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Abstract

We provide the following. 1) Proofs for the theorems in the main paper (section 1). 2) A set of
experiments exploring single-output vs multi-output regression (section 2). 3) Additional experiments
that give further evidence to the claims in the main paper (section 3); these include additional datasets, as
well as training time. 4) An evaluation of different ways to solve the weighted 0/1 loss binary classification
problem in the decision node optimization (section 4). 5) Description of the experiments’ setup, for
reproducibility: datasets, comparison methods, hyperparameters, etc. (section 5).

1 Formal theorem statements and proofs

A more general version of the Tree Alternating Optimization (TAO) algorithm, for arbitrary loss and regu-
larization functions and for arbitrary types of trees and nodes, is given by Carreira-Perpiñán [5]. The results
there are specialized here for regression.

1.1 Tree definition and optimization problem

Consider a rooted directed binary tree (each decision node has two children) of a given, predetermined
structure (of depth ∆, not necessarily complete) with nodes indexed in set N and parameters Θ = {θi}i∈N .
Each decision node i has a decision function fi(x; θi): R

D → Ci, where Ci = {lefti, righti} ⊂ N , sending
instance x to the corresponding child of i. We consider oblique trees, having hyperplane decision functions
“go to right if wT

i x + wi0 ≥ 0” (where θi = {wi, wi0}); axis-aligned (univariate) trees are a special case
where wi is an indicator vector for a single feature. Each leaf i has a predictor function gi(x; θi): R

D → R
K

that produces the actual output. We consider constant predictors gi(x; θi) = wi and linear predictors
gi(x; θi) = Wix +wi (where θi = {Wi,wi}). The tree’s prediction T(x;Θ) for an instance x is obtained
by routing x from the root to exactly one leaf and applying its predictor. We do not consider soft trees
where x is routed to each leaf with a certain probability.

We consider the problem of learning the parameters of a regression tree of given structure by minimizing:

E(Θ) =
N
∑

n=1

L(yn,T(xn;Θ)) + α
∑

i∈N

φi(θi) (1)

given a training set {(xn,yn)}Nn=1 ⊂ R
D×R

K . The loss function L(y, z) measures the disagreement between

two vectors y (ground-truth label) and z (tree prediction); we use the squared error ‖y − z‖22 (although it is
possible to use other losses, such as the least absolute deviation or a robust loss). The regularization term
penalizes the parameters θi of each node, where φi is e.g. a norm such as ℓ1 or ℓ2. The hyperparameter α ≥ 0
controls the tradeoff between the loss and the regularization. We define the reduced set Ri ⊂ {1, . . . , N} of
node i (decision node or leaf) as the training instances that reach i given the current tree parameters.
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We say that S ⊂ N is a set of non-descendant nodes if ∀i, j ∈ S neither i is a descendant of j nor
j is a descendant of i in the tree graph. We assume that the parameters are not shared across nodes:
i, j ∈ N , i 6= j ⇒ θi ∩ θj = ∅.

Theorem 1.1 (Separability). Let T(x;Θ) be the predictive function of a rooted directed decision tree and
S ⊂ N a nonempty set of non-descendant nodes in the tree. Then, as a function of the parameters {θi: i ∈ S}
(i.e., fixing all other parameters Θrest = Θ \ {θi: i ∈ S}), the function E(Θ) of eq. (1) can be equivalently
written as

E(Θ) =
∑

i∈S

Ei(θi,Θrest) + Erest(Θrest) (2)

where {Ei: i ∈ S} and Erest are certain functions.

Proof. Since the nodes in S are non-descendants, we have that ∀i, j ∈ S, i 6= j ⇒ Ri ∩ Rj = ∅. Then we
can write the objective function of eq. (1) as the sum of two terms:

E(Θ) =
∑

i∈S

Ei(Θ) + Erest(Θ)

where
Ei(Θ) =

∑

n∈Ri

L(yn,T(xn;Θ)) + αφi(θi)

and
Erest(Θ) =

∑

n∈R

L(yn,T(xn;Θ)) + α
∑

i∈S

φi(θi)

where S = N \ S and R = {1, . . . , N} \ ∪i∈SRi.
Each term Ei(Θ) does not depend on θj for any j ∈ S \ {i}, so we can write Ei(Θ) = Ei(θi,Θrest),

because changing the value of θj only affects Rj and L for n ∈ Rj .
Likewise, term Erest(Θ) does not depend on θi for any i ∈ S, so calling Θrest = {θi: i ∈ S} we can

write Erest(Θ) = Erest(Θrest), because changing the value of {θi: i ∈ S} only affects {Ri: i ∈ S} and L for
n ∈ ∪i∈SRi.

Theorem 1.2 (Reduced problem over a decision node). Consider the objective function E(Θ) of eq. (1)
and a decision node i. Assume the parameter values Θ \ {θi} of all the nodes except i are fixed. Then, as a
function of θi, we can write eq. (1) equivalently as:

E(Θ) = Ei(θi) + Erest(Θ \ {θi}) with Ei(θi) =
∑

n∈Ri

lin(fi(xn; θi)) + αφi(θi) (3)

where Ri is the reduced set of node i, and we define the function lin: Ci → R as lin(z) = L(yn,Tz(xn;Θz))
for any z ∈ Ci (child of i), where Tz(·;Θz) is the predictive function for the subtree rooted at node z.

Hence, the optimization problem minθi
E(Θ) is equivalent to the following optimization problem:

min
θi

Ei(θi) =
∑

n∈Ri

Lin(yin, fi(xn; θi)) + αφi(θi) (4)

where the weighted 0/1 loss Lin(yin, ·): Ci → R
+∪{0} for instance n ∈ Ri is defined as Lin(yin, y) = lin(y)−

lin(yin) ∀y ∈ Ci, where yin = argminy∈Ci
lin(y) is the “best” child of i for n (or any yin ∈ argminy∈Ci

lin(y)
in case of ties).

Proof. Applying theorem 1.1 (separability) to the particular case S = {i}, we can write

E(Θ) = Ei(θi,Θrest) + Erest(Θrest)

where Θrest = Θ \ {θi} = {θj : j ∈ N \ {i}},

Ei(θi,Θrest) =
∑

n∈Ri

L(yn,T(xn;Θ)) + αφi(θi)
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and Erest is defined as in the proof of theorem 1.1. To prove the first part of the theorem (eq. (3)), we just
need to prove that, when Θrest is constant, then for each n ∈ Ri we have L(yn,T(xn;Θ)) = lin(fi(xn; θi))
for a certain function lin which only depends on θi. In plain English, “L(yn,T(xn;Θ))” is the loss of instance
xn under the current tree, which will depend on which child of node i we send xn to; and “lin(fi(xn; θi))”
is precisely the loss incurred by sending xn down the child predicted by i’s decision function.
Let us prove that. Refer to fig. 1, which illustrates a binary tree, but the argument works for any tree, not
necessarily binary or complete. When we fix all parameters except θi, to understand the resulting objective
function we need only consider the reduced set Ri, the parameters and decision function of node i, and the
subtree predictive function defined for each child of i. In the figure, where i = 2 and Ci = {4, 5}, these are
T4(x;Θ4) and T5(x;Θ5) for the left and right child of node i, respectively. Thus, the subtree predictive
function T4(x;Θ4) computes the prediction of the left subtree when node i sends an instance x to the
left child. This is done by routing x down the left subtree to one leaf and applying the leaf’s predictor to
compute the output. The function T4(x;Θ4) does not depend on θi. A similar argument holds for the right
child. Therefore, the loss term L(yn,T(xn;Θ)) can take only one of two possible values for an instance
xn ∈ Ri: lin,4 = L(yn,T4(xn;Θ4)) ∈ R if fi(xn; θi) = 4 (the left child) and lin,5 = Ln(T5(xn;Θ5)) ∈ R

if fi(xn; θi) = 5 (the right child), where the decision function for node i is fi: X → Ci (with parameters
θi). Then, define a function lin: Ci → R as lin(z) = L(yn,Tz(xn;Θz)), where z ∈ Ci is any child of i and
Tz(·;Θz) is the predictive function for the subtree rooted at z. The function lin gives the loss value incurred
by each of the two children of node i. Hence we can write L(yn,T(xn;Θ)) = lin(fi(xn; θi)), which only
depends on the parameters θi of node i.

We now prove the second part of the theorem, eq. (4). This follows because Ei(θi) = Ei(θi) +
∑

n∈Ri
lin(yin) and the latter term is constant (independent of θi). Furthermore, the loss function Lin

satisfies Lin(yin, y) = 0 if y = yin (or y ∈ argminy∈Ci
lin(y) in case of ties), and Lin(yin, y) > 0 otherwise,

hence it is a weighted 0/1 loss function with “ground-truth” label yin. For example, if Ci = {left, right}
and lin(left) > lin(right) then yin = right, Lin(right, right) = 0 and Lin(right, left) > 0. Note that,
although Lin(·, ·) has two arguments, the first one is fixed: Lin(yin, ·).

Theorem 1.3 (Reduced problem over a leaf). Consider the objective function E(Θ) of eq. (1) and a leaf
node i. Assume the parameter values Θ \ {θi} of all the nodes except i are fixed. Then, as a function of θi,
we can write eq. (1) equivalently as:

E(Θ) = Ei(θi) + Erest(Θ \ {θi}) with Ei(θi) =
∑

n∈Ri

L(yn,gi(xn; θi)) + αφi(θi) (5)

where Ri is the reduced set of node i.

Proof. Applying theorem 1.1 (separability) to the particular case S = {i}, we can write

E(Θ) = Ei(θi,Θrest) + Erest(Θ)

where Θrest = {θi: i ∈ N \ {i}},

Ei(θi,Θrest) =
∑

n∈Ri

L(yn,T(xn;Θ)) + αφi(θi)

and Θrest is defined as in the proof of theorem 1.1. The result follows by noting that, for a leaf i, T(xn;Θ)) =
gi(xn; θi).
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f2(x; θ2)

T4(x;Θ4) T5(x;Θ5)

left right

reduced
set R2

Figure 1: Schematic representation of the optimization over node 2 (a decision node, with parameters θ2) in
an example tree. The left and right subtrees of node 2 behave like two fixed predictor functions T4(x;Θ4)
and T5(x;Θ5) which produce an output for an input x when going left or right in node 2, respectively. Only
the training instances that reach node 2 under the current tree (the reduced set R2 of node 2) participate
in the optimization.
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2 Single-output vs multi-output regression

A regression problem with a real-valued output vector of dimensionK can be considered as a single regression
problem with aK-dimensional output, asK regression problems each with a one-dimensional output (scalar),
or as any combination in between, such as 4 regression problems each with a (K/4)-dimensional output, and
in general M models each with K/M outputs. The final, K-dimensional output is obtained by concatenating
the individual output vectors of the M models.

In linear regression (which includes as particular case a constant predictor, for W = 0) all of these are
equivalent (using the squared error loss):

min
W,b

N
∑

n=1

‖yn −Wxn − b‖2 = min
w1,...wK

b1,...,bK

K
∑

k=1

N
∑

n=1

(ynk −wT
k xn − bk)

2 ⇔































min
w1,b1

N
∑

n=1

(yn1 −wT
1 xn − b1)

2

. . .

min
wK ,bK

N
∑

n=1

(ynK −wT
Kxn − bK)2

where W = (w1, . . . ,wK)T ∈ R
K×D and b ∈ R

K . That is, the K-dimensional output problem over W and
b is equivalent to one separate, one-dimensional output problem for each row of W and b.

However, with other models, such as neural nets or—our focus here—regression trees or forests, the
above equivalence does not hold, and the resulting model (hence the error and model size) depends on which
formulation we use. The reason is as follows. Consider a K-dimensional output. If we use a single tree having
an output size K (i.e., each leaf outputs a K-dimensional vector), then all the decision nodes’ parameters are
shared across the K dimensions. If we use K trees each with an output size of 1 (whose concatenation is the
desired K-dimensional output), then each tree has its own decision nodes’ parameters, not shared with other
trees. The same happens with neural nets, where the weight layers before the output layer are shared in a
single, K-output net but not shared across K, single-output nets. In practice, with neural nets it is common
to use a single net with a K-dimensional output layer rather than K nets each with a one-dimensional output
layer.

Here, we evaluate empirically how the different formulations affect TAO and other regression forest
algorithms. We consider the two regression tasks on MNIST of section 5.3 of the main paper: “full-image
rotation” (with output dimension K = D = 784) and “patch selection and rotation” (K = 64). In each task,
we consider 4 output sizes (1, K/16, K/4, K), by partitioning the original output image into blocks. For
example, for the full-image rotation, we have the following: 784 blocks of size 1 × 1, 16 blocks of 7 × 7, 4
blocks of 14× 14, and 1 block of 28× 28. For each output size, we train 4 methods: Random Forests (RF),
Extra Trees (ET), XGBoost, TAO-c (constant predictor at the leaves) and TAO-l (linear predictor at the
leaves). Note that XGBoost is only applicable for an output dimension of one. For each method, we tune
the forest hyperparameters (number of trees T and depth ∆) to achieve the lowest error possible.

Table 1 and figures 2–3 show the results. Firstly, the order of the different methods in terms of test error
remains the same in all conditions and tasks. In decreasing error, we have XGBoost, RF, ET, TAO-c and
(at a distance) TAO-l. The performance of the single-tree TAO-l (forest with T = 1) is already impressive:
its test error is comparable to that of RF, ET and TAO-c forests, but the single TAO-l tree is of course far
smaller and faster.

Second, as a function of the output size, all methods except TAO-l improve their error monotonically
as the output size decreases and is lowest at an output size of 1 (i.e., concatenating K scalar regression
forests). However, the model size increases (almost monotonically) as the output size decreases, and becomes
huge if using an output size of 1. Hence, for these methods, the operating point that optimally trades
off error vs model size will depend on the application. For TAO-l, remarkably, the error remains almost
constant regardless of the output size (although, if we were to limit strongly its forest size, the error would
naturally increase). The model size does vary: as the output size increases, the inference FLOPS decrease
monotonically and the number of parameters decreases monotonically in the “patch” task but not in the
“full-image” task (where it first decreases then increases). Hence, the optimal operating point in this case
only depends on model size, but it is optimal or near-optimal for a single forest that outputs a K-dimensional
vector. This makes the choice easy in practice for TAO-l: just use the K-dimensional output vector directly
in a single forest.
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Forest, output size Etrain × 10−2 Etest × 10−2 #pars. FLOPS T ∆

TAO-c, K 1.89±0.04 20.97±0.09 1 317 514 1 014 1 27
TAO-c, K/4 1.51±0.05 19.31±0.07 1 276 663 2 367 4 79
TAO-c, K/16 1.93±0.07 15.15±0.10 4 689 817 12 484 16 88
RF, K 5.18±0.24 14.08±0.25 67 926 130 (28 259) 1000 40
ET, K 0.00±0.00 13.72±0.13 108 999 700 (3 360) 1000 38
TAO-c, K 2.03±0.06 13.29±0.11 9 102 171 34 738 30 31
TAO-c, 1 1.21±0.06 12.98±0.05 21 735 871 1 090 147 784 9
RF, K/4 4.75±0.11 12.55±0.13 29 729 538 (28 079) 400 121
ET, K/4 0.00±0.00 11.97±0.01 47 105 192 (25 378) 400 117
TAO-c, K/4 1.87±0.04 11.51±0.10 25 533 241 47 263 80 84
RF, K/16 4.28±0.07 11.27±0.09 100 352 380 (143 991) 1600 152
ET, K/16 0.00±0.00 10.87±0.01 159 845 216 (136 717) 1600 133
XGBoost, 1 1.18±0.00 10.35±0.00 179 897 510 (612 924) 39200 25
TAO-c, K/16 1.14±0.03 9.93±0.09 91 412 361 241 421 320 91

M
N
IS
T

ro
ta
te
d

TAO-l, 1 4.33±0.13 9.91±0.14 16 361 403 1 814 351 784 7
TAO-l, K/4 4.44±0.09 9.79±0.11 189 984 10 217 4 7
TAO-l, K/16 4.31±0.10 9.74±0.13 115 936 12 288 16 7
TAO-l, K 4.28±0.11 9.63±0.17 288 342 4 491 1 7
RF, 1 3.71±0.03 9.54±0.05 1 150 765 542 (2 777 482) 39200 114
ET, 1 0.17±0.04 8.97±0.06 1 930 748 364 (2 613 017) 39200 127
TAO-c, 1 1.01±0.07 8.21±0.09 267 124 048 8 917 431 7840 9
TAO-l, 1 3.62±0.06 6.84±0.08 171 843 689 17 947 520 7840 7
TAO-l, K/4 3.77±0.08 6.75±0.12 3 745 743 206 180 80 7
TAO-l, K/16 3.59±0.09 6.73±0.09 2 318 723 245 761 320 7
TAO-l, K 3.81±0.07 6.59±0.11 7 715 182 126 212 30 7

TAO-c, K 13.13±0.03 21.17±0.02 1 218 643 2 501 1 14
TAO-c, K/4 12.91±0.02 20.23±0.07 113 956 8 651 4 9
TAO-c, K/16 11.95±0.03 19.68±0.06 334 301 25 924 16 9
TAO-c, 1 11.10±0.06 18.39±0.07 1 546 846 113 397 64 9
RF, K 6.31±0.01 17.18±0.03 71 301 822 (42 078) 1000 61
XGBoost, 1 0.55±0.00 16.79±0.00 44 099 280 (84 578) 3200 25
ET, K 0.00±0.00 16.69±0.01 113 745 228 (41 079) 1000 64
TAO-c, K 12.19±0.01 16.61±0.03 35 412 132 70 432 30 14
TAO-l, K/4 6.81±0.03 16.46±0.06 112 435 9 517 4 7
TAO-l, 1 6.90±0.08 16.42±0.07 1 511 332 156 182 64 7
TAO-l, K/16 6.79±0.07 16.21±0.05 351 643 35 761 16 7
TAO-l, K 6.76±0.02 16.13±0.05 65 462 2 674 1 7

M
N
IS
T

ro
ta
te
d
p
a
tc
h

RF, K/4 6.06±0.08 16.01±0.16 29 628 978 (25 573) 400 66
RF, K/16 5.92±0.09 15.57±0.10 103 251 968 (110 612) 1600 81
RF, 1 6.06±0.02 15.51±0.03 146 529 256 (191 787) 3200 98
ET, K/4 0.00±0.00 15.36±0.01 46 982 328 (24 832) 400 65
TAO-c, K/4 11.82±0.02 15.22±0.04 2 284 919 163 351 80 9
ET, 1 0.76±0.03 14.98±0.03 242 321 102 (180 537) 3200 88
ET, K/16 0.00±0.00 14.64±0.05 165 132 006 (99 096) 1600 76
TAO-c, K/16 10.63±0.02 14.22±0.08 6 413 743 514 430 320 9
TAO-c, 1 10.21±0.04 13.91±0.09 13 678 720 1 064 160 640 9
TAO-l, 1 4.41±0.02 10.26±0.03 14 897 960 1 603 227 640 7
TAO-l, K/4 4.64±0.02 10.12±0.04 2 431 017 184 140 80 7
TAO-l, K/16 4.25±0.03 10.03±0.05 7 310 176 719 964 320 7
TAO-l, K 4.14±0.01 9.91±0.03 1 984 143 77 936 30 7

Table 1: Single-output vs multi-output regression. Like tables 7 and 9 for the MNIST rotation tasks, but
where we consider regression problems of varying output size. For the “full-image” rotation K = 784; for
the “patch selection and rotation” K = 64. The rows are sorted in decreasing test error.

6



number of models number of models
784 16 4 1 784 16 4 1

0

1

2

3

4

5

6

1=K/K K/16 K/4 K
output vector dimension

E
tr
a
in
×
1
0
−
2

8

10

12

14

16

18

20

1=K/K K/16 K/4 K

TAO-c tree
TAO-l tree
TAO-c forest
TAO-l forest
ET
RF
XGBoost

output vector dimension

E
te
st
×
1
0
−
2

0 50 100 150 200

8

10

12

14

16

18

20

outside the axes

E
te
st
×
1
0
−
2

number of parameters ×106
0 50 100 150 200 250 300

8

10

12

14

16

18

20

outside the axes

E
te
st
×
1
0
−
2

inference FLOPS ×103

Figure 2: The results of table 1 but as a figure, for the MNIST “full-image rotation” task. Top: error in the
training set (left) and test set (right). The X axis shows the output vector dimension (below) and number of
models to be concatenated (above). Bottom: test error vs number of parameters (left) and inference FLOPS
(right), showing the tradeoff between accuracy and size for each forest method and output vector size. Note
some points do not fit within the figure axes and have been projected on the axes boundaries.
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Figure 3: Like fig. 2 but for the MNIST “patch selection and rotation” task.
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Dataset RF QRF Huber Tukey TAO-c TAO-l

CCS 6.1 5.9 5.7 5.9 5.7 5.2
airfoil 4.3 3.2 3.8 4.1 2.6 2.2

Table 2: Comparison with the forest model from [12] and other methods (taken from [12]) on the Concrete
Compressive Strength (CCS) and Airfoil datasets.

3 Additional experimental results

We repeat the tables and figures in the main paper but with additional information (including training time
in the MNIST tasks). We also include another dataset (APPA-REAL, for an application of human age
regression) and a comparison with another method (Robust Forest [12]). The conclusions are as in the main
paper.

Table 2 shows the results of comparison against [12] which uses robust loss functions (e.g. Huber) to
develop better performing regression forests. We compare with their published results on two UCI repository
datasets: concrete compressive strength (CCS) and airfoil, both with scalar outputs. All forest models in
[12] use 1 000 trees with depth 10, while both TAO-c and TAO-l use 30 trees of depth 7. Other than that,
we follow the same experimental settings as in the other experiments: we chose 2/3 observations for training
and the rest for testing, and we report the RMSE over 5 independent runs. TAO forests are the clear winners
in both datasets by a considerable margin.
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Forest Etrain Etest #pars. FLOPS T ∆

CART 0.13±0.00 3.01±0.01 2 891 20 1 20
XGBoost 0.52±0.00 2.22±0.00 31 532 (1089) 100 10
XGBoost 0.01±0.00 2.20±0.00 219 586 (9 349) 1000 10
GIF [2] – 2.18 (50 120) – 10 –
TAO-c 2.11±0.02 2.18±0.05 287 41 1 6
AdaBoost 0.86±0.01 2.16±0.01 52 758 (1 000) 100 10
AdaBoost 0.84±0.00 2.15±0.00 497 507 (10 000) 1000 10

a
b
a
lo
n
e

ET 0.00±0.00 2.14±0.00 443 809 (3 011) 100 36
RF 0.83±0.00 2.12±0.01 230 806 (2 473) 100 29
rRF [17] – 2.10±0.01 (100 000) (1 000) 100 10
ARF [20] – 2.10±0.03 (100 000) (1 000) 100 10
RF 0.80±0.00 2.10±0.00 2 306 668 (24 736) 1000 34
TAO-c 1.98±0.00 2.08±0.01 8 940 1 307 30 6
TAO-l 2.00±0.01 2.07±0.01 303 40 1 5
TAO-c 1.94±0.00 2.05±0.01 33 217 1 718 30 8
TAO-l 1.98±0.01 2.04±0.01 8 328 1 204 30 5

CART 2.80±0.00 2.88±0.00 103 9 1 9
RF 0.65±0.01 1.84±0.02 875 264 (3 512) 100 45
ET 0.00±0.00 1.84±0.00 1 426 004 (4 068) 100 49
ARF [20] – 1.78±0.01 (35 770) (750) 50 15
AdaBoost 1.32±0.00 1.77±0.01 18 215 (1 175) 100 15
TAO-c 1.65±0.02 1.76±0.02 681 87 1 6
rRF [17] – 1.75±0.02 (71 540) (1 000) 100 10

a
il
er
o
n
s
(E

×
1
0
−
4
)

RF 0.70±0.00 1.75±0.00 8 740 049 (35 042) 1000 47
AdaBoost 1.27±0.00 1.75±0.00 200 028 (12 184) 1000 15
XGBoost 1.63±0.00 1.74±0.00 1 792 (300) 100 7
TAO-l 1.64±0.02 1.74±0.01 447 93 1 5
XGBoost 1.62±0.00 1.72±0.00 3 592 (1 264) 1000 7
TAO-c 1.55±0.03 1.67±0.04 21 107 2 513 30 6
TAO-l 1.53±0.02 1.66±0.04 26 712 2 611 30 5

CART 0.03±0.00 3.63±0.32 9 691 25 1 25
TAO-c 2.47±0.07 2.71±0.04 498 51 1 6
RF 0.95±0.01 2.62±0.04 620 272 (2 842) 100 36
ARF [20] – 2.62±0.01 (98 300) 750 50 15
AdaBoost 1.20±0.01 2.61±0.16 72 320 (1 000) 100 10
RF 0.91±0.00 2.60±0.01 6 204 052 (28 401) 1000 37

cp
u
a
ct

XGBoost 0.93±0.00 2.60±0.00 40 174 (1 000) 100 10
ET 0.00±0.00 2.58±0.03 982 620 (3 733) 100 45
TAO-l 2.36±0.03 2.58±0.02 246 41 1 5
XGBoost 0.00±0.00 2.57±0.00 293 788 (8 780) 1000 10
AdaBoost 1.14±0.00 2.56±0.11 701 208 (10 000) 1000 10
ET 0.00±0.00 2.49±0.03 9 825 562 (37 605) 1000 50
TAO-c 2.11±0.03 2.39±0.05 24 090 1 590 30 7
TAO-l 2.21±0.01 2.35±0.01 8 133 1 179 30 5

Table 3: Like table 1 in the main paper, but also including the training set error.
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Forest Etrain Etest #pars. FLOPS T ∆

CART 0.01±0.00 2.71±0.06 84 967 51 1 51
TAO-c 1.42±0.04 1.54±0.05 7 167 1 123 1 7
AdaBoost 1.05±0.01 1.48±0.03 122 484 (1 000) 100 10
XGBoost 0.73±0.00 1.45±0.00 71 298 (1 000) 100 10
AdaBoost 0.98±0.00 1.31±0.01 1 084 836 (10 000) 1000 10
XGBoost 0.08±0.00 1.18±0.00 464 474 (10 000) 1000 10

C
T

sl
ic
e

TAO-l 0.76±0.02 1.16±0.02 5 445 768 1 5
ET 0.00±0.00 1.06±0.01 85 416 322 (62 433) 100 82
RF 0.41±0.00 1.03±0.01 5 393 612 (5 818) 100 71
cRF [7] – 1.00 (17M) – 1000 –
RF 0.37±0.00 0.97±0.01 53 895 970 (57 299) 1000 78
TAO-c 0.84±0.02 0.89±0.02 213 721 30 743 30 7
TAO-l 0.52±0.01 0.71±0.02 164 647 23 070 30 5
TAO-l 0.49±0.01 0.58±0.03 241 687 24 661 30 6

CART 0.01±0.00 13.41±0.11 620 539 49 1 49
RF 3.40±0.00 9.31±0.00 40 115 501 (5 237) 100 68
ET 0.01±0.00 9.31±0.00 76 827 734 (6 091) 100 73
AdaBoost 5.45±0.02 9.25±0.01 2 527 629 (1 500) 100 15
RF 3.33±0.00 9.23±0.00 401 180 944 (52 066) 1000 73
AdaBoost 5.21±0.01 9.21±0.03 24 428 596 (15 000) 1000 15
TAO-c 8.91±0.03 9.11±0.05 6 808 448 1 8

Y
ea
rP

re
d
ic
ti
o
n
M
S
D

TAO-l 8.89±0.02 9.08±0.03 2 361 388 1 6
XGBoost 7.74±0.00 9.04±0.00 102 843 (1 000) 100 10
XGBoost 3.79±0.00 9.01±0.00 1 145 460 (10 000) 1000 10
cRF [7] – 8.90 (184M) – 1000 –
TAO-c 8.87±0.01 8.90±0.01 186 423 13 437 30 7
TAO-l 8.83±0.01 8.87±0.01 73 412 12 061 30 6
TAO-c 8.61±0.01 8.85±0.01 246 187 13 948 30 9
TAO-l 8.59±0.01 8.83±0.01 148 171 12 487 30 7

CART 0.11±0.00 3.62±0.00 83 577 23 1 21
TAO-c 2.37±0.03 2.44±0.04 71 263 202 1 14
RF 1.54±0.01 1.56±0.01 5 054 601 (2 997) 100 30
RF 1.53±0.01 1.54±0.01 50 548 077 (29 991) 1000 30
MLP (from [21]) – 1.46 139 015 – 1 –
AdaBoost 1.40±0.01 1.40±0.01 1 217 090 (7 000) 700 10
TAO-c 1.35±0.02 1.36±0.03 1 993 254 5 796 30 14

S
A
R
C
O
S

AdaBoost 1.33±0.01 1.33±0.03 11 875 582 (70 000) 7000 10
TAO-c 1.25±0.03 1.30±0.03 6 536 343 10 257 50 15
XGBoost 1.24±0.00 1.24±0.00 773 682 (7 000) 700 10
ANT [21] – 1.18 103 823 61 640 1 –
ANT [21] – 1.11 598 280 360 766 8 –
XGBoost 1.10±0.00 1.10±0.00 3 942 708 (70 000) 7000 10
TAO-l 1.01±0.02 1.04±0.02 18 211 151 1 10
TAO-l 0.84±0.02 0.85±0.02 694 117 4 833 30 10

Table 4: Like table 2 in the main paper, but also including the training set error.
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3.1 Application: human age regression

We study the performance of TAO forests in a real-world application. We use the APPA-REAL [1] dataset,
which consists of 7 591 annotated real human images. Each image has two labels: real age and apparent age.
The apparent age is calculated based on 38 votes (on average) per image, which makes the average apparent
age very stable (0.3 standard deviation). We test all methods on both of the tasks. The output is a scalar in
[1 100]. We use the same train/test splitting as in the original paper: 4 113 train, 1 500 validation and 1 978
test images. All forest-based methods use as features the output of 2 048 neurons from a pretrained deep
net. Specifically, we fine-tune a ResNeXt50 32x4d architecture on human face images (RGB) and use the
output of the last convolutional layer as features. The human face images were provided by the authors [1]
and they were obtained using a face detector from [14]. Also, following [18] we report the results of neural
networks as well. Specifically, the network architecture is the same as in [23], except the last fully connected
layer is replaced by another 101-dimensional linear layer and the final prediction is the expected value of
the softmax probabilities. We train our network using ADAM [11] for 80 epochs with a learning rate of
0.001 which decays each 20 epochs by 0.2. This network achieves 2.79% train error and 7.89% test error
(both RMSE) on apparent age prediction and 5.66% train error and 10.15% test error (both RMSE) on real
age prediction. We use the PyTorch [15] implementation of the ResNeXt (available inside the Torchvision
package) pretrained on ImageNet. Table 5 shows the results (sorted by decreasing test error).

Forest Etrain Etest #pars. FLOPS T ∆

ResNeXt 2.79 7.89 – –
AdaBoost 0.79±0.01 7.89±0.03 237 342 (1 500) 100 15
AdaBoost 0.48±0.00 7.83±0.01 2 373 962 (15 000) 1000 15
TAO-c 4.11±0.04 7.83±0.08 44 526 1 803 1 8
XGBoost 0.05±0.00 7.82±0.00 109 014 (1 500) 100 15

A
p
p
a
re
n
t
a
g
e

XGBoost 0.00±0.00 7.80±0.00 236 637 (15 000) 1000 15
ET 0.00±0.00 7.76±0.02 684 236 (3 360) 100 44
RF 1.54±0.01 7.73±0.01 436 104 (2 967) 100 37
RF 1.53±0.00 7.72±0.01 4 308 285 (28 481) 1000 40
TAO-c 3.85±0.04 7.60±0.04 1 611 405 34 919 30 8
TAO-l 3.74±0.03 7.54±0.04 1 011 387 1 4
TAO-l 3.53±0.01 7.48±0.01 33 171 13 029 30 4

ResNeXt 5.66 10.15 – –
AdaBoost 0.78±0.01 7.90±0.02 238 503 (1 500) 100 15
TAO-c 4.16±0.06 7.86±0.11 47 421 2 379 1 8
AdaBoost 0.48±0.00 7.85±0.01 2 382 924 (15 000) 1000 15
XGBoost 0.05±0.00 7.83±0.00 107 019 (1 500) 100 15

R
ea
l
a
g
e

XGBoost 0.00±0.00 7.81±0.00 234 336 (15 000) 1000 15
RF 1.57±0.01 7.78±0.02 430 463 (2 843) 100 36
ET 0.00±0.00 7.77±0.01 683 706 (3 389) 100 41
RF 1.55±0.01 7.74±0.01 4 306 096 (28 460) 1000 38
TAO-c 3.58±0.04 7.65±0.06 1 714 103 71 023 30 8
TAO-l 3.85±0.09 7.59±0.03 1 161 574 1 4
TAO-l 3.56±0.02 7.50±0.02 31 374 12 213 30 4

Table 5: Like table 3 but for APPA-REAL human age regression. The ResNeXt rows are not forests but a
deep neural net; we omit its number of parameters and FLOPS. For all forest methods, when calculating a
model size we ignore the cost of feature extraction from the deep net.

11



3.2 MNIST regression

3.2.1 Predicting a rotated MNIST image: “full image rotation”

We can construct a challenging regression problem as described below, to define a mapping that is locally
linear but globally severely nonlinear and where both the input and output are high-dimensional. For each
image xn ∈ R

D, we generate its ground-truth output yn ∈ R
D by rotating the image by an angle which

depends on the digit class of xn. The rotation is a linear transformation Axn (slightly nonlinear because of
cropping effects in the image borders), where each output pixel is a linear combination of some of the input
pixels (with convex coefficients, so each output pixel is in [0 1]). However, the overall mapping is nonlinear
because the rotation angle depends on the digit’s ground-truth class.

We assign an angle in [−90◦ 90◦] at random to each class (see table 6). We implement the rotation using
the ndimage package in the scipy Python library. We set its parameters as follows: order = 1 (to use
linear spline interpolation, which ensures the output pixels are in [0 1], just like the input pixels); reshape
= false (to apply cropping if the image exceeds the borders). All other parameters are set to their default
values. We run TAO for 20 iterations with α = 0.01.

Table 7 shows the results of different forest methods. Fig. 4 visualizes the (input,output,predicted) images
for some sample instances.

For the constant-leaf forests (all except TAO-l), we clearly see that the predictions look blurry. This is
because the forest output is the average of one leaf’s output per tree, and each leaf’s output is itself the
average of the instances reaching that leaf.

class 0 1 2 3 4 5 6 7 8 9

angle 8◦ 49◦ −57◦ −63◦ 16◦ −18◦ −10◦ −32◦ −71◦ 58◦

Table 6: Rotation angle of each digit class.

Forest Etrain × 10−2 Etest × 10−2 #pars. FLOPS T ∆ Time

AdaBoost >24 hours runtime 39200 25
CART 0.37±0.00 23.08±0.12 119 937 28 1 28 3.5
TAO-c 13.31±0.27 21.10±0.37 16 941 530 5 108 1 16 411
RF 5.21±0.25 14.38±0.23 7 587 246 (2 830) 100 39 5.2

M
N
IS
T

ro
ta
te
d

RF 5.18±0.24 14.08±0.25 67 926 130 (28 259) 1000 40 18.7
ET 0.00±0.00 13.83±0.12 11 999 900 (3 091) 100 35 3.6
TAO-c 2.03±0.10 13.76±0.09 9 174 514 41 808 30 25 291
ET 0.00±0.00 13.72±0.13 108 999 700 (3 360) 1000 38 8.2
XGBoost 1.18±0.00 10.35±0.00 179 897 510 (612 924) 39200 25 238
TAO-l 4.28±0.11 9.63±0.17 288 342 4 491 1 7 186
TAO-l 3.81±0.07 6.59±0.11 7 715 182 126 212 30 7 257

Table 7: Like table 3 but for the MNIST regression task “full-image rotation”. Additionally, we report the
training set error and the training time of the entire forest (minutes). Note: for the TAO-c forests we used
a CART tree as initial structure rather than a complete tree so that the tree could be deeper (which worked
better in this particular dataset) yet computationally feasible. Everywhere else in this and other tables we
always use a complete tree structure as initial tree for TAO.
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output

TAO-c
T = 30

RF
T = 1k

ET
T = 1k

XGBoost
T = 39k

TAO-l
T = 1

TAO-l
T = 30

Figure 4: Selected MNIST test images, corresponding ground-truth output (class-dependent full-image ro-
tation) and predicted output by different forest algorithms. You may want to zoom in.
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3.2.2 Predicting a rotated MNIST image: “patch selection and rotation”

Another challenging regression problem is defined as follows. We can use the previous MNIST experiment
to make the output depend on only a subset of the pixels, hence do feature selection (separately for each
class). For each image xn ∈ R

D, we generate its ground-truth output yn ∈ R
K by rotating an 8 × 8 patch

(K = 64 pixels) of the image by an angle, where both the patch location and the rotation angle depend on
the digit class of xn.

We assign an angle in [−90◦ 90◦] and a patch location at random to each class (see table 8 and fig. 5).
We run TAO for 30 iterations with α = 0.01.

Table 9 shows the results of different forest methods. Fig. 6 visualizes the (input,output,predicted) images
for some sample instances.

We also evaluate how well each forest is able to select features (pixels) that are necessary to predict the
ground truth, by comparing the set of features used by the forest (in any node of any tree) with the set of
ground-truth features (the set of input pixels that appear in any patch). As can be seen from the Jaccard,
precision and recall scores, TAO trees and forests are better than other forests at discarding features that
are not useful for the prediction.

class 0 1 2 3 4 5 6 7 8 9

angle −86◦ −10◦ −29◦ 16◦ 21◦ −23◦ −2◦ −52◦ −90◦ −5◦

bbox [6 6 14 14] [10 11 18 19] [5 19 13 27] [15 14 23 22] [6 9 14 17] [3 17 11 25] [13 10 21 18] [12 6 20 14] [9 8 17 16] [5 10 13 18]

Table 8: Rotation angle and image patch location (as a bounding box containing the X,Y coordinates of the
lower left and upper right corners, respectively) for each class.

Figure 5: Image patch location for each class, shown on sample images, as well as the rotated patch.

Forest Etrain × 10−2 Etest × 10−2 #pars. FLOPS T ∆ Time J(%) P(%) R(%)

CART 0.07±0.00 28.51±0.11 118 493 49 1 49 1.5 54 54 100
TAO-c 13.13±0.02 21.17±0.02 1 218 643 2 501 1 14 155 62 62 100
RF 6.77±0.01 17.87±0.04 7 561 030 (4 669) 100 59 2.0 45 45 100
RF 6.31±0.01 17.18±0.03 71 301 822 (42 078) 1000 61 4.7 44 44 100
ET 0.00±0.00 16.97±0.01 11 970 720 (4 595) 100 57 1.1 44 44 100

M
N
IS
T

ro
ta
te
d
p
a
tc
h

XGBoost 0.55±0.00 16.79±0.00 44 099 280 (84 578) 3200 25 24.8 45 45 100
ET 0.00±0.00 16.69±0.01 113 745 228 (41 079) 1000 64 3.2 44 44 100
AdaBoost 0.53±0.05 16.65±0.09 108 774 252 (79 688) 3200 25 517 44 44 100
TAO-c 12.19±0.02 16.61±0.03 35 412 132 70 432 30 14 218 52 52 100
TAO-l 6.76±0.02 16.13±0.05 65 462 2 674 1 7 119 58 58 100
TAO-l 4.14±0.01 9.91±0.03 1 984 143 77 936 30 7 157 51 51 100

Table 9: Like table 7 but for predicting MNIST rotated patch. Additionally, we report the training set error
and the training time of the entire forest (minutes), and the Jaccard score J, precision P and recall R of the
pixels used by each forest compared to the ground-truth pixels that are necessary to generate the output.
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T = 1k

ET
T = 1k

XGBoost
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TAO-c
T = 1

TAO-c
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TAO-l
T = 1

TAO-l
T = 30

Figure 6: Like fig. 4 but for predicting the MNIST rotated patch.
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3.3 Study of different diversity mechanisms

We amplify the results of section 5.5 in the main paper on additional datasets (the conclusions are the same):

Different training samples and different initialization Fig. 7 on the ailerons dataset.

Feature subsets Fig. 10 on the CT slide dataset.

Forest hyperparameters: tree depth ∆, number of trees T and number of TAO iterations I Fig. 8
on the ailerons dataset.
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Figure 7: Like fig. 4 in the main paper but for the ailerons dataset.

Size m of T = 10 T = 20
feature subset Etrain Etest Etrain Etest

m = D (all features) 1.70 1.75 1.59 1.63

m = D9/10 1.76 1.82 1.64 1.71
m = ⌊D/3⌋ 1.84 1.88 1.73 1.76

L
o
ca
l

m = D8/10 1.97 2.04 1.88 1.94

m = D7/10 2.32 2.37 2.29 2.36
m = D6/10 2.97 3.07 2.93 3.01

m = D9/10 2.71 2.79 2.63 2.71
m = ⌊D/3⌋ 4.14 4.25 4.02 4.17

G
lo
b
a
l

m = D8/10 6.61 6.73 6.52 6.61
m = D7/10 10.94 11.10 10.18 10.32

m = D6/10 15.73 15.81 14.45 14.67

Table 10: Like table 5 in the main paper but for the CT slice dataset. All trees are complete of depth 7.
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Figure 8: Like fig. 5 in the main paper but for the ailerons dataset.
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4 Different ways to solve the weighted 0/1 loss binary classifica-
tion problem in the decision node optimization

The optimization problem over the parameters θi of a decision node i is as follows (from theorem 3.2 in the
main paper):

min
θi

Ei(θi) =
∑

n∈Ri

Lin(yin, fi(xn; θi)) + αφi(θi) (4)

where the weighted 0/1 loss Lin(yin, ·): Ci → R
+∪{0} for instance n ∈ Ri is defined as Lin(yin, y) = lin(y)−

lin(yin) ∀y ∈ Ci, where yin = argminy∈Ci
lin(y) is the “best” child of i for n (or any yin ∈ argminy∈Ci

lin(y)
in case of ties). Hence, the loss Lin in eq. (4) is either zero (if we predict the child correctly) or a value
βin = lin(y)− lin(yin) ≥ 0 (if we predict it incorrectly). This latter value, or “weight”, βin depends on the
instance n, hence the loss is a weighted 0/1 loss. We can write eq. (4) explicitly in terms of the weights like
this:

min
θi

Ei(θi) =
∑

n∈Ri

βin L0(yin, fi(xn; θi)) + αφi(θi) (6)

where L0 is the regular 0/1 loss.
In section 3.3 “Solving the decision node optimization problem” of the main paper, we solve this approx-

imately via a convex surrogate loss, such as the ℓ1-penalized logistic regression:

min
θi

∑

n∈Ri

log
(

1 + e−zin(w
T

i
xn+bi)

)

+ α ‖θi‖1

where we define the label zin to be +1 (−1) if the right (left) child is the correct child, and the binary
classifier is such that wT

i xn + bi ≥ 0 (< 0) corresponds to the right (left) child. However, this must be
adapted to handle the weights {βin}n∈Ri

. We studied different ways to do this:

Unweighted 0/1 loss by binarization We simply binarize the losses of all instances to make them 1 if
βin > 0. This considers as equally important a mistake no matter what instance it happens in. Also,
we discard instances if βin < ǫ for a fixed value ǫ ≥ 0; this allows us to ignore instances for which going
left or right makes a small difference.

Unweighted 0/1 loss by instance replication We approximate the weighted 0/1 loss problem with an
unweighted one by replicating instances proportionally to their βin values. That is, if we have N
instances in the reduced set, we create a dataset of M instances such that the number of times instance
n appears is (approximately) proportional to its βin value. As M → ∞, the unweighted problem on
the replicate dataset becomes equivalent to the weighted problem on the original dataset.

Weighted surrogate loss We use the weights directly as multipliers in the logistic loss:

min
θi

∑

n∈Ri

βin log
(

1 + e−zin(w
T

i
xn+bi)

)

+ α ‖θi‖1.

Table 11 shows the results on two datasets. The best option, consistently, is to use a weighted surrogate
loss, and this is the option we use in the main paper.
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Approximation type Etrain Etest

ǫ = 0 1.67±0.02 1.77±0.03
ǫ = 0.01 1.66±0.03 1.77±0.03

unweighted 0/1 loss
by binarization



















ǫ = 0.05 1.65±0.02 1.76±0.03
ǫ = 0.10 1.65±0.03 1.76±0.04

a
il
er
o
n
s
(E

×
1
0
−
4
)

ǫ = 0.20 1.64±0.03 1.78±0.02

M = 2N 1.68±0.04 1.81±0.03
unweighted 0/1 loss

by instance replication







M = 5N 1.63±0.03 1.78±0.03
M = 10N 1.62±0.02 1.78±0.04

weighted surrogate loss 1.62±0.02 1.73±0.02

ǫ = 0 2.56±0.06 2.83±0.05
ǫ = 0.01 2.54±0.06 2.81±0.06

unweighted 0/1 loss
by binarization



















ǫ = 0.05 2.51±0.08 2.84±0.03
ǫ = 0.10 2.45±0.03 2.80±0.07

cp
u
a
ct

ǫ = 0.20 2.43±0.02 2.91±0.05

M = 2N 2.71±0.05 2.91±0.06
unweighted 0/1 loss

by instance replication







M = 5N 2.54±0.05 2.81±0.07
M = 10N 2.62±0.07 2.85±0.06

weighted surrogate loss 2.47±0.07 2.71±0.04

Table 11: Comparison of different ways to solve the weighted 0/1 loss decision node optimization, for TAO
trees with constant-label leaves, on the ailerons and cpuact datasets: unweighted 0/1 loss by binarization,
unweighted 0/1 loss by instance replication, and weighted surrogate loss. We report the train/test RMSE
(avg±stdev over 5 repeats). All trees use the same depth (∆ = 7).
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5 Experimental setup

5.1 Datasets

Table 12 summarizes the characteristics of the datasets used in our experiments. For CCS and airfoil, we
randomly choose 2/3 samples for training and the rest for testing as in [12]. As for other benchmarks which
do not have separate test split (abalone, cpuact, ailerons and CT slice), we split them into 60% training
and 40% testing sets. We repeat this procedure 4 times and run each algorithm 5 times for each train/test
split. The description of the datasets is as follows (all regression tasks have dense features unless otherwise
stated):

CCS The task is to predict compressive strength of the concrete from material characteristics (age, amount
of cement, water, etc). The dataset is taken from the UCI Machine Learning Repository [13].

airfoil This regression dataset is also available in the UCI Machine Learning Repository [13]. The features
are various airfoil measurements (frequency, chord length, etc.) and the target variable is the scaled
sound pressure level (in decibels).

cpuact Predict the portion of time that CPUs run in user mode given different system measures. We
obtained it from the DELVE data collection1.

abalone Predict the age of an abalone from physical measurements. The first attribute (“sex”) is categorical
and we encode it as one-hot. Available in the UCI Machine Learning Repository [13].

ailerons Aircraft control action prediction2. The attributes describe the status of the aircraft and the target
is the command given to its ailerons.

CT slice The attributes are histogram features (in polar space) of the Computer Tomography (CT) slice.
The task is to predict the relative location of the image on the axial axis (in the range [0 180]). Available
in the UCI Machine Learning Repository [13].

SARCOS [22] Robot arm inverse dynamics problem3. The task is to map from a 21-dimensional input
space (7 joint positions, 7 joint velocities, 7 joint accelerations) to the corresponding 7 joint torques.

YearPredictionMSD A subset of the Million Song Dataset [3]. The task is to predict the age of a song
from several song statistics given as metadata (timbre average, timbre covariance). Obtained from the
UCI Machine Learning Repository [13].

1http://www.cs.toronto.edu/~delve/data/comp-activ/desc.html
2https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
3http://www.gaussianprocess.org/gpml/data/

Dataset Ntrain Ntest D K output range

CCS 687 343 8 1 [4.78 82.6]
airfoil 1 002 501 5 1 [103.38 139.92]
abalone 2 506 1 671 8 1 [2 29]
cpuact 4 915 3 277 21 1 [−0.5 99.47]
ailerons 7 154 6 596 40 1 [−3.5× 10−3 − 2.51× 10−3]
CT slice 42 800 10 700 384 1 [1.73 97.49]
SARCOS 44 484 4 449 21 7 [−104.80 121.38]
YearPredictionMSD 463715 51 630 90 1 [1922 2011]

Table 12: Specs of the datasets used in our experiments. N is sample size, D is input dimension (number of
features) and K is output dimension. We also give the range of the output, for reference when evaluating
the RMSE in the forest predictions.
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5.2 Forest-based methods we compare with

Random Forests (RF) [4] uses an ensemble of independent trees, each trained on a bootstrap subset of
the training data (bagging). Each tree is trained using CART but each node split can only use features
from a random subset of size m (see below regarding the choice of m).
We use the Python implementation in scikit-learn [16]. We do not restrict the max depth hyperparam-
eter and allow each tree to grow fully, as is recommended for random forests [4].

Extremely randomized trees (ET) [10] is similar to random forests, but additional randomization is
introduced in the cut-point choice.
We use the Python implementation in scikit-learn [16]. As in RF, we do not restrict the max depth

hyperparameter and allow each tree to grow fully, as is recommended for Random Forests [4].

AdaBoost [19]. This is one of the earliest boosting frameworks. It uses a set of “weak learners” (typically
shallow trees) which are trained sequentially. At each boosting iteration, the training instances are
reweighted so the new learner focuses mostly on those instances which have larger errors.
We use the Python implementation in scikit-learn [16], which implements the version of AdaBoost
known as SAMME [24]. We tune the most important hyperparameters max depth, n estimators (in
the tables, ∆ and T , respectively) and learning rate on a subset of the training data for each dataset
separately.

Gradient boosting [9] is a generalization of AdaBoost as an approximate gradient optimization in function
space of stagewise additive models.
We use the highly optimized XGBoost implementation [6]. We use the CPU version of the Python API
provided by the authors. As in AdaBoost, we tune the most important hyperparameters max depth,
n estimators (in the tables, ∆ and T , respectively) and learning rate on a subset of the training
data for each dataset separately. All other parameters, such as the regularization parameters, booster,
etc., are set to their default values.

We also compare with other recently proposed forest-based algorithms. For the rest of the methods below,
we compare with their published results:

Alternating Regression Forests (ARF) [20]: this algorithm essentially trains a Random Forest using a
combination of boosting and greedy tree growing.

Adaptive Neural Trees (ANT) [21]: this trains probabilistic decision trees (soft trees) which addition-
ally transform the initial input feature space at each edge along the path. For a fair comparison, we
only compare with the ANT version using linear decision nodes (including transformers) and linear
leaves.

Globally Induced Forest (GIF) [2]: this algorithm starts with a predefined number of trees which are
all decision stumps and grows only a subset of trees, those which show the best error reduction across
the ensemble. This is repeated until a stopping criteria is met.

Robust Forest [12]: this algorithm trains a RF for regression task in a regular way but the prediction of
the forest is obtained by solving an optimization problem instead of taking simple average.

Consistent Random Forest (cRF) [7]: this is a modified version of the conventional Random Forest
where, when training each individual tree, two separate data points are used for the decision node
optimization and a split threshold is calculated on a subset of those points.

Refined Random Forest (rRF) [17]: this takes as input a pretrained forest and, leaving the tree structure
and decision nodes unchanged, globally optimizes over the parameters on the leaves, which results in
an improved prediction error.

Note that, although Random Forests, AdaBoost and gradient boosting are considered to be robust to hy-
perparameter choice, sometimes they do require some tuning to do their best, depending on the dataset. We
explored as best as we could their hyperparameters, often improving over reported results in the literature
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(for the same dataset and method). In particular, we tried different choices of the number of trees and
maximum depth (see the tables). For RF and ET we tried 3 possible options of choosing m: m =

√
D,

m = D and m = ⌊D/3⌋, and picked the best one.
We ran our experiments (for all methods) in a computer with an Intel Xeon CPU E5-2699 v3 @ 2.30GHz

and 128 GB RAM. We did not use any GPUs.

TAO forests We use oblique decision trees (having a hyperplane function at each decision node) with
constant leaves (TAO-c) or linear leaves (TAO-l). We take as initial tree a complete binary tree of given
depth (∆ in the tables) with random parameters at each node (each node’s weight vector has Gaussian
(0,1) entries, and then we normalize the vector to unit length). Unless otherwise indicated, we train each
TAO tree on a 90% random sample of the training data using 40 iterations and a small sparsity penalty of
α = 0.01. (It is possible to tune α individually for each dataset: decreasing α a bit reduces the error but
increases the number of parameters; we found α = 0.01 worked well enough with all datasets.) To set the
depth ∆ and number of trees T , we often followed the following simple procedure: we try first a large value
of ∆ and T , to get an estimate of best error, and then try to reduce both without hurting the error. More
generally, one could use cross-validation over ∆ and T . We report the mean error (training and test) and
standard deviation over 5 independent runs.

We implemented TAO in Python 3.7.3 with process level parallel processing. We approximate the
weighted 0/1 loss in the decision node optimization with a weighted surrogate loss (ℓ1-regularized weighted
logistic regression). For TAO-l, the leaf optimization involves an ℓ1-regularized linear regression (Lasso). We
implement the logistic regression using LIBLINEAR [8] and the linear regression using coordinate descent,
both of which are available inside scikit-learn [16].

5.3 Forest size: number of parameters and FLOPS

For each method’s forest, we report its total number of parameters and (estimated) FLOPS for inference:

Total number of parameters We count the parameters for each node of each tree (decision nodes and
leaves). In a decision node we count the number of nonzero weights (and the bias), which is 2 for an
axis-aligned tree and D+1 for an oblique tree (where D is the number of features). In a leaf, we count
K for constant-label leaves and DK for a linear regressor.

Inference FLOPS We take the inference time (FLOPS) for one instance along one tree as the number of
nonzero parameters it encounters in the root-leaf path it follows. We repeat this for each tree in the
forest and average over all training instances.

For the forests created by some algorithms, we do not have access to the actual forest, in which case we
report an upper bound and mark it with parentheses in the tables. This is computed as follows:

Total number of parameters For each tree of depth ∆ (but not necessarily complete), the maximum
number of decision nodes and leaves is max(N, 2∆) − 1 and max(N, 2∆), respectively, where N is the
number of training points. We then count the number of parameters as above and multiply it times
the number of trees.

Inference FLOPS We assume each root-leaf path to have depth ∆.
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