grouped in 50 alphabets. For fair comparison against the state of the arts, we follow the same



Table C.4. The inference network φ(·) based on the bidirectional LSTM for Omniglot, miniImageNet, CIFAR-FS.

Output size Layers

k × 512 Input feature
256 instance pooling
256 fully connected, ELU
256 fully connected, ELU
256 fully connected, ELU
256 LSTM cell, tanh to µw, log σ2

w

Table C.5. The prior network for regression.
Output size Layers

40 fully connected, ELU
40 fully connected, ELU
40 fully connected to µw, log σ2

w

data split and pre-processing used in Vinyals et al. (2016). The training, validation, and testing are composed of a random
split of [1100, 200, 423]. The dataset is augmented with rotations of 90 degrees, which results in 4000 classes for training,
400 for validation, and 1292 for testing. The number of examples is fixed as 20. All images are resized to 28×28. For a
C-way, k-shot task at training time, we randomly sample C classes from the 4000 classes. Once we have C classes, (k+15)
examples of each are sampled. Thus, there are C×k examples in the support set and C×15 examples in the query set. The
same sampling strategy is also used in validation and testing.

miniImageNet (Vinyals et al., 2016) is a challenging dataset constructed from ImageNet (Russakovsky et al., 2015), which
comprises a total of 100 different classes (each with 600 instances). All these images have been downsampled to 84×84.
We use the same splits of Ravi & Larochelle (2017), where there are [64, 16, 20] classes for training, validation and testing.
We use the same episodic manner as Omniglot for sampling.

CIFAR-FS (CIFAR100 few-shots) (Bertinetto et al., 2019) is adapted from the CIFAR-100 dataset (Krizhevsky et al., 2009)
for few-shot learning. Recall that in the image classification benchmark CIFAR-100, there are 100 classes grouped into 20
superclasses (each with 600 instances). CIFAR-FS use the same split criteria (64, 16, 20) with which miniImageNet has been
generated. The resolution of all images is 32×32.

D.1. Other settings

The settings including the iteration numbers and the batch sizes are different on different datasets. The detailed information
is given in Table D.11.

E. More results on few-shot regression
We provide more experimental results for the tasks of few-shot regression in Figure E.1. The proposed MetaVRF again
performs much better than regular random Fourier features (RFFs) and the MAML method.



Table C.6. The prior network for Omniglot, miniImageNet, CIFAR-FS

Output size Layers

256 Input query feature
256 fully connected, ELU
256 fully connected, ELU
256 fully connected to µw, log σ2

w

Table D.7. The fully connected network ψ(·) used for regression.

Output size Layers

1 Input training samples
40 fully connected, RELU
40 fully connected, RELU

Table D.8. The CNN architecture ψ(·) for Omniglot.
Output size Layers
28×28×1 Input images
14×14×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.9, pool (2×2, stride=2, SAME)
7×7×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.9, pool (2×2, stride=2, SAME)
4×4×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.9, pool (2×2, stride=2, SAME)
2×2×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.9, pool (2×2, stride=2, SAME)
256 flatten

Table D.9. The CNN architecture ψ(·) for CIFAR-FS
Output size Layers
32×32×3 Input images
16×16×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
8×8×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
4×4×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
2×2×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
256 flatten

Table D.10. The CNN architecture ψ(·) for miniImageNet
Output size Layers
84×84×3 Input images
42×42×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
21×21×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
10×10×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
5×5×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
2×2×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
256 flatten

Table D.11. The iteration numbers and batch sizes on different datasets.
Dataset Iteration Batch size

Regression 20, 000 25
Omniglot 100, 000 6
CIFAR-FS 200, 000 8
miniImageNet 150, 000 8
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Figure E.1. More results of few-shot regression. ( MetaVRF with bi-LSTM; MetaVRF with LSTM; MetaVRF w/o LSTM; MAML;

Ground Truth; Support Samples.)
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