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Abstract
This supplementary material contains proofs, de-
tailed remarks and additional theoretic and numer-
ical results to support the theory and claims in
the main paper. We also repeat some necessary
contents here for easy reference.

A. Detailed Theoretical Results
A.1. Proof of Theorem 1

Assumption 1. (i) The joint density function of ε(t) is con-
tinuous and positive everywhere; (ii) For some κ ≥ 2,
E‖ε(t)‖κ <∞.

Theorem 1. Under Assumptions 1, if there exist real num-
bers 0 < a < 1 and b such that ‖M(x)‖ ≤ a ‖x‖+ b, then
recurrent network process (7) is geometrically ergodic, and
hence has short memory.

Proof. Let Y (t) = (y(t)′, s(t)′)′ and r = p + q. Rewrite
model (7) as

Y (t) =M(Y (t−1)) + e(t), (1)

where Y (t), e(t) ∈ Rr and M : Rr → Rr is a general
nonlinear function.

Let Br be the class of Borel sets of Rr and νr be the
Lebesgue measure on (Rr,Br). Then, {Y (t)} is a homo-
geneous Markov chain on the state space (Rr,Br, νr) with
the transition probability

P (x,A) =

∫
A

f(z−M(x))dz, x ∈ Rr and A ∈ Br,

(2)

where f(·) is the density of e(t). Observe that, from As-
sumption 1, the transition density kernel in (2) is positive
everywhere, and thus {Y (t)} is νr-irreducible.

We prove by showing that Tweedie’s drift criterion (Tweedie,
1983) holds, i.e. there exists a small set G with νr(G) > 0
and a non-negative continuous function ψ(x) such that

E{ψ(Y (t))|Y (t−1) = x} ≤ (1− ε)ψ(x), x /∈ G, (3)

and

E{ψ(Y (t))|Y (t−1) = x} ≤M, x ∈ G, (4)

for some 0 < ε < 1 and 0 < M <∞.

Given that ‖M(x)‖ ≤ a ‖x‖+ b, where a < 1, we have

E
(
‖Y (t)‖κ

∣∣∣Y (t−1) = x
)

≤ ‖M(x)‖κ + E‖e(t)‖κ

≤ |a|κ ‖x‖κ + |b|κ + E‖e(t)‖κ.

Define test function ψ(x) = 1 + ‖x‖κ > 0. Then,

E
(
ψ(Y (t))

∣∣∣Y (t−1) = x
)

≤ 1 + |a|κ ‖x‖κ + |b|κ + E‖e(t)‖κ

≤ ρψ(x) + 1− ρ+ |b|κ + E‖e(t)‖κ,

where ρ = |a|κ < 1.

Denote ε = 1 − ρ − (1−ρ+|b|κ+E(‖e(t)‖)κ)
ψ(x) and G = {x :

‖x‖ ≤ L} such that ψ(x) > 1+ |b|
κ+E‖e(t)‖κ

1−ρ for all ‖x‖ >
L. We obtain that conditions (3) and (4) hold.

Moreover, E
(
φ(Y (t))

∣∣Y (t−1) = x
)

is continuous with re-
spect to x for any bounded continuous function φ(·), then
{Y (t)} is a Feller chain. By Feigin & Tweedie (1985), G
is a small set. By referring to Theorem 4(ii) in Tweedie
(1983) and Theorem 1 in Feigin & Tweedie (1985), {Y (t)}
is geometrically ergodic with a unique strictly stationary
solution.

A.2. Proof of Theorem 2

Theorem 2. Under Assumption 1, linear recurrent network
process (8) is geometrically ergodic if and only if spectral
radius ρ(W ) < 1. Model (8) hence has short memory.

Proof. Proof of a similar result might exist in the litera-
ture, but we are unaware of the specific paper(s). For the
convenience of the readers, we outline the proof here.
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Let the Markov chain {Y (t)} and its state space be defined
as in (i). Under the linear setting, model (7) can be written
as

Y (t) = WY (t−1) + e(t), (5)

where Y (t) ∈ Rr and W ∈ Rr×r, and the transition proba-
bility can be written as

P (x,A) =

∫
A

f(z−Wx)dx, x ∈ Rr and A ∈ Br. (6)

Under Assumption 1, {Y (t)} is νr-irreducible.

First, suppose ρ(W ) < 1. Then, there exists an integer
s such that ‖W s‖ < 1. In the following, we prove that
s-step Markov chain {Y (ts)} satisfies Tweedie’s drift crite-
rion (Tweedie, 1983), i.e., there exists a small set G with
νr(G) > 0 and a non-negative continuous function ψ(x)
such that

E{ψ(Y (ts))|Y ((t−1)s) = x} ≤ (1−ε)ψ(x), x /∈ G, (7)

and

E{ψ(Y (ts))|Y ((t−1)s) = x} ≤M, x ∈ G, (8)

for some constant 0 < ε < 1 and 0 < M <∞.

We iterate (5) s times and obtain

Y (ts) = W sY ((t−1)s) +

e(ts) +

s−1∑
j=1

W je(ts−j)

 .

Let g(x) = 1 + ‖x‖κ, and it can be verified that

E{ψ(Y (ts))|Y ((t−1)s) = x}

≤ 1 + ‖W s‖κ ‖x‖κ + E

e(ts) +

s−1∑
j=1

W je(ts−j)


≤ ψ(x) ‖W s‖κ + C,

whereC = 1+E(e(ts)+
∑s−1
j=1W

je(ts−j))−‖W s‖κ <∞.
Note that ‖W s‖κ < 1. Then there exists L > 0, such that

E{ψ(Y (ts))|Y ((t−1)s) = x} ≤ (1−ε)ψ(x), ∀ ‖x‖ > L,

and

E{ψ(Y (ts))|Y ((t−1)s) = x} ≤M <∞, ∀ ‖x‖ ≤ L.

and G = {x : ‖x‖ ≤ L} with νr(G) > 0.

Moreover, because for each bounded continuous function
φ(·), E{φ(Y (ts))|Y ((t−1)s) = x} is continuous with re-
spect to x, {Y (ts)} is a Feller chain. And {Y (ts)} is νr-
irreducible. This implies that G is a small set (Feigin &

Tweedie, 1985). By referring to Theorem 4(ii) in Tweedie
(1983), we can show that {Y (ts)} is geometrically ergodic
with a unique strictly stationary solution. By Lemma 3.1 of
Tjøstheim (1990), {Y (t)} is geometrically ergodic.

Then, we prove the necessity. Suppose that model (5) is
geometrically ergodic, then there exists a strictly station-
ary solution {Y (t)} to model (5) (Feigin & Tweedie, 1985).
And then the Markov chain Y (t) have a stationary distribu-
tion π(·), from which we can generate Y (0), and iteratively
obtain the sequence {Y (t)}. It is nonanticipative and equa-
tion (5) holds.

From (6), it holds that

P (Y (t) ∈ A|Y (t−1) = x) = P (x,A) > 0

as νr(A) > 0. Let H be any affine invariant subspace of
Rr under model (5), i.e. {Wx+ e(t) : x ∈ H} ⊆ H) with
probability one . If νr(Rr −H) 6= 0, then for any x ∈ H ,
P (Wx+e(t) ∈ H) < 1. As a result, Rr is the unique affine
invariant subspace, and hence model (5) is irreducible. Thus,
by Theorem 2.5 in Bougerol & Picard (1992), we have that
the the top Lyapounov exponent is strictly negative, and thus
spectral radius ρ(W ) = ‖W s‖1/s < 1. This completes the
proof of (ii).

A.3. Proof of Corollary 1

Corollary 1. Suppose that the output and activation func-
tions, g(·) and σ(·), at (10) are continuous and bounded. If
Assumption 1 holds, then the RNN process is geometrically
ergodic and has short memory.

Proof. Need to show that there always exist real numbers
a < 1 and b such that ‖MRNN (u, v)‖ ≤ a ‖(u′, v′)′‖+ b.

Since g(·) and σ(·) are bounded, there exist positive con-
stants M1 and M2 such that ‖g(Wzhσ(Whhv + Whyu +
bh) + bz)‖l1 ≤M1, ‖σ(Whhv+Whyu+ bh)‖l1 ≤M2 for
any u ∈ Rp, v ∈ Rq .

Let a = a0 ∈ (0, 1) and b = M1 + M2, we have
‖MRNN (u, v)‖l1−a0 ‖(u

′, v′)′‖l1 ≤M1+M2−a0‖u‖l1−
a0‖v‖l1 ≤ b = M1 +M2. By Theorem 1, model (10) with
bounded and continuous output and activation function is
geometrically ergodic and has short memory.

A.4. Apply Theorem 1 to LSTM networks with
p = q = 1

We use an LSTM process with p = q = 1 as an example to
illustrate the application of Theorem 1 to LSTM networks,
and prepare readers for Corollary 2. Assume that the norm
‖ · ‖ in Theorem 1 is the l1 norm. Although sigmoid is used
by default as the activation functions for the gates, we also
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consider σ(·) as ReLU or tanh for theoretical interests here.
For output function g(·), we consider commonly used linear,
sigmoid and softmax functions. We summarize our results
in Table A1.

A.5. Proof of Corollary 2

Corollary 2. The input series features {y(t−1)} are
scaled to the range of [−1, 1]. Suppose that M :=
supx∈Bq∞ ‖g(Wzhx + bz)‖l1 < ∞ and σ(‖Wfh‖l∞ +
‖Wfy‖l∞ + ‖bf‖l∞) ≤ a for some a < 1, where
Bq∞ is the q-dimensional l∞-ball and ‖W‖l∞ =
max1≤i≤m

∑n
j=1 |wij | is the matrix l∞-norm. If Assump-

tion 1 holds, then the LSTM process at (14) is geometrically
ergodic and has short memory.

Proof. Let a = a0 ∈ (0, 1) and b = M + 2q, we have

‖MLSTM (u, v, w)‖l1 − a0 ‖(u
′, v′, w′)′‖l1

≤ ‖g(Wzhx+ bz)‖l1 + ‖x‖l1
+ ‖1q + f(u, v)� w‖l1 − a0 ‖(u′, v′, w′)′‖l1

≤M + q + q + ‖f(u, v)‖l∞‖w‖l1
− a0‖u‖l1 − a0‖v‖l1 − a0‖w‖l1

≤M + 2q − a0‖u‖l1 − a0‖v‖l1
+ (‖f(u, v)‖l∞ − a0)‖w‖l1

≤ b = M + 2q,

where x = o(u, v)� tanh(i(u, v)� tanh(Wchv+Wcyu+
bc) + f(u, v) � w) ∈ Bq∞, v = h(t) ∈ Bq∞, and
u = y(t−1) ∈ Bp∞. The second inequality holds due to
the definition of M and x ∈ Bq∞. The forth inequality
holds due to ‖f(u, v)‖l∞ = ‖σ(Wfhv+Wfyu+bf )‖l∞ ≤
σ(‖Wfh‖l∞ + ‖Wfy‖l∞ + ‖bf‖l∞) ≤ a0.

By Theorem 1, model (14) is geometrically ergodic and has
short memory.

A.6. Proof of Theorem 3

Theorem 3. In terms of Definition 3, the MRNNF has the
capability of handling long-range dependence data, while
the RNN cannot.

Proof. Without loss of generality, assume that the linear
activation and output functions are identity.

(1) The RNN process can be written as{
y(t) = Wzhh

(t) + ε(t)

h(t) = Whhh
(t−1) +Whxx

(t)
.

Then, h(t) = (I −WhhB)−1Whxx
(t), and we have

y(t) = Wzh(I −WhhB)−1Whxx
(t) + ε(t).

Let y(t) =
∑∞
k=0Akx

(t−k) +ε(t). Since (I−WhhB)−1 =∑∞
k=0W

k
hhBk, we have Ak = WzhW

k
hhWhx, and (Ak)ij

decays exponentially for all i, j.

(2) The MRNNF process can be written as
y(t) = Wzhh

(t) +Wzmm
(t) + ε(t)

h(t) = Whhh
(t−1) +Whxx

(t)

m(t) = Wmmm
(t−1) +Wmf ((I − B)d − I)x(t)

.

Then,{
h(t) = (I −WhhB)−1Whxx

(t)

m(t) = (I −WmmB)−1Wmf ((I − B)d − I)x(t)
.

Let y(t) =
∑∞
k=0Akx

(t−k) + ε(t), then Ak = Ck + Dk,
where
∑∞
k=0 Ckx

(t−k) = Wzh(I −WhhB)−1Whxx
(t)∑∞

k=0Dkx
(t−k) =

Wzm(I −WmmB)−1Wmf ((I − B)d − I)x(t)
.

From part (1) we know that the entries in Ck decay expo-
nentially as well as the entries in the first part Wzm(I −
WmmB)−1 in Dk. Since (I − B)d − I =

∑∞
k=1WkBk

and Wk’s are diagonal matrices with (Wk)ii ∼ k−di−1, the
decay of Dk is dominated by (I − B)d − I , and entries of
Ak decay at some polynomial rate k−dj−1.

A.7. Memory Property of Constant-gates-LSTM and
Constant-gates-MLSTM

Theorem 4. In terms of Definition 3, the constant-gates-
MLSTM has the capability of handling long-range depen-
dence data, while the constant-gates-LSTM cannot.

Proof. Without loss of generality, assume that the linear
activation and output functions are identity.

(1) The constant-gates-LSTM process can be written as
y(t) = Wzhh

(t) + ε(t)

c̃(t) = Wchh
(t−1) +Wcxx

(t)

c(t) = Di c̃
(t) +Df c

(t−1)

h(t) = Do c
(t)

,

where Di, Df and Do are matrices obtained by diagonalize
the constant gates.

Then, (I − DfB)c(t) = Dic̃
(t) = Di(Wchh

(t−1) +
Wcxx

(t)) = DiWchDo c
(t−1) + DiWcxx

(t), and we have
(I − (Df +DiWchDo)B)c(t) = DiWcxx

(t). Thus, c(t) =
(I − (Df + DiWchDo)B)−1DiWcxx

(t−1), then y(t) =
WzhDo(I − (Df + DiWchDo)B)−1DiWcxx

(t) + ε(t).
From the proof of Theorem 3 (1) we know that writing
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Table 1. Application of Theorem 1 to specific LSTMs.
Activation function σ

ReLU or identity sigmoid or tanh

Output
function

g

identity
|woh|+ |wih|+ |wzhwoh| ≤ a,
|woy|+ |wiy|+ |wzhwoy| ≤ a,
|wfhv + wfyu+ bf | ≤ a

No

sigmoid
|woh|+ |wih| ≤ a,
|woy|+ |wiy| ≤ a,

|wfhv + wfyu+ bf | ≤ a
|σ(wfh + wfy + bf )| ≤ a

softmax
|woh|+ |wih| ≤ a,
|woy|+ |wiy| ≤ a,

|wfhv + wfyu+ bf | ≤ a
|σ(wfh + wfy + bf )| ≤ a

y(t) =
∑∞
k=0Akx

(t−k) + ε(t), we have all the entries of
Ak decay exponentially.

(2) The constant-gates-MLSTM process can be written as
y(t) = Wzhh

(t) + ε(t)

c̃(t) = Wchh
(t−1) +Wcxx

(t)

(I − B)d c(t) = Dic̃
(t)

h(t) = Doc
(t)

.

Then, (I − B)d c(t) = Di(Wchh
(t−1) + Wcxx

(t)) =
DiWchDoc

(t−1) + DiWcxx
(t), and we have ((I − B)d −

DiWchDoB) c(t) = DiWcxx
(t). Thus, c(t) = ((I −B)d −

DiWchDoB)−1DiWcxx
(t), then y(t) = WzhDo((I −

B)d −DiWchDoB)−1DiWcxx
(t) + ε(t).

Now we need to obtain the rate of polynomial ((I − B)d −
CB)−1 for some matrix C = DiWchDo. Let ((I − B)d −
CB)−1 =

∑∞
j=0 ΘjBj , then (

∑∞
j=0 ΘjBj)((I − B)d −

CB) = I . Thus,

(

∞∑
j=0

ΘjBj)(I − B)d = I + C

∞∑
j=0

ΘjBj+1

(

∞∑
j=0

ΘjBj)(
∞∑
k=0

WkBk) = I + C

∞∑
j=0

ΘjBj+1

∞∑
j=0

∞∑
k=0

ΘjBjWkBk = I + C

∞∑
j=0

ΘjBj+1.

Equate the coefficients for each Bj term for j = 0, 1, 2...,
we have

Θ0 = I

Θ1 = C −W1

Θ2 = CΘ1 −W1Θ1 −W2

Θ3 = CΘ2 −W1Θ2 −W2Θ1 −W3

...
Θk = CΘk−1 −

∑k
j=1WjΘk−j

.

The Θk’s are dominated by the Wk term and the elements
decay at the same rate as Wk, which is k−dj−1.

Table 2. Overall performance in terms of MAE. Average MAE and
the standard deviation (in brackets) are reported.

ARFIMA DJI (x100) Traffic Tree

RNN 0.9310
(0.1550)

0.1977
(0.0242)

233.442
(12.391)

0.2240
(0.0064)

RNN2 0.9310
(0.1430)

0.1861
(0.0164)

233.419
(12.378)

0.2229
(0.0057)

RWA 1.3330
(0.0030)

0.2052
(0.0164)

233.137
(7.425)

0.2379
(0.0001)

MRNNF 0.8800
(0.0790)

0.1809
(0.0168)

232.554
(11.954)

0.2206
(0.0034)

MRNN 0.8710
(0.0900)

0.1835
(0.0165)

232.794
(12.149)

0.2202
(0.0037)

LSTM 0.9070
(0.0940)

0.1841
(0.0182)

234.055
(11.149)

0.2215
(0.0051)

MLSTMF 0.9240
(0.1320)

0.1895
(0.0203)

233.142
(11.551)

0.2235
(0.0060)

MLSTM 0.9170
(0.1320)

0.1881
(0.0187)

233.035
(10.793)

0.2234
(0.0061)

B. More Numerical Results
B.1. Autocorrelation Plots of All Datasets

Autocorrelation plots of all 4 datasets, ARFIMA, DJI, traffic
and tree, are shown in Figure 1.

B.2. Overall Performance of the Models

Average RMSE and standard deviation of one-step forecast-
ing is reported in the main paper. We provide results in
terms of MAE and MAPE, as well as figures, in this section.

RMSE Boxplot of RMSE for 100 different initializations
are shown in Figure 2 for datasets ARFIMA, DJI, traffic and
tree.

MAE Average MAE and standard deviation of one-step
forecasting is shown in Table 2.

Boxplot of MAE for 100 different initializations are shown
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(a) ARFIMA (b) DJI

(c) traffic (d) tree

Figure 1. Autocorrelation plots of all 4 datasets.

in Figure 3 for datasets ARFIMA, DJI, traffic and tree.

MAPE Average MAPE and standard deviation of one-
step forecasting is shown in Table 3.

Boxplot of MAPE for 100 different initializations are shown
in Figure 4 for datasets ARFIMA, DJI, traffic and tree.

B.3. Best Performance of the Models

Best performance of the models, in terms of MAE and
MAPE, are shown in Table 4 & 5.

B.4. Performance on a Dataset without Long Memory

We generated a sequence of length 4001 (2000 + 1200 +
800) using model (10), which does not have long memory
according to Corollary 1. We refer to this synthetic dataset
as the RNN dataset. The boxplots of error measures are
presented in Figure 5. From the boxplots we can see that
the performance of our proposed models is comparable with
that of the true model RNN, except that the variation of the
error measures is a bit larger.

B.5. Experiment on Parameter K

Boxplot of RMSE for 100 different initializations are shown
in Figure 6, 7, 8 and 9 for datasets ARFIMA, DJI, traffic
and tree, respectively. Values of K are appended to the
abbreviations of the proposed models to distinguish the
settings. For example, model “MRNN25” means the MRNN
model with K = 25. There are 20 models with different
settings in total, and they are sorted by the average RMSE
in ascending order from left to right.

For MRNN and MRNNF, the prediction is generally better
for a larger K, and they have smaller average RMSE than
all the baseline models regardless of the choice of K. Inter-
estingly, the performance of MLSTM and MLSTMF gets
better whenK becomes smaller, and withK = 25, they can
outperform LSTM on ARFIMA and traffic datasets. Thus,
we recommend a large K for MRNN and MRNNF mod-
els, while for the more complicated MLSTM models, K
deserves more investigation to balance expressiveness and
optimization.
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(a) ARFIMA (b) DJI

(c) traffic (d) tree

Figure 2. Boxplot of RMSE for 100 different initializations.

Table 3. Overall performance in terms of MAPE. Average MAPE
and the standard deviation (in brackets) are reported.

ARFIMA DJI (x100) Traffic Tree

RNN 2.5760
(0.4030)

1.4371
(0.2566)

1.3943
(0.1998)

0.2747
(0.0079)

RNN2 2.5570
(0.4420)

1.4407
(0.2106)

1.4092
(0.1789)

0.2739
(0.0071)

RWA 2.2370
(0.1950)

1.2733
(0.1702)

1.3745
(0.1457)

0.2939
(0.0005)

MRNNF 2.6430
(0.3380)

1.5561
(0.2243)

1.4270
(0.1834)

0.2714
(0.0042)

MRNN 2.7010
(0.2680)

1.5031
(0.2045)

1.4253
(0.1586)

0.2706
(0.0044)

LSTM 2.5660
(0.3750)

1.5725
(0.2283)

1.3632
(0.1807)

0.2727
(0.0060)

MLSTMF 2.5100
(0.4690)

1.3141
(0.1369)

1.3462
(0.1769)

0.2750
(0.0074)

MLSTM 2.5500
(0.4370)

1.3123
(0.1281)

1.3353
(0.1926)

0.2748
(0.0075)
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(a) ARFIMA (b) DJI

(c) traffic (d) tree

Figure 3. Boxplot of MAE for 100 different initializations.

Table 5. Best performance in terms of MAPE.

ARFIMA DJI Traffic Tree

ARFIMA 2.8424 1.8334 1.6942 0.2676

RNN 1.5729 1.0789 1.0075 0.2680
RNN2 1.5905 1.0714 1.0215 0.2680
RWA 1.4408 1.0091 0.9986 0.2923
MRNNF 1.6508 1.0304 1.0816 0.2670
MRNN 1.5967 1.1303 1.0938 0.2668

LSTM 1.5282 0.9918 1.0099 0.2675
MLSTMF 1.5565 1.0368 0.9990 0.2673
MLSTM 1.5597 1.0518 1.0098 0.2673
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(a) ARFIMA (b) DJI

(c) traffic (d) tree

Figure 4. Boxplot of MAPE for 100 different initializations.
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(a) RMSE

(b) MAE (c) MAPE

Figure 5. Boxplot of RMSE, MAE and MAPE for 100 different initializations. Dataset: RNN.

Figure 6. Boxplot of RMSE for 100 different initializations. Dataset: ARFIMA.
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Figure 7. Boxplot of RMSE for 100 different initializations. Dataset: DJI.

Figure 8. Boxplot of RMSE for 100 different initializations. Dataset: traffic.

Figure 9. Boxplot of RMSE for 100 different initializations. Dataset: tree.


