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Abstract

The LSTM network was proposed to overcome
the difficulty in learning long-term dependence,
and has made significant advancements in appli-
cations. With its success and drawbacks in mind,
this paper raises the question - do RNN and LSTM
have long memory? We answer it partially by
proving that RNN and LSTM do not have long
memory from a statistical perspective. A new
definition for long memory networks is further
introduced, and it requires the model weights to
decay at a polynomial rate. To verify our theory,
we convert RNN and LSTM into long memory
networks by making a minimal modification, and
their superiority is illustrated in modeling long-
term dependence of various datasets.

1. Introduction

Sequential data modeling is an important topic in machine
learning, and it has been well addressed by a variety of
recurrent networks. In the meanwhile, modeling long-range
dependence remains a key challenge. Bengio et al. (1994)
concluded that learning long-term dependencies by a system
Yyt = M (yi—1) + &; with gradient descent is difficult. Later,
much effort was spent on proposing new networks to fight
against vanishing gradients, such as LSTM (Hochreiter &
Schmidhuber, 1997) and GRU networks (Cho et al., 2014).

LSTMs have shown their success on both synthetic classifi-
cation tasks, such as the “parity” problem and the “latching”
problem (Hochreiter & Schmidhuber, 1997), and count-
less applications, including speech recognition and machine
translation. Despite its success, questions concerning the
ability of LSTM in handling long-term dependence arise.
For example, Cheng et al. (2016) pointed out that the up-
date equation of LSTM is Markovian, which is consistent
with the system assumed in Bengio et al. (1994). Greaves-
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Tunnell & Harchaoui (2019) utilized statistical tests and
concluded that LSTM cannot fully represent the long mem-
ory effect in the input, nor can it generate long memory
sequences from white noise inputs.

Does LSTM have long memory? It is difficult to judge if
long memory is assessed heuristically by the performance of
LSTM on certain tasks. However, long memory happens to
be a well-defined and long-existing terminology in statistics.
From a statistical perspective, our investigation yields an
affirmative reply. Our first contribution is to prove that a
recurrent network process with Markovian update dynamics
does not have long memory under mild conditions.

Nevertheless, the statistical definition of long memory is
neither applicable nor easily transferable to general neural
networks. The main obstacle is the existence of non 7.:.d.
exogenous input to the network, violating a key assumption
in the study of stochastic processes. The long or short mem-
ory effect in the input confounds the memory property of
the output sequence. Thus, we propose a new definition for
the long memory network process, which aims to charac-
terize the ability of a network process to extract long-term
dependence from the input.

We further explore the possible implications of our theory
in practice. Our analysis implies that we cannot assume that
information can be stably stored in the hidden states of a
recurrent network with Markovian updates. Subsequently,
providing the hidden states with more past information is a
natural strategy to avoid the vanishing gradient problem.

In terms of network design, we propose a new memory filter
component, which is controlled by a learnable memory pa-
rameter d. The filter uses d to deduce dynamic weightings
on historical observations of arbitrary lengths and feeds past
information to the hidden units. We incorporate this memory
filter structure into RNN and LSTM and introduce Memory-
augmented RNN (MRNN) and Memory-augmented LSTM
(MLSTM). By adding this memory filter, the modified mod-
els achieve the ability to approximate the fractional differ-
encing effect, which is a type of long memory effect, and
retain the flexibility and expressiveness of neural networks.

The main contributions of this work are below:

e We provide theoretical conditions for recurrent net-
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works, such as RNN and LSTM, to have short memory.

e We propose a new definition for long memory network
processes under a statistical motivation, and make it
applicable to neural networks.

e We propose a long memory filter component for net-
work design. Modifying RNN and LSTM with this
filter allows the networks to better model sequences
with long memory effects.

e We perform numerical studies on several datasets to
illustrate the advantages of our proposed models.

1.1. Related Work

Besides the aforementioned papers, the following works are
also related to our paper in different aspects.

Long memory phenomenon and statistical models Long
memory effect can be observed in many datasets, including
language and music (Greaves-Tunnell & Harchaoui, 2019),
financial data (Ding et al., 1993; Bouri et al., 2019), den-
drochronology and hydrology (Beran et al., 2016). There
are many statistical results and applications on modeling
datasets with long memory (Grange & Joyeux, 1980; Hosk-
ing, 1981; Ding et al., 1993; Torre et al., 2007; Bouri et al.,
2019; Musunuru et al., 2019; Sabzikar et al., 2019). Ad-
mittedly, these models enjoy rigorous statistical properties.
However, they appear to be quite rigid and inflexible for
real-world applications in comparison to neural networks.

Analysis of LSTM networks There is limited theoretical
analysis of LSTM networks in the literature. Miller & Hardt
(2018) studied RNN and LSTM as dynamic systems and
proved that r-step LSTM is a stable procedure, which im-
plies that LSTM cannot model long-range dependence well.
There also exists some work that tried to analyze LSTM
numerically. For example, Levy et al. (2018) studied which
component of LSTM contributes the most to its success by
ablation experiments, and concluded that the memory cell
is largely responsible for the performance of LSTM. This
is consistent with our view that the core of LSTM is the
update equation of the cell state, which takes the form of a
varying coefficient vector AR(1) model.

Recurrent networks for long-term dependencies Exam-
ples include the Hierarchical RNN (El Hihi & Bengio, 1996),
where several layers of state variables are constructed at dif-
ferent time scales, and direct linkages are added between
distant historical and current observations. Zhang et al.
(2016) propose the skip connections among multiple times-
tamps to account for long-range temporal dependencies.
The idea is further extended by Chang et al. (2017) with
the Dilated RNNs, where the number of parameters is re-
duced to enhance computation efficiency. The NARX RNN
(Lin et al., 1996) revised the hidden states of an RNN to

follow a Nonlinear AutoRegressive model with eXogenous
variables (NARX). Based on NARX RNN, MIxed hiSTory
RNNs (MIST RNNs) (DiPietro et al., 2017) was proposed
to reduce the number of trainable weights and link to hidden
units in the distant past. The recurrent weighted average
(RWA) model (Ostmeyer & Cowell, 2019) is also consid-
ered very akin to our proposed models. Thus, we compare
our models with MIST RNN and RWA in the experiments.

Memory networks and attention Another popular trend
of modeling long-range dependence lies in creating an ex-
ternal memory unit. The main controller interacts with the
stand-alone memory unit through reading and writing heads.
Neural Turing Machine (Graves et al., 2014) is perhaps
the most famous example of such construction. Based on
this idea, the attention mechanism (Vaswani et al., 2017) is
also proposed. These models have gone beyond a recurrent
nature and thus are not compared with our proposed models.

Finite impulse response (FIR) filters and signal process-
ing Our proposed memory filter can be viewed as a special
FIR, and we propose to add it to RNN at the input and LSTM
at the cell states. Literatures on using filters on inputs in-
clude TFLSTM (Li et al.), SRU (Oliva et al., 2017) and
Convolutional RNN (Keren & Schuller, 2016), while those
for filters on hidden states can be found in NARX RNN (Lin
et al., 1996) and Low-pass RNN (Stepleton et al., 2018).
Our filter is directly motivated by the ARFIMA model in
statistics and shares the same root with the fractional-order
filters (Radwan et al., 2008; 2009a;b) in signal processing.
The fractional-order filters enjoy similar properties with
ours in terms of modeling long-range dependencies.

2. Memory Property of Recurrent Networks
2.1. Background

For a stationary univariate time series, there exists a clear
definition of long memory (or long-range dependency) in
statistics (Beran et al., 2016), and we state it below. It is
noticeable that Greaves-Tunnell & Harchaoui (2019) uti-
lized the following definition to claim the long memory in
language and music data.

Definition 1. Let {X,,t € Z} be a second-order sta-
tionary univariate process with autocovariance function
vx (k) for all k € Z and spectral density fx(\) =
(2m) Yo vx (k) exp (—ikX) for X\ € [—m,|. Then
{X:} has (a) long memory, or (b) short memory if

oo o0

(@) Y x(k) =00, or (b)0< Y  x(k) < o0.

k=—o0
(1)
In terms of spectral densities, the conditions are, as |\| — 0,

k=—o00

(@) fx(X) = 00, or (b) fx(A) = ¢f € (0,00). (2
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There are many types of long memory processes, and the
fractionally integrated process is the most commonly used
one in real applications; see Beran et al. (2016). Let B
be the backshift operator, defined as B/ X, = X;_j; fora
j > 0, applicable to all random variables in a time series
{X:}. The fractionally integrated process (Hosking, 1981)
is defined as
(1-B)"Y, = Xi,

where

(1—B)d:Z0 (d” ij RNG)

and I'(+) is the gamma function. The sequence {X,} is
usually assumed to follow an ARMA model to capture the
short-range dependency, and it then leads to a fractional
ARIMA process of {Y;} (Grange & Joyeux, 1980). It can
be verified that

w(d) ~ 47!

as j — oo, and yx (k) ~ |k[??~! as k — o0o. As a result,

time series {Y;} exhibit long memory when d € (0,0.5),
and larger d indicates longer memory. In other words, the
long-range dependence of fractionally integrated processes
can be characterized by the parameter d, which hence is
called the memory parameter.

For multivariate time series, its definition of long memory
is not unique, and a usual way is to check the long-range
dependency of each component (Greaves-Tunnell & Har-
chaoui, 2019). Accordingly the multivariate fractionally
integrated process {Y; } can be defined as (I — B)4Y; = X,

where Y; € RY, X, e R%, d = (d4,...,dy),
(1-B)% 0
(I -B)Y, = Yy, 4
0 (1— B)da

and {X;} can be a multivariate ARMA process.

Many time series models can be rewritten into a discrete-
time Markov chain. Their stationarity can be checked by
verifying the geometric ergodicity, defined below.

Definition 2. Let {X;,t € Z} be a temporal homogeneous
Markov chain with state space (S, F), where the o-field
F of subsets of S is assumed to be countably generated.
Let P"(x,A) = P(Xi1n € A|X; = z) be the n-step
transition function. {X;} is geometrically ergodic if there
exists a 0 < p < 1 such that for every x € S and some
probability measure ™ on F

p "||P"*(x,:) — 7| = 0as n — oo, 5)

where || - || denotes the total variation of signed measures
on F.

For a geometrically ergodic process { X; }, from Harris The-
orem (Meyn & Tweedie, 2012), we have that yx (k) ~ pF
as k — oo, and it hence has short memory. Heuristically,
geometric ergodicity implies that the Markov chain con-
verges to its stationary distribution exponentially fast. This
means that information in the past is forgotten exponen-
tially fast, since the influence of observation X; = x on the
distribution of X, ,, vanishes exponentially.

2.2. Recurrent Network Process

Consider a general recurrent network with input {a:(t)},
output {z(Y)} and target sequence {y®}, where z(!) € R?
and y € RP. We first assume that the data generating
process (DGP) is

yM =20 4O fortez, (6)

where {¢(¥)} is a sequence of independent and identically
distributed (é.7.d.) random vectors. This additive error as-
sumption corresponds to many frequently used loss func-
tions, which measure the distance between y(*) and z(*).
Examples include /1, I3, Huber and quantile loss.

We use the term network process to describe the generated
target sequence by (6), and the term network to describe the
implemented networks, which might include some compro-
mises and simplifications.

We further assume that there is no exogenous input, i.e.,
) = 41 ince the long-range dependence in an exoge-
nous input will confound the memory properties of {y(*)}.
We aim to check whether a network can model long mem-
ory sequences, and it is then equivalent to verifying whether
the corresponding network process has long memory under
Definition 1.

General hidden states s(!) € R? are also introduced so
that the recurrent network process (6) can be written into a
homogeneous Markov Chain with transition function M:

() ()
() st ().

When transition function M is linear in y*~1) and s(*=1),
the above equation also has the form of

(t) (t-1) (t)
) _ Y €
where W is a (p + ¢)-by-(p + ¢) transition matrix.

The first example is the vanilla RNN. Consider a many-to-
many RNN structure for time series prediction problems,
and use square loss as an example:

10 = ||y® — Z<t>||2

R = o(Whph =D 4+ Wiyy" =Y + by)
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fort € {1,...,T}, where y(©) = 0, (0 =0, y®, 2 ¢
R?, (V) € Ry, g is an elementwise output function, o is
an elementwise activation function. Accordingly the RNN
process can be defined as

® (t)
(Z@)) = Mpxx (y“‘”,h(t—”) + (50 ) (10)

where h(") is the hidden state, and Mgyy(-,-) : RPTe —
RP*4 is a function given by
bz)>

A 9Woho(Whpv + Whyu + by) +
Mprwn (u,v) = ( (Wi + Wiyt + by)
(11

with v € RP and v € RY.

The second example is an LSTM network

{lu) = [ly® — 2®)12

,fort e {1,..,T}, (12
Z(t) :g(thh(t) +bz) or { } ( )

where the hidden unit calculations involve several gating
operations as follows,

fO = U(thh(t—l) + nyy(t—l) +by)
i) = O'(Wihh(t_l) + Wiyy(t_l) + bz)

o) = g(Wop k(=1 + Woyy(tfl) + bo)
¢ = tanh(Wep b1 + Wy y—Y +b,)
c® =i et 4 ) @ -1

) = o) @ tanh(c®)

, (13)

fort € {1,...,T}, where y(©) = 0, (0 =0, y®, 2t ¢
RP, h(®) | c®) &t (1) (1) o(t) ¢ RY, g is an elementwise
output function, o is the elementwise sigmoid function,
tanh is the elementwise hyperbolic tangent function, ® is
the elementwise product. Similarly the LSTM process can
be defined as

y(t) =t
) | = MiLstu (y(t_1)7 h(t_l)7c(t_1)) + 0
e 0

(14)

where h(!) and ¢ are hidden states defined in (7), the
transition function My gry (-, -, ) : RPTIT4 — RPTITL hag
a complicated form, and hence omitted here.

2.3. Memory Property of Recurrent Network Processes

We first introduce a technical assumption, and then state two
general theorems for recurrent network processes.
Assumption 1. (i) The joint density function of €) is con-
tinuous and positive everywhere; (ii) For some k > 2,
Elle®|* < .

Theorem 1. Under Assumptions 1, if there exist real num-
bers 0 < a < 1 and b such that |M(z)|| < a||z|| + b, then
recurrent network process (7) is geometrically ergodic, and
hence has short memory.

Table 1. Restrictions on weights such that the RNN process is
geometrically ergodic.

Output Activation function o
function g identity or ReLU sigmoid or tanh
lwznwnn| < a,
identity |wenwhy| < a, No
lwin| < a, |why| < a
sigmoid  |wpa| < a, [way| < a No
softmax  |wnn| < a, |wny| < a No

Theorem 2. Under Assumption 1, linear recurrent network
process (8) is geometrically ergodic if and only if spectral
radius p(W') < 1. Model (8) hence has short memory.

Technical proofs of the above two theorems are deferred to
the supplementary material. Theorem 2 gives a sufficient
and necessary condition, while Theorem 1 provides only a
sufficient condition since it is usually difficult to achieve
a sufficient and necessary condition for a nonlinear model
(Zhu et al., 2018).

It is implied by Theorems 1 and 2 that both RNN and LSTM
have no capability of handling a stable time series with long-
range dependence.

Specifically we consider a RNN process at (10) with p =
g = 1. Assume that the norm || - || in Theorem 1 takes [;
norm, the output function g is linear, sigmoid or softmax,
and the activation function o is ReLU, sigmoid or hyperbolic
tangent. Table 1 gives the ranges of weights so that the RNN
process is geometrically ergodic with short memory.

For linear or ReLLU activation, RNN has short memory when
the magnitude of the weights is bounded away from one.
This condition is often satisfied for numerically stable RNNS.
Thus, RNN with linear or ReLLU activation often has short
memory. Moreover, in practice, the activation function in
RNN is commonly chosen as tanh. According to Table
1, RNN with tanh or sigmoid activation always has short
memory. In fact, this holds for general RNN processes with
any bounded and continuous output and activation function;
see Corollary 1 below.

Corollary 1. Suppose that the output and activation func-
tions, g(-) and o(-), at (10) are continuous and bounded. If
Assumption 1 holds, then the RNN process is geometrically
ergodic and has short memory.

We next consider the LSTM process at (14), and a detailed
analysis of one-dimensional LSTM, similar to the analysis
presented in Table 1, can be referred to in the supplementary
material. The restrictions on weights such that an LSTM
process is geometrically ergodic is given below.

Corollary 2. The input series features {y*=V} are
scaled to the range of [—1,1]. Suppose that M :=
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sup,ep [ 9Wen + )l < o0 and o([Wynl. +
Wiyl + 11bflli.) < a for some a < 1, where
B% is the q-dimensional ly-ball and ||W |
maxi<i<m 2?21 |wi;| is the matrix lo-norm. If Assump-
tion 1 holds, then the LSTM process at (14) is geometrically
ergodic and has short memory.

It is worthy to point out that the condition of M < oo is sat-
isfied by many commonly used output functions, including
linear function, ReLLU, sigmoid or tanh. From the condi-
tions in Corollary 2, we may conclude that the forget gate
mainly affects the memory property of an LSTM.

2.4. Long Memory Network Process

In the previous subsection, we verify that the two commonly
used recurrent networks, RNN and LSTM, are both short
memory when there is no exogenous input. However, it is
very common of {2} to include exogenous inputs, and the
long-range dependence in {x(*)} will confound the memory
property of {y*}. It is then misleading to check the long-
range dependence of a network by verifying that of the
corresponding network process.

In the literature of conditional heteroscedastic time series
models, there also exists vast interest in long-range depen-
dence; see, e.g., the fractionally integrated GARCH (FI-
GARCH) models (Davidson, 2004), hyperbolic GARCH
(HYGARCH) models (Li et al., 2015), etc. However,
for a stationary conditional heteroscedastic process, its
autocovariance function is always summable, i.e. it always
has short memory in terms of Definition 1.

Consider a stationary conditional heteroscedastic model,
yr = mv/heand by = w+Y 02 | Opy? ., where {n;} is a se-
quence of i.¢.d. random variables. Davidson (2004) defined
that it has long memory if the coefficients {6} have hy-
perbolic decay. This definition has been widely used in the
literature. Moreover, the commonly used fractional ARIMA
process also has the form of y® = "7 | ayyt=%) 4 (),
where ay ~ k~%"!as k — oo. This motivates us to propose
a new definition of long memory for a network process,

y =3 At 40, (15)
k=0

where y*) € RP? is the generated target, () € RY is the
input, ¢ x p coefficient matrices A, = {(Ax);;} with 1 <
i1<pand1l < j <qgand {€(t)} are 7.7.d. random vectors.

Definition 3. The network process at (15) has long memory
if there exist 1 <1 <pand1 < j < q such that

(Ag)ij ~ k=471

as k — oo, where d € (0,0.5) is the memory parameter.

The coefficients { Ay } xen reflect the dependence of y® on
{zM}. If (A);; decays slowly at a polynomial rate, we can

Z(t) is long-term dependent on 7t

conclude that y ;| accord-
ing to Definition 1. This definition is consistent with the
visual method used by Lin et al. (1996) since the Jacobian
J(t, k) = 0y™® /92*) equals Ay, and exhibits slow decay

under Definition 3.

This definition admits extensions to nonlinear networks.
Firstly, we can linearize a network by letting all output and
activation functions be the identity function, and we call the
resulting network process as its linear network process. A
network can handle data with long-range dependence if its
linear network process has long memory in terms of Defini-
tion 3. Note that, for some networks such as LSTM, their
linear network processes are still nonlinear. Moreover, non-
linear networks can often be well approximated by linear
networks via polynomial approximations and introducing
the powers of z® into the input; see Yu et al. (2017) as
an example. Lastly, we may resort to a first-order approx-
imation y* ~ 722 J(t, k) 2% + £® as in Lin et al.
(1996) and check the decay pattern of the Jacobians.

3. Long Memory Recurrent Networks

Motivated by the fractionally integrated process at (4) and
the new definition of long memory in Section 2.4, we pro-
pose a long memory filter structure that can be added to
neural networks to enable modeling long-term dependence.
This long memory filter can be viewed as a special attention
mechanism with only a few memory parameters and a guar-
anteed memory elongation effect when active. In Sections
3.1 and 3.2, we modify the RNN and the LSTM network by
the proposed long memory filter structure, respectively.

3.1. Memory-augmented RNN (MRNN)

Long memory pattern is introduced via a memory filter,
F(z";d) = (I - B)* - )2 (16)

for () € RP= with p, being the dimension of inputs, where
d = (dy,...,dp,); see (4) for details. The memory filter
can be viewed as soft attention to a reasonably sized memory
with only a few memory parameters of d;s. Note that, from
(3), the ith element of the memory filter is F(z(®);d); =

(1 - By — Dzl = 3% wi(d)al 7+, where

w;(d) = T(d+5)/[H'T(d)] = T2, (i —d)/(i+1). To
implement this model, we truncate this infinite summation
at lag K. In our experiments, we choose K = 100 by de-
fault, since, taking d = 0.4 as an example, w1p(0.4) =
—4.27 x 10~* is already small enough.

In MRNN, we introduce a long memory hidden unit

m® = tanh(W,,,,m~Y + WmfF<m(t); d) +b™),
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Figure 1. The MRNN cell structure.

1O,

©
L

which shares a similar structure with (Y, while the input
term is replaced with the filter F'(z(*);d). The unit m(®)
works in parallel with the traditional hidden unit h(*) and
takes responsibility for modeling the long memory pattern in
time series. The underlying network can then be designed,

20 = g(Woph D + Woom® +0,) +0,  forteZ

where z(*) € RP= with p, being the dimension of outputs,

and (M) = (hgt)7 I h((f))’ € R is the same as the hidden
states in RNN.

For the memory parameter d = (dy, . ..,d,, ) , we restrict
0 < d; < 0.5 such that the fractional integration can pro-
vide long memory. Moreover, to make the design more
general, we also let the memory parameter d depend on
other variables, and hence the notation d®. Asa result, the
procedure of MRNN is given below.

10 = ||ly® — 202

2O = g(W,,h® + W,,,m® +b,)

h®) = tanh(Wy,, hE—D + Wyz® 4 by,)
F(z®;d®); = Zjil wj(dl(»t))xgt*jﬂ)

4t = %G(Wd[d(t*”, Rt=1), m(tfl)’x(t)] + bg)
m® = tanh(W,,[m~D, F(z®);d®)] +b,,)

(17
fori € {1,...,p.},t € {1,...,T}, where h® m® ¢ RY,
d(t), x® € RP+ and o is the sigmoid activation function.

Figure 1 gives a graphical representation of the MRNN cell
structure, imitating the style of Olah (2015). The memory
filter Filter(d®)) refers to (16), and Historical x(*)’s are
(x® =1 p=K+1) where we treat z(*) = 0 for
s <0.

For the network with memory parameters constant over time
points ¢, we refer to it as the MRNNF model, and it can be
implemented by fixing W; = 0 in the update equation (17).

Theorem 3. In terms of Definition 3, the MRNNF has the
capability of handling long-range dependence data, while
the RNN cannot.

Technical proof is provided in the supplementary material.

3.2. Memory-augmented LSTM (MLSTM)

Corollary 2 indicates that the forget gates determine the
memory property of the LSTM. The update equation of cell
states has a varying coefficient vector AR(1) form,

_ f(t) ® c(t—l) — Z‘(t) ® é(t)’

which has short memory when the coefficients f(*)s are
smaller than one. Thus, we propose to revise the cell states
of LSTM by adding the long memory filter to it

(I = Bye® — i o 6®)

where the memory parameter d can depend on other vari-
ables as for the MRNN in the previous subsection. The
MLSTM cell structure is shown in Figure 2. The revised
cell states can be viewed as paying soft attention to past cell
Cell state

states controlled by only a few memory parameters.
A

Cell state

Hidden Q
Historical ¢(*)'s [~&
tanh
- Filter(d"))

output

input
[[o ][ tanh ] 5‘“5

> 0

memory a®

Hidden

Figure 2. The MLSTM cell structure.

»{ L)

The underlying network can then be designed as

20 = g(W.,h® +b.) +e®, fort ez, (18)

where the hidden unit 2(*) is produced by the MLSTM cell.
We rename the forget gate as the memory gate and modify
the update equations as

d®) = %O’(Wd[d(t_l),h(t_l),l’(t)] + bg)

i® = g(Winh"= + Wiza® +b;)

o) = (W ht=Y + Woz® +b,)

& = tanh(Wep b0 + Wepa® +b,) 7
(I - Byl =i o e® with d=d®
r® = o® © tanh(c®)

19)
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fort € {1,...,T}, where (I — B)? is defined as in (4).

As for the MLSTM, to implement this model, we truncate
the infinite summation (7 — B)%c(*) at lag K. The procedure
related to the MLSTM cell states is implemented as

K
e = =3 wi(d)el ™ 4 i0e), (20)
Jj=1

where cgt) is the i-th element of ¢, w;(d) =

U(d+4)/[j'T(d)] = TT2Z5(i —d)/(i +1). We remark
that the negative sign before the summation in equation
(20) is introduced by the definition of (I — B)?. In MRNN,
we let the negative sign be absorbed by the weight matrix
Wy for elegance.

Note that the cell state {c(*)} has long memory in terms of
Definition 3. In the meanwhile, due to the gating mecha-
nism, neither LSTM nor MLSTM can be reasonably simpli-
fied to a linear network, i.e. their linear network processes
are both nonlinear. However, if we assume that the gates are
learnable constants independent of the hidden unit and the
inputs, we can prove that the constant-gates-LSTM does not
have long memory, while the constant-gates-MLSTM is a
long memory network according to Definition 3. We defer
the formal statement of this auxiliary result and its proof to
the supplementary material.

Similar to MRNNF, we refer MLSTMF to the case with
constant memory parameter over time ¢, and it can be im-
plemented via fixing W, = 0 in the update equation (19).

4. Experiments

This section reports several numerical experiments. We first
compare the models using time series forecasting tasks on
four long memory datasets and one short memory dataset.
Then, we investigate the effect of the model parameter K on
the forecasting performance. Lastly, we apply the proposed
models to two sentiment analysis tasks.

All the networks are implemented in PyTorch. | We use
the Adam algorithm with learning rate 0.01 for optimization.
The optimization is stopped when the loss function drops by
less than 10~ or has been increasing for 100 steps or has
reached 1000 steps in total. The learned model is chosen to
be the one with the smallest loss on the validation set.

Considering the non-convexity of the optimization, we ini-
tialize with 100 different random seeds and arrive at 100
different trained models for each model. We refer to the
distribution of these 100 results as the overall performance,
and best of them as the best performance. The overall per-

"Our implementation in PyTorch is available at https:
//github.com/huawei-noah/noah-research/
tree/master/mRNN-mLSTM.

formance reflects what we can expect from a locally optimal
model, and the best performance is closer to the outcome of
a globally optimal model.

4.1. Long Memory Datasets

We compare our models with the baselines on one synthetic
dataset and three real datasets. We split the datasets into
training, validation and test sets, and report their lengths
below using notation (N¢rain + Nyal + Ntest). MSE is the
target loss function for training. We perform one-step rolling
forecasts and calculate test RMSE, MAE, and MAPE.

ARFIMA series We generated a series of length 4001
(2000+4-1200+800) using the model (1—0.7B+0.4B%)(1—
B)4Y; = (1 — 0.2B)e; with obvious long memory effect.

Dow Jones Industrial Average (DJI) The raw dataset con-
tains DJI daily closing prices from 2000 to 2019 obtained
from Yahoo Finance. We convert it to absolute log return
for 5030 (2500 + 1500 + 1029) days in order to model the
long memory effect in volatility.

Metro interstate traffic volume The raw dataset contains
hourly Interstate 94 Westbound traffic volume for MN DoT
ATR station 301, roughly midway between Minneapolis and
St Paul, MN, obtained from MN Department of Transporta-
tion (UCI). We convert it to de-seasoned daily data with
length 1860 (1400 + 200 + 259).

Tree ring Dataset contains 4351 (2500 + 1000 + 850) tree
ring measures of a pine from Indian Garden, Nevada Gt
Basin obtained from R package t sd1 (tsdl).

We visualize the long memory in the datasets via autocor-
relation plots (Figure 3), where ry = 1 is cropped-off. Full
ACEF plots are provided in the supplementary material.

0.4

0.2

0.0

0.4

0.2

0.0

0 5 s 75 100 125 150 175 200
Figure 3. Autocorrelation plot of traffic dataset (top) and DJI
dataset (bottom).

We compare the following models: 0. ARFIMA; 1. vanilla
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Table 2. Overall performance in terms of RMSE. Average RMSE
and the standard deviation (in brackets) are reported. The best
result is highlighted in bold.

ARFIMA  DIJI (x100) Traffic Tree

RN 11620 02605 33644 02871
0.1980)  (0.0171)  (10.401)  (0.0086)
NN 11630 02521 33632 0.2855
0.1820) (00112  (10.182) (0.0077)
RWA 16840 02689 34662  0.3048
0.0050)  (0.0095  (1.410)  (0.0001)
MIST 11390 02604 35809  0.2883
0.1832)  (0.0154)  (16270) (0.0091)
11010 02472 33336 02822
MRNNF - 01000)  (0.0109)  (8.453)  (0.0048)
10880 02487 33372 0.2818
MRNN (0.1140)  (0.0105)  (10.157) (0.0053)
LSTM 11340 02492 33760  0.2833
0.1200)  (0.0128)  (8.146)  (0.0070)
11580 02540 33778 0.2859
MLSTME 0 1660)  (0.0139)  (9.020)  (0.0082)
11490 02531 33783  0.2859
MLSTM  01660)  (0.0130)  (9.440)  (0.0083)

RNN (RNN); 2. two-lane RNN with past K values as
input (RNN2); 3. Recurrent weighted average network
(RWA); 4. MlIxed hiSTory RNNs (MIST); 5. MRNN with
homogeneous memory parameter d (MRNNF); 6. MRNN
with dynamic d® (MRNN); 7. vanilla LSTM (LSTM); 8.
MLSTM with homogeneous d (MLSTMF); and 9. MLSTM
with dynamic d*) (MLSTM).

-
-*
: $
350- !
340-
330-

RMNN RMN2 RWA MRMNNF MRNN LSTM

RMSE

MLSTMF ~ MLSTM

Figure 4. Boxplot of RMSE for 100 different initializations.
Dataset: traffic.

In Table 2, we report overall performance of one-step fore-
casting regarding RMSE. MAE and MAPE are reported
in the supplementary material. Boxplots are generated to
give a better picture for comparison. We use the traffic
dataset as an example and put boxplots for other datasets
into the supplementary material. We can see that MRNN
and MRNNF have a smaller average RMSE and smaller
quantiles compared with others. MLSTM(F) does not have
an obvious advantage over LSTM in terms of RMSE, and
we suspect that this is due to the difficulty in training ML-

Table 3. Best performance in terms of RMSE.

ARFIMA DIJI (x100) Traffic Tree

ARFIMA 1.0260 0.2468 327.47 0.2773
RNN 1.0452 0.2390 320.29 0.2786
RNN2 1.0232 0.2402 323.15 0.2784
RWA 1.6742 0.2631 345.58  0.3047
MIST 1.0232 0.2401 337.49  0.2772
MRNNF 1.0230 0.2394 320.09 0.2769
MRNN 1.0208 0.2395 321.03  0.2770
LSTM 1.0272 0.2396 320.79  0.2771
MLSTMF 1.0280 0.2413 324.37 0.2773
MLSTM 1.0272 0.2412 324.00 0.2772

STM(F). RWA is very stable with respect to initialization but
does not have a competitive RMSE. The ar f ima routine
in R automatically searches for an optimal global solution,
and thus ARFIMA appears only in the comparison of the
best performance.

Thanks to the anonymous reviewers’ comments, we present
two-sample t-tests to compare the models more rigor-
ously. Consider the null and alternative hypotheses Hy:
mean(RMSE(Model)) > mean(RMSE(Benchmark)) vs.
Hy: mean(RMSE(Model)) < mean(RMSE(Benchmark)).
MRNN is significantly better than RNN at 5% significance
level on all datasets, and it is significantly better than LSTM
on all datasets except for DJI.

In Table 3, we report best performance of one-step forecast-
ing regarding RMSE. Results in terms of MAE and MAPE
are reported in the supplementary material. The best per-
formance of MRNNF and MRNN are better than others on
ARFIMA, traffic and tree, while remains competent on DJI.

4.2. Short Memory Dataset

For datasets without long memory effect or with long mem-
ory only in certain dimensions, the performance of our pro-
posed models does not deteriorate. This claim is supported
by an experiment on a synthetic dataset generated by RNN.

We generated a sequence of length 4001 (2000+1200-+800)
using model (10), which does not have long memory accord-
ing to Corollary 1. We refer to this synthetic dataset as the
RNN dataset. The boxplots of error measures are presented
in the supplementary material. From the boxplots, we can
see that the performance of MRNN(F) and MLSTM(F) is
comparable with that of the true model RNN, except that
the variation of the error measures is a bit larger.

4.3. Model Parameter K

We further explore more choices of K using the long mem-
ory datasets in section 4.1. Settings for MSLTM and LSTM
are kept the same except for the hyperparameter K. We
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Table 4. Overall performance on CMU-MOSI in terms of MAE,
RMSE and MAPE.

MAE _ RMSE  MAPE
15028 17368 1.0314
RNN 0.0186) (0.0171)  (0.0339)
14978 17288 1.0146
LSTM 0.0128) (0.0112)  (0.0186)
14953 17255  1.0322
MRNNFS0 - h0216)  (0.0109) (0.0351)
14972 17279 1.0156
MLSTMFS0 4 0108)  (0.0105) (0.0110)

compare the prediction performance of the proposed mod-
els with K = 25,50, 75 or 100. For MRNN and MRNNF,
the prediction is generally better for a larger K, and they
have smaller average RMSE than all the baseline models re-
gardless of the choice of K. Interestingly, the performance
of MLSTM and MLSTMF gets better when K becomes
smaller, and with K = 25, they can outperform LSTM on
ARFIMA and traffic datasets. Thus, we recommend a large
K for MRNN and MRNNF models, while for the more com-
plicated MLSTM models, K deserves more investigation to
balance expressiveness and optimization. More details and
figures can be found in the supplementary material.

4.4. Sentiment Analysis

As suggested by the reviewers, we present two more appli-
cations of our proposed model on natural language process-
ing tasks. Comparisons between our proposed model and
RNN/LSTM are made on two sentiment analysis datasets,
CMU-MOSI (Zadeh et al., 2016a;b; 2018) and a paper re-
views dataset (Keith et al., 2017). For faster computation,
we fix the memory parameter d to be homogeneous and
decrease K to 50 in MRNN and MLSTM.

CMU-MOSI contains acoustic, language and visual informa-
tion from videos. Each sample in CMU-MOSI is annotated
with a value ranging from -3 to 3. A larger annotation indi-
cates more positive sentiment. The models are all trained
using the MAE loss, and the overall performance is reported
in Table 4. We conduct the same two-sample t-tests for
MRNNF50 against RNN/LSTM using measure MAE, and
the p-values are 0.004 and 0.156. Corresponding p-values
for MLSTMEFS50 are 0.005 and 0.349.

The Paper Reviews dataset (Keith et al., 2017) contains 405
textual reviews evaluated with a 5-point scale. In prepro-
cessing, we removed empty reviews and English reviews,
leading to 382 remaining instances. For simplicity, we use
a 2-layer network structure with a fully connected classifier
at the output. The first layer uses RNN, LSTM, MRNNF50
or MLSTMF50, and the 2nd layer is fixed to be LSTM.

The overall performance is reported in Table 5 and the best
performance is reported in Table 6. Using MLSTMF50

Table 5. Overall performance on Paper Reviews in terms of accu-
racy, precision, recall and cross-entropy loss (CEloss).

Accuracy Precision  Recall CEloss

RN 02836  0.1786 02248 15787
0.0348)  (0.0606) (0.0350) (0.0348)

LSTM 03021  0.1724 02274 15752
0.0468)  (0.0697) (0.0332) (0.0189)

03096  0.1692 02224 15704

MRNNFSO ™ 00373)  (0.0839) (0.0428) (0.0328)
03110 02254 02594 14758

MLSTMFS0 6 0204)  (0.0707)  (0.0262)  (0.0218)

Table 6. Best performance of the models on Paper Reviews.

Accuracy Precision Recall CEloss
RNN 0.3600 0.3951 0.3093  1.5204
LSTM 0.3800 0.4304 0.3225 1.5512
MRNNF50 0.4000 0.3992 03178  1.5209
MLSTMF50 0.3600 0.4621 0.3596  1.4489

as the first layer leads to a significant improvement in all
measures over LSTM. For the best performance, MRNNF50
achieves the highest accuracy, while MLSTMF50 has clear-
cut advantages on all other metrics. Considering accuracy,
the p-values for MLSTMF50 against RNN/LSTM are <
0.001 and 0.040, and that for MRNNF are < 0.001 and
0.105. Our proposed network component can be combined
with existing ones to improve performance.

5. Conclusion

This paper first proves that RNN and LSTM do not have
long memory from a time series perspective. By getting use
of fractionally integrated processes, we propose the corre-
sponding modifications such that they can handle the long-
range dependence data. MRNN and MRNNF are shown to
have advantages in forecasting time series with long-term
dependency, and a combination of MLSTMF50 and LSTM
layers significantly improves over a pure LSTM network on
a paper reviews dataset.

In terms of future work, it is interesting to know whether
the memory filter can bring similar advantages to other
variants of recurrent networks or feed-forward networks
for sequence modeling. Moreover, MRNN and MLSTM
with dynamic d is time consuming compared with other
models, we leave model simplification and exploring faster
optimization approaches to future work. In term of filter
design, by Definition 3, many other slow decaying patterns
can also be explored to model long memory sequences.
For example, we may let w;(d) = j~97! directly. Last
but not least, currently we only learn a best filter, and it is
inspiring to extract long memory via filter banks as in signal
processing.
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