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Abstract
The goal of universal machine translation is to
learn to translate between any pair of languages.
Despite impressive empirical results and an in-
creasing interest in massively multilingual mod-
els, theoretical analysis on translation errors made
by such universal machine translation models is
only nascent. In this paper, we formally prove cer-
tain impossibilities of this endeavour in general,
as well as prove positive results in the presence of
additional (but natural) structure of data. For the
former, we derive a lower bound on the transla-
tion error in the many-to-many translation setting,
which shows that any algorithm aiming to learn
shared sentence representations among multiple
language pairs has to make a large translation er-
ror on at least one of the translation tasks, if no
assumption on the structure of the languages is
made. For the latter, we show that if the paired
documents in the corpus follow a natural encoder-
decoder generative process, we can expect a natu-
ral notion of “generalization”: a linear number of
language pairs, rather than quadratic, suffices to
learn a good representation. Our theory also ex-
plains what kinds of connection graphs between
pairs of languages are better suited: ones with
longer paths result in worse sample complexity.
We believe our theoretical insights and implica-
tions contribute to the future algorithmic design
of universal machine translation.

1. Introduction
Despite impressive improvements in neural machine transla-
tion (NMT), training a large multilingual NMT model with
hundreds of millions of parameters usually requires a col-
lection of parallel corpora at a large scale, on the order of
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millions or even billions of aligned sentences (Johnson et al.,
2017; Arivazhagan et al., 2019) for supervised training. Al-
though it is possible to automatically crawl the web (Nie
et al., 1999; Resnik, 1999; Resnik & Smith, 2003) to collect
parallel sentences for high-resource language pairs such as
German-English and Chinese-English, it is often infeasi-
ble to manually translate large amounts of documents for
low-resource language pairs, e.g., Nepali-English, Sinhala-
English (Guzmán et al., 2019). Much recent progress in
low-resource machine translation, has been driven by the
idea of universal machine translation (UMT), also known
as multilingual machine translation (Zoph & Knight, 2016;
Johnson et al., 2017; Gu et al., 2018), which aims at train-
ing one single NMT to translate between multiple source
and target languages. Typical UMT models leverage ei-
ther a single shared encoder or language-specific encoders
to map all source languages to a shared space, and trans-
late the source sentences to a target language by a decoder.
Inspired by the idea of UMT, there has been a recent trend to-
wards learning language-invariant embeddings for multiple
source languages in a shared latent space, which eases the
cross-lingual generalization from high-resource languages
to low-resource languages on many tasks, e.g., parallel cor-
pus mining (Schwenk, 2018; Artetxe & Schwenk, 2019),
sentence classification (Conneau et al., 2018b), cross-lingual
information retrieval (Litschko et al., 2018), and dependency
parsing (Kondratyuk & Straka, 2019), just to name a few.

The idea of finding an abstract “lingua franca” is very intu-
itive and the empirical results are impressive, yet theoretical
understanding of various aspects of universal machine trans-
lation is limited. In this paper, we particularly focus on two
basic questions:

1. How can we measure the inherent tradeoff between the
quality of translation and how language-invariant a
representation is?

2. How many language pairs do we need aligned sen-
tences for, to be able to translate between any pair of
languages?

Toward answering the first question, we show that in a
completely assumption-free setup on the languages and dis-
tribution of the data, it is impossible to avoid making a large
translation error on at least one pair of the translation tasks.
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Informally we highlight our first theorem as follows, and
provide the formal statements in Theorems 3.1 and 3.2.

Theorem 1.1 (Impossibility, Informal). There exist a choice
of distributions over documents from different languages, s.t.
for any choice of maps from the language to a common rep-
resentation, at least one of the translation pairs must incur a
high cost. In addition, there is an inherent tradeoff between
the translation quality and the degree of representation in-
variance w.r.t. languages: the better the language invariance,
the higher the cost on at least one of the translation pairs.

To answer the second question, we show that under fairly
mild generative assumptions on the aligned documents, it
is possible to not only do well on all of the pairwise trans-
lations, but also be able to do so after only seeing aligned
documents of a linear number of languages, rather than
a quadratic one. We summarize the second theorem as
follows, and provide a formal statement in Theorem 4.1.

Theorem 1.2 (Sample complexity, Informal). Under a gen-
erative model where the documents for each language are
generated from a “ground-truth” encoder-decoder model,
after seeing aligned documents for a linear number of pairs
of languages, we can learn encoders/decoders that perform
well on any unseen language pair.

Notation and Setup We first introduce the notation used
throughout the paper and then briefly describe the problem
setting of universal machine translation.

We use L to denote the set of all possible languages, e.g.,
{English,French,German,Chinese, . . .}. For any language
L ∈ L, we associate with L an alphabet ΣL that contains
all the symbols from L. Note that we assume |ΣL| < ∞,
∀L ∈ L, but different languages could potentially share part
of the alphabet. Given a language L, a sentence x in L is
a sequence of symbols from ΣL, and we denote Σ∗L as the
set of all sentences generated from ΣL. Note that since in
principle different languages could share the same alphabet,
to avoid ambiguity, for each language L, there is a unique
token 〈L〉 ∈ ΣL and 〈L〉 6∈ Σ′L,∀L′ 6= L. The goal of the
unique token 〈L〉 is used to denote the source sentence, and
a sentence x in L will have a unique prefix 〈L〉 to indicate
that x ∈ Σ∗L. Also, in this manuscript we will use sentence
and string interchangeably.

Formally, let {Li}i∈[K] be the set of K source languages
and L 6∈ {Li}i∈[K] be the target language we are interested
in translating to. For a pair of languages L and L′, we
use DL,L′ to denote the joint distribution over the parallel
sentence pairs from L and L′. Given this joint distribution,
we also useDL,L′(L) to mean the marginal distribution over
sentences from L. Likewise we use DL,L′(L′) to denote the
corresponding marginal distribution over sentences from L′.
Finally, for two sets A and B, we use A tB to denote the
disjoint union of A and B.

2. Related Work
Multilingual Machine Translation Early studies on multi-
lingual machine translation mostly focused on pivot meth-
ods (Och & Ney, 2001; Cohn & Lapata, 2007; De Gis-
pert & Marino; Utiyama & Isahara, 2007) that use one
pivot language to connect the translation between ultimate
source and target languages, and train two separate statis-
tical translation models (Koehn et al., 2003). Since the
successful application of encoder-decoder architectures in
sequential tasks (Sutskever et al., 2014), neural machine
translation (Bahdanau et al., 2015; Wu et al., 2016) has
made it feasible to jointly learn from parallel corpora in
multiple language pairs, and perform translation to multiple
languages by a single model. Existing studies have been
proposed to explore different variants of encoder-decoder
architectures by using separate encoders (decoders) for mul-
tiple source (target) languages (Dong et al., 2015; Firat et al.,
2016a;b; Zoph & Knight, 2016; Platanios et al., 2018) or
sharing the weight of a single encoder (decoder) for all
source (target) languages (Ha et al., 2016; Johnson et al.,
2017). Recent advances of universal neural machine trans-
lation have also been applied to improve low-resource ma-
chine translation (Neubig & Hu, 2018; Gu et al., 2018;
Arivazhagan et al., 2019; Aharoni et al., 2019) and down-
stream NLP tasks (Artetxe & Schwenk, 2019; Schwenk &
Douze, 2017). Despite the recent empirical success, theo-
retical understanding is only nascent. Our work takes a first
step towards better understanding the limitation of existing
approaches and proposes a sufficient generative assumption
that guarantees the success of universal machine translation.

Invariant Representations The line of work on seek-
ing a shared multilingual embedding space started from
learning cross-lingual word embeddings from parallel cor-
pora (Gouws et al., 2015; Luong et al., 2015; Faruqui &
Dyer, 2014; Artetxe et al., 2017; Conneau et al., 2018a),
and later extended to learning cross-lingual contextual rep-
resentations (Devlin et al., 2019; Lample & Conneau, 2019;
Huang et al., 2019; Conneau et al., 2019) from monolingual
corpora. The idea of learning invariant representations is
not unique in machine translation. In fact, similar ideas
have already been used in other contexts, including domain
adaptation (Ganin et al., 2016; Zhao et al., 2018; 2019b;
Combes et al., 2020), fair representations (Zemel et al.,
2013; Zhang et al., 2018; Zhao & Gordon, 2019; Zhao et al.,
2019a) and counterfactual reasoning in causal inference (Jo-
hansson et al., 2016; Shalit et al., 2017). Different from
these existing work, our work provides the first impossibil-
ity theorem on learning language-invariant representations
in terms of recovering a perfect translator under the setting
of sequence to sequence learning. Furthermore, we also
give a generative model assumption under which we show
that generalization over unseen language pairs is possible
by learning language-invariant representations.
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3. An Impossibility Theorem
In this section, for the clarity of presentation, we first focus
the deterministic setting where for each language pair L 6=
L′, there exists a ground-truth translator f∗L→L′ : Σ∗L →
Σ∗L′ that takes an input sentence x from the source language
L and outputs the ground-truth translation f∗L→L′(x) ∈ Σ∗L′ .
Later we shall extend the setup to allow a probabilistic
extension as well. Before we proceed, we first describe
some concepts that will be used in the discussion.

Given a feature map g : X → Z that maps instances from
the input space X to feature space Z , we define g]D :=
D ◦ g−1 to be the induced (pushforward) distribution of
D under g, i.e., for any event E′ ⊆ Z , Prg]D(E′) :=
PrD(g−1(E′)) = PrD({x ∈ X | g(x) ∈ E′}). For two
distribution D and D′ over the same sample space, we use
the total variation distance to measure the discrepancy them:
dTV(D,D′) := supE |PrD(E) − PrD′(E)|, where E is
taken over all the measurable events under the common
sample space. We use 1I(E) to denote the indicator function
which takes value 1 iff the event E is true otherwise 0.

In general, given two sentences x and x′, we use `(x, x′) to
denote the loss function used to measure their distance. For
example, we could use a 0−1 loss function `0−1(x, x′) = 0
iff x = x′ else 1. If both x and x′ are embedded in the same
Euclidean space, we could also use the squared loss `2(x, x′)
as a more refined measure. To measure the performance of
a translator f on a given language pair L → L′ w.r.t. the
ground-truth translator f∗L→L′ , we define the error as

ErrL→L
′

D (f) := ED [`0−1(f(X), f∗L→L′(X))] ,

which is the translation error of f as compared to the ground-
truth translator f∗L→L′ . For universal machine translation,
the input string of the translator can be any sentence from
any language. To this end, let Σ∗ be the union of all the
sentences/strings from all the languages of interest: Σ∗ :=⋃
L∈L Σ∗L. Then a universal machine translator of target

language L ∈ L is a mapping fL : Σ∗ → Σ∗L. In words, fL
takes as input a string (from one of the possible languages)
and outputs the corresponding translation in target language
L. It is not hard to see that for such task there exists a perfect
translator f∗L:

f∗L(x) =
∑
L′∈L

1I(x ∈ Σ∗L′) · f∗L′→L(x). (1)

Note that {Σ∗L′ | L′ ∈ L} forms a partition of Σ∗, so exactly
one of the indicator 1I(x ∈ Σ∗L′) in (1) will take value 1.

Given a target language L, existing approaches for universal
machine seek to find an intermediate space Z , such that
source sentences from different languages are aligned within
Z . In particular, for each source language L′, the goal is to
find a feature mapping gL′ : Σ∗L′ → Z so that the induced

distributions of different languages are close in Z . The next
step is to construct a decoder h : Z → Σ∗L that maps feature
representation in Z to sentence in the target language L.

One interesting question about the idea of learning language-
invariant representations is that, whether such method will
succeed even under the benign setting where there is a
ground-truth universal translator and the learner has access
to infinite amount of data with unbounded computational
resources. That is, we are interested in understanding the
information-theoretic limit of such methods for universal
machine translation.

In this section we first present an impossibility theorem
in the restricted setting of translating from two source lan-
guages L0 and L1 to a target language L. Then we will use
this lemma to prove a lower bound of the universal trans-
lation error in the general many-to-many setting. We will
mainly discuss the implications and intuition of our theoret-
ical results and use figures to help illustrate the high-level
idea of the proof. We refer readers to the appendix for all
the detailed proofs.

3.1. Two-to-One Translation

Recall that for each translation task Li → L, we have a
joint distribution DLi,L over the aligned source-target sen-
tences. For convenience of notation, we useDi to denote the
marginal distribution DLi,L(Li) when the target language
L is clear from the context. Given a fixed constant ε > 0,
we first define the ε-universal language mapping:

Definition 3.1 (ε-Universal Language Mapping). A map
g :

⋃
i∈[K] Σ∗Li

→ Z is called an ε-universal language
mapping if dTV(g]Di, g]Dj) ≤ ε, ∀i 6= j.

In particular, if ε = 0, we call the corresponding feature
mapping a universal language mapping. In other words,
a universal language mapping perfectly aligns the feature
representations of different languages in feature space Z .
The following lemma provides a useful tool to connect the
0-1 translation error and the TV distance between the corre-
sponding distributions.

Lemma 3.1. Let Σ :=
⋃
L∈L ΣL and DΣ be a lan-

guage model over Σ∗. For any two string-to-string maps
f, f ′ : Σ∗ → Σ∗, let f]DΣ and f ′]DΣ be the correspond-
ing pushforward distributions. Then dTV(f]DΣ, f

′
]DΣ) ≤

PrDΣ(f(X) 6= f ′(X)) where X ∼ DΣ.

The next lemma follows from the data-processing inequality
for total variation and it shows that if languages are close
in a feature space, then any decoder cannot increase the
corresponding discrepancy in the output space.

Lemma 3.2. (Data-processing inequality) Let D and D′ be
any distributions over Z , then for any decoder h : Z → Σ∗L,
dTV(h]D, h]D′) ≤ dTV(D,D′).
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Figure 1. Proof by picture: Language-invariant representation g
induces the same feature distribution over Z , which leads to the
same output distribution over the target language Σ∗L. However,
the parallel corpora of the two translation tasks in general have
different marginal distributions over the target language, hence a
triangle inequality over the output distributions gives the desired
lower bound.

As a direct corollary, this implies that any distributions
induced by a decoder over ε-universal language mapping
must also be close in the output space:

Corollary 3.1. If g : Σ∗ → Z is an ε-universal language
mapping, then for any decoder h : Z → Σ∗L, dTV((h ◦
g)]D0, (h ◦ g)]D1) ≤ ε.
With the above tools, we can state the following theorem that
characterizes the translation error in a two-to-one setting:

Theorem 3.1. (Lower bound, Two-to-One) Consider a set-
ting of universal machine translation task with two source
languages where Σ∗ = Σ∗L0

⋃
Σ∗L1

and the target language
is L. Let g : Σ∗ → Z be an ε-universal language mapping,
then for any decoder h : Z → Σ∗L, we have

ErrL0→L
D0

(h ◦ g) + ErrL1→L
D1

(h ◦ g)

≥ dTV(DL0,L(L),DL1,L(L))− ε. (2)

Remark Recall that under our setting, there exists a per-
fect translator f∗L : Σ∗ → Σ∗L in (1) that achieves zero
translation error on both translation tasks. Nevertheless, the
lower bound in Theorem 3.1 shows that one cannot hope
to simultaneously minimize the joint translation error on
both tasks through universal language mapping. Second,
the lower bound is algorithm-independent and it holds even
with unbounded computation and data. Third, the lower
bound also holds even if all the data are perfect, in the sense
that all the data are sampled from the perfect translator on
each task. Hence, the above result could be interpreted as
a kind of uncertainty principle in the context of universal
machine translation, which says that any decoder based on
language-invariant representations has to achieve a large
translation error on at least one pair of translation task. We
provide a proof-by-picture in Fig. 1 to illustrate the main
idea underlying the proof of Theorem 3.1 in the special case
where ε = 0.

The lower bound is large whenever the distribution over
target sentences differ between these two translation tasks.

This often happens in practical scenarios where the parallel
corpus of high-resource language pair contains texts over a
diverse domain whereas as a comparison, parallel corpus of
low-resource language pair only contains target translations
from a specific domain, e.g., sports, news, product reviews,
etc. Such negative impact on translation quality due to do-
main mismatch between source and target sentences has
also recently been observed and confirmed in practical uni-
versal machine translation systems, see Shen et al. (2019)
and Pires et al. (2019) for more empirical corroborations.

3.2. Many-to-Many Translation

Theorem 3.1 presents a negative result in the setting where
we have two source languages and one target language for
translation. Nevertheless universal machine translation sys-
tems often involve multiple input and output languages si-
multaneously (Wu et al., 2016; Ranzato et al., 2019; Artetxe
& Schwenk, 2019; Johnson et al., 2017). In this section
we shall extend the previous lower bound in the simple
two-to-one setting to the more general translation task of
many-to-many setting.

To enable such extension, i.e., to be able to make use of mul-
tilingual data within a single system, we need to modify the
input sentence to introduce the language token 〈L〉 at the be-
ginning of the input sentence to indicate the target language
L the model should translate to. This simple modification
has already been used in practical MT systems (Johnson
et al., 2017, Section 3). As an example, consider the follow-
ing English sentence to be translated to French,

〈English〉 Hello, how are you?

It will be modified to:

〈French〉〈English〉 Hello, how are you?

Note that the first token is used to indicate the target lan-
guage to translate to while the second one is used to indicate
the source language to avoid the ambiguity due to the poten-
tial overlapping alphabets between different languages.

Recall in Definition 3.1 we define a language map g to
be ε-universal iff dTV(g]Di, g]Dj) ≤ ε, ∀i, j. This defini-
tion is too stringent in the many-to-many translation setting
since this will imply that the feature representations lose
the information about which target language to translate to.
In what follows we shall first provide a relaxed definition
of ε-universal language mapping in the many-to-many set-
ting and then show that even under this relaxed definition,
learning universal machine translator via language-invariant
representations is impossible in the worst case.

Definition 3.2 (ε-Universal Language Mapping, Many–
to-Many). Let DLi,Lk

, i, k ∈ [K] be the joint distri-
bution of sentences (parallel corpus) in translating from
Li to Lk. A map g :

⋃
i∈[K] Σ∗Li

→ Z is called an
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ε-universal language mapping if there exists a partition
of Z = tk∈[K]Zk such that ∀k ∈ [K] and ∀i 6= j,
g]DLi,Lk

(Li) and g]DLj ,Lk
(Lj) are supported on Zk and

dTV(g]DLi,Lk
(Li), g]DLj ,Lk

(Lj)) ≤ ε.
First of all, it is clear that when there is only one target lan-
guage, then Definition 3.2 reduces to Definition 3.1. Next,
the partition of the feature space Z = tk∈[K]Zk essentially
serves as a way to determine the target languageL the model
should translate to. Note that it is important here to enforce
the partitioning condition of the feature space Z , otherwise
there will be ambiguity in determining the target language
to translate to.

With the above extensions, now we are ready to present the
following theorem which gives a lower bound for both the
maximum error as well as the average error in the many-to-
many universal translation setting.

Theorem 3.2. (Lower bound, Many-to-Many) Consider a
universal machine translation task where Σ∗ =

⋃
i∈[K] Σ∗Li

.
Let DLi,Lk

, i, k ∈ [K] be the joint distribution of sentences
(parallel corpus) in translating from Li to Lk. If g : Σ∗ →
Z be an ε-universal language mapping, then for any decoder
h : Z → Σ∗, we have

max
i,k∈[K]

ErrLi→Lk

DLi,Lk
(h ◦ g) ≥

1

2
max
k∈[K]

max
i 6=j

dTV(DLi,Lk
(Lk),DLj ,Lk

(Lk))− ε

2
,

1

K2

∑
i,k∈[K]

ErrLi→Lk

DLi,Lk
(h ◦ g) ≥

1

K2(K − 1)

∑
k∈[K]

∑
i<j

dTV(DLi,Lk
(Lk),DLj ,Lk

(Lk))− ε

2
.

It is clear that both lower bounds in Theorem 3.2 include
the many-to-one setting as a special case. The proof of
Theorem 3.2 essentially applies the lower bound in Theo-
rem 3.1 iteratively. Again, the underlying reason for such
negative result to hold in the worst case is due to the mis-
match of distributions of the target language in different
pairs of translation tasks. It should also be noted that the
results in Theorem 3.2 hold even if language-dependent
encoders are used, as long as they induce invariant feature
representations for the source languages.

How to Bypass this Limitation? There are various ways
to get around the limitations pointed out by the theorems in
this section.

One way is to allow the decoder h to have access to the
input sentences (besides the language-invariant representa-
tions) during the decoding process – e.g. via an attention
mechanism on the input level. Technically, such informa-
tion flow from input sentences during decoding would break

the Markov structure of “input-representation-output” in
Fig. 1, which is an essential ingredient in the proof of
Theorem 3.1 and Theorem 3.2. Intuitively, in this case
both language-invariant (hence language-independent) and
language-dependent information would be used.

Another way would be to assume extra structure on the dis-
tributions DLi,Lj

, i.e., by assuming some natural language
generation process for the parallel corpora that are used
for training (Cf. Section 4). Since languages share a lot of
semantic and syntactic characteristics, this would make a lot
of sense — and intuitively, this is what universal translation
approaches are banking on. In the next section we will do
exactly this — we will show that under a suitable generative
model, not only will there be a language-invariant represen-
tation, but it will be learnable using corpora from a very
small (linear) number of pairs of language.

4. Sample Complexity under a Generative
Model

The results from the prior sections showed that absent ad-
ditional assumptions on the distributions of the sentences
in the corpus, there is a fundamental limitation on learning
language-invariant representations for universal machine
translation. Note that our negative result also holds in the
setting where there exists a ground-truth universal machine
translator – it’s just that learning language-invariant repre-
sentations cannot recover this ground-truth translator.

In this section we show that with additional natural struc-
ture on the distribution of the corpora we can resolve this
issue. The structure is a natural underlying generative model
from which sentences from different languages are gener-
ated, which “models” a common encoder-decoder structure
that has been frequently used in practice (Cho et al., 2014;
Sutskever et al., 2014; Ha et al., 2016). Under this setting,
we show that it is not only possible to learn the optimal
translator, but it is possible to do so only seeing documents
from only a small subset of all the possible language pairs.

Moreover, we will formalize a notion of “sample complexity”
in terms of number of pairs of languages for which parallel
corpora are necessary, and how it depends on the structure
of the connection graph between language pairs.

We first describe our generative model for languages and
briefly talk about why such generative model could help to
overcome the negative result in Theorem 3.2.

4.1. Language Generation Process and Setup

Language Generative Process The language generation
process is illustrated in Fig. 2. Formally, we assume the
existence of a shared “semantic space” Z . Furthermore,
for every language L ∈ L, we have a “ground truth” pair
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Figure 2. An encoder-decoder generative model of translation pairs.
There is a global distribution D over representation space Z , from
which sentences of language Li are generated via decoder Di.
Similarly, sentences could also be encoded via Ei to Z .

of encoder and decoder (EL,DL), where EL : Rd →
Rd, EL ∈ F is bijective and DL = E−1

L . We assume
that F has a group structure under function composition:
namely, for ∀f1, f2 ∈ F , we have that f−1

1 , f−1
2 ∈ F and

f1 ◦ f−1
2 , f2 ◦ f−1

1 ∈ F (e.g., a typical example of such
group is the general linear group F = GLd(R)).

To generate a pair of aligned sentences for two languages
L,L′, we first sample a z ∼ D, and subsequently generate

x = DL(z), x′ = DL′(z), (3)

where the x is a vector encoding of the appropriate sentence
in L (e.g., a typical encoding is a frequency count of the
words in the sentence, or a sentence embedding using vari-
ous neural network models (Zhao et al., 2015; Kiros et al.,
2015; Wang et al., 2017)). Similarly, x′ is the correspond-
ing sentence in L′. Reciprocally, given a sentence x from
language L, the encoder EL maps the sentence x into its
corresponding latent vector in Z: z = EL(x).

We note that we assume this deterministic map between z
and x for simplicity of exposition—in Section 4.4 we will
extend the results to the setting where x has a conditional
distribution given z of a parametric form.

We will assume the existence of a graph H capturing the
pairs of languages for which we have aligned corpora –
we can think of these as the “high-resource” pairs of lan-
guages. For each edge in this graph, we will have a corpus
S = {(xi, x′i)}ni=1 of aligned sentences.1 The goal will be
to learn encoder/decoders that perform well on the poten-
tially unseen pairs of languages. To this end, we will be
providing a sample complexity analysis for the number of

1In general each edge can have different number of aligned
sentences. We use the same number of aligned sentences n just for
the ease of presentation.

paired sentences for each pair of languages with an edge
in the graph, so we will need a measure of the complexity
of F . We will use the covering number, though our proofs
are flexible, and similar results would hold for Rademacher
complexity, VC dimension, or any of the usual complexity
measures.

Definition 4.1 (Covering number). For any ε > 0, the cov-
ering number N (F , ε) of the function class F under the
`∞ norm is the minimum number k ∈ N such that F could
be covered with k (`∞) balls of radius ε, i.e., there exists
{f1, . . . , fk} ⊆ F such that, for all f ∈ F , there exists
i ∈ [k] with ‖f − fi‖∞ = maxx∈Rd ‖f(x)− fi(x)‖2 ≤ ε.
Finally, we will assume that the functions in F are bounded
and Lipschitz:

Assumption 4.1 (Smoothness and Boundedness). F is
bounded under the ‖ · ‖∞ norm, i.e., there exists M > 0,
such that ∀f ∈ F , ‖f‖∞ ≤ M . Furthermore, there ex-
ists 0 ≤ ρ < ∞, such that for ∀x, x′ ∈ Rd, ∀f ∈ F ,
‖f(x)− f(x′)‖2 ≤ ρ · ‖x− x′‖2.

Training Procedure Turning to the training procedure,
we will be learning encoders EL ∈ F for each language
L. The decoder for that language will be E−1

L , which is
well defined since F has a group structure. Since we are
working with a vector space, rather than using the (crude)
0-1 distance, we will work with a more refined loss metric
for a translation task L→ L′:

ε(EL, EL′) := ‖E−1
L′ ◦ EL −E−1

L′ ◦EL‖2`2(DL]D). (4)

Note that the `2 loss is taken over the distribution of the input
samples DL]D = E−1

L ]D, which is the natural one under
our generative process. Again, the above error measures
the discrepancy between the predicted translation w.r.t. the
one give by the ground-truth translator, i.e., the composition
of encoder EL and decoder DL′ . Straightforwardly, the
empirical error over a corpus S = {(xi, x′i)}ni=1 of aligned
sentences for a pair of languages (L,L′) is defined by

ε̂S(EL, EL′) :=
1

n

∑
i∈[n]

‖E−1
L′ ◦ EL(xi)− x′i‖22, (5)

where S is generated by the generation process. Following
the paradigm of empirical risk minimization, the loss to
train the encoders will be the obvious one:

min
{EL,L∈L}

∑
(L,L′)∈H

ε̂S(EL, EL′). (6)

Remarks Before we proceed, one natural question to ask
here is that, how does this generative model assumption
circumvent the lower bound in Theorem 3.2? To answer
this question, note the following easy proposition:
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Proposition 4.1. Under the encoder-decoder generative as-
sumption, ∀i, j ∈ [K], dTV(DLi,L(L),DLj ,L(L)) = 0.

Proposition 4.1 holds because the marginal distribution
of the target language L under any pair of translation
task equals the pushforward of D(Z) under DL: ∀i ∈
[K],DLi,L(L) = DL]D(Z). Hence the lower bounds
gracefully reduce to 0 under our encoder-decoder gener-
ative process, meaning that there is no loss of translation
accuracy using universal language mapping.

4.2. Main Result: Translation between Arbitrary Pairs
of Languages

The main theorem we prove is that if the graph H capturing
the pairs of languages for which we have aligned corpora is
connected, given sufficiently many sentences for each pair,
we will learn encoder/decoders that perform well on the
unseen pairs. Moreover, we can characterize how good the
translation will be based on the distance of the languages in
the graph. Concretely:

Theorem 4.1 (Sample complexity under generative model).
Suppose H is connected. Furthermore, suppose the trained
{EL}L∈L satisfy

∀L,L′ ∈ H : ε̂S(EL, EL′) ≤ εL,L′ ,

for εL,L′ > 0. Furthermore, for 0 < δ < 1 suppose the num-
ber of sentences for each aligned corpora for each training

pair (L,L′) is Ω

(
1

ε2
L,L′
·
(
logN (F , εL,L′

16M ) + log(K/δ)
))

.

Then, with probability 1 − δ, for any pair of languages
(L,L′) ∈ L × L and L = L1, L2, . . . , Lm = L′ a
path between L and L′ in H , we have ε(EL, EL′) ≤
2ρ2

∑m−1
k=1 εLk,Lk+1

.

Remark We make several remarks about the theorem
statement. Note that the guarantee is in terms of translation
error rather than parameter recovery. In fact, due to the iden-
tifiability issue, we cannot hope to recover the ground truth
encoders {EL}L∈L: it is easy to see that composing all the
encoders with an invertible mapping f ∈ F and composing
all the decoders with f−1 ∈ F produces exactly the same
outputs.

Furthermore, the upper bound is adaptive, in the sense that
for any language pair (Li, Lj), the error depends on the
sum of the errors connecting (Li, Lj) in the translation
graph H . One can think naturally as the low-error edges as
resource-rich pairs: if the function class F is parametrized
by finite-dimensional parameter space with dimension p,
then using standard result on the covering number of finite-
dimensional vector space (Anthony & Bartlett, 2009), we
know that logN (F , ε

16M ) = Θ(p log(1/ε)); as a conse-
quence, the number of documents needed for a pair scales
as log(1/εL,L′)/ε2L,L′ .

2

⌃⇤
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Figure 3. A translation graph H over K = 6 languages. The
existence of an edge between a pair of nodes Li and Lj means
that the learner has been trained on the corresponding language
pair. In this example the diameter of the graph diam(H) = 4:
L3, L1, L4, L5, L6.

Furthermore, as an immediate corollary of the theorem,
if we assume εL,L′ ≤ ε for all (L,L′) ∈ H , we have
ε(EL, EL′) ≤ 2ρ2dL,L′ · ε, where dL,L′ is the length of the
shortest path connecting L and L′ in H . It also immedi-
ately follows that for any pair of languages L,L′, we have
ε(EL, EL′) ≤ 2ρ2diam(H) · ε where diam(H) is the di-
ameter of H – thus the intuitive conclusion that graphs that
do not have long paths are preferable.

The upper bound in Theorem 4.1 also provides a coun-
terpoint to the lower-bound, showing that under a gener-
ative model for the data, it is possible to learn a pair of
encoder/decoder for each language pair after seeing aligned
corpora only for a linear number of pairs of languages
(and not quadratic!), corresponding to those captured by
the edges of the translation graph H . As a final note, we
would like to point out that an analogous bound can be
proved easily for other losses like the 0-1 loss or the general
`p loss as well.

4.3. Proof Sketch of the Theorem

Before we provide the proof for the theorem, we first state
several useful lemmas that will be used during our analysis.

Concentration Bounds The first step is to prove a con-
centration bound for the translation loss metric on each pair
of languages. In this case, it will be easier to write the losses
in terms of one single function: namely notice that in fact
ε(EL, E

′
L) only depends onE−1

L′ ◦EL, and due to the group
structure, F 3 f := E−1

L′ ◦EL. To that end, we will abuse
the notation somewhat and denote ε(f) := ε(EL, E

′
L). The

following lemma is adapted from Bartlett (1998) where the
bound is given in terms of binary classification error while
here we present a bound using `2 loss. At a high level, the
bound uses covering number to concentrate the empirical
loss metric to its corresponding population counterpart.

Lemma 4.1. If S = {(xi, x′i)}ni=1 is sampled i.i.d. accord-
ing to the encoder-decoder generative process, the following
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bound holds:

Pr
S∼Dn

(
sup
f∈F
|ε(f)− ε̂S(f)| ≥ ε

)

≤ 2N (F , ε

16M
) · exp

( −nε2
16M4

)
.

This lemma can be proved using a ε-net argument with
covering number. With this lemma, we can bound the error
given by an empirical risk minimization algorithm:

Theorem 4.2. (Generalization, single task) Let S be a sam-
ple of size n according to our generative process. Then for
any 0 < δ < 1, for any f ∈ F , w.p. at least 1 − δ, the
following bound holds:

ε(f) ≤ ε̂S(f) +O

(√
logN (F , ε

16M ) + log(1/δ)

n

)
.

(7)

Theorem 4.2 is a finite sample bound for generalization on
a single pair of languages. This bound gives us an error
measure on an edge in the translation graph in Fig. 3. Now,
with an upper bound on the translation error of each seen
language pair, we are ready to prove the main theorem
(Theorem 4.1) which bounds the translation error for all
possible pairs of translation tasks:

Proof of Theorem 4.1. First, under the assump-
tion of Theorem 4.1, for any pair of language
(L,L′), we know that the corpus contains at least

Ω

(
1

ε2
L,L′
·
(
logN (F , εL,L′

16M ) + log(K/δ)
))

parallel sen-

tences. Then by Theorem 4.2, with probability 1 − δ, for
any L,L′ connected by an edge in H , we have

ε(EL, EL′) ≤ ε̂(EL, EL′)+εL,L′ ≤ εL,L′+εL,L′ = 2εL,L′ ,

where the last inequality is due to the assumption that
ε̂(EL, EL′) ≤ εL,L′ . Now consider any L,L′ ∈ L × L,
connected by a path

L′ = L1, L2, L3, . . . , Lm = L

of length at most m. We will bound the error

ε(EL, EL′) = ‖E−1
L′ ◦ EL −E−1

L′ ◦EL‖2`2(DL]D)

by a judicious use of the triangle inequality. Namely, let’s
denote

I1 := E−1
L1
◦ELm

,

Ik := E−1
L1
◦ ELk

◦E−1
Lk
◦ELm

, 2 ≤ k ≤ m− 1,

Im := E−1
L1
◦ ELm .

Then, we can write

‖E−1
L′ ◦ EL −E−1

L′ ◦EL‖`2(DL]D)

= ‖
m−1∑
k=1

Ik − Ik+1‖`2(DL]D)

≤
m−1∑
k=1

‖Ik − Ik+1‖`2(DL]D). (8)

Furthermore, notice that we can rewrite Ik − Ik+1 as

E−1
L1
◦ ELk

(
E−1
Lk
◦ELk+1

− E−1
Lk
◦ ELk+1

)
E−1
Lk+1

◦ELm .

Given that E−1
L1

and ELk
are ρ-Lipschitz we have

‖Ik − Ik+1‖`2(DL]D)

=
∥∥E−1

L1
◦ ELk

(
E−1

Lk
◦ ELk+1 −E−1

Lk
◦ELk+1

)∥∥
`2(DLk+1 ]

D)

≤ ρ2
∥∥(E−1

Lk
◦ ELk+1 −E−1

Lk
◦ELk+1

)∥∥
`2(DLk+1 ]

D)

≤ 2ρ2εLk,Lk+1 ,

where the first line is from the definition of pushforward
distribution, the second line is due to the Lipschitzness of
F and the last line follows since all (Lk, Lk+1) are edges
in H . Plugging this into (8), we have

‖E−1
L′ ◦ EL −E−1

L′ ◦EL‖`2(DL]D) ≤ 2ρ2
m∑
k=1

εLk,Lk+1
.

To complete the proof, realize that we need the events
|ε(Lk, Lk+1) − ε̂(Lk, Lk+1)| ≤ εLk,Lk+1

to hold simul-
taneously for all the edges in the graph H . Hence it suffices
if we can use a union bound to bound the failing probability.
To this end, for each edge, we amplify the success probabil-
ity by choosing the failure probability to be δ/K2, and we
can then bound the overall failure probability as:

Pr (At least one edge in the graph H fails to satisfy (7))

≤
∑

(i,j)∈H
Pr
(
|ε(Li, Lj)− ε̂(Li, Lj)| > εLi,Lj

)
≤

∑
(i,j)∈H

δ/K2

≤ K(K − 1)

2
· δ
K2

≤ δ.
The first inequality above is due to the union bound, and
the second one is from Theorem 4.2 by choosing the failing
probability to be δ/K2. �

4.4. Extension to Randomized Encoders and Decoders

Our discussions so far on the sample complexity under the
encoder-decoder generative process assume that the ground-
truth encoders and decoders are deterministic and bijective.
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This might seem to be a quite restrictive assumption, but
nevertheless our underlying proof strategy using transitions
on the translation graph still works in more general settings.
In this section we shall provide an extension of the previous
deterministic encoder-decoder generative process to allow
randomness in the generation process. Note that this ex-
tension simultaneously relaxes both the deterministic and
bijective assumptions before.

As a first step of the extension, since there is not a notion
of inverse function anymore in the randomized setting, we
first define the ground-truth encoder-decoder pair (EL,DL)
for a language L ∈ L.

Definition 4.2. Let Dr and Dr′ be two distributions over
random seeds r and r′ respectively. A randomized decoder
DLi

is a deterministic function that maps a feature z along
with a random seed r to a sentences in language Li. Simi-
larly, a randomized encoder ELi

maps a sentence x ∈ Σ∗Li

and a random seed r′ to a representation in Z . (ELi
,DLi

)
is called an encoder-decoder pair if it keeps the distribution
D over Z invariant under the randomness of Dr and Dr′ :

ELi ](DLi ](D ×Dr)×Dr′) = D, (9)

where we use D × D′ to denote the product measure of
distributions D and D′.
Just like the deterministic setting, here we still assume that
ELi

,DLi
∈ F where F is closed under function com-

position. Furthermore, in order to satisfy Definition 4.2,
we assume that ∀ DLi

∈ F , there exists a correspond-
ing ELi ∈ F , such that (ELi ,DLi) is an encoder-decoder
pair that verifies Definition 4.2. It is clear that the deter-
ministic encoder-decoder pair in Section 4.1 is a special
case of that in Definition 4.2: in that case DLi

= E−1
Li

so that ELi
◦ DLi

= idZ , the identity map over feature
space Z . Furthermore there is no randomness from r and
r′, hence the invariant criterion becomes ELi ]DLi ]D =
(ELi ◦DLi)]D = idZ ]D = D, which trivially holds.

The randomness mechanism in Definition 4.2 has several
practical implementations in practice. For example, the
denoising autoencoder (Vincent et al., 2008), the encoder
part of the conditional generative adversarial network (Mirza
& Osindero, 2014), etc. Again, in the randomized setting
we still need to have an assumption on the structure of F ,
but this time a relaxed one:

Assumption 4.2 (Smoothness and Boundedness). F is
bounded under the ‖ · ‖∞ norm, i.e., there exists M > 0,
such that ∀f ∈ F , ‖f‖∞ ≤ M . Furthermore, there ex-
ists 0 ≤ ρ < ∞, such that for ∀x, x′ ∈ Rd, ∀f ∈ F ,
‖EDr

[f(x, r)− f(x′, r)]‖2 ≤ ρ · ‖x− x′‖2.

Correspondingly, we also need to slightly extend our loss
metric under the randomized setting to the following:

ε(EL, DL′) := Er,r′‖DL′◦EL−DL′◦EL‖2`2(DL](D×Dr)),

where the expectation is taken over the distributions over ran-
dom seeds r and r′. The empirical error could be extended
in a similar way by replacing the population expectation
with the empirical expectation. With the above extended
definitions, now we are ready to state the following general-
ization theorem under randomized setting:

Theorem 4.3. (Sample complexity under generative model,
randomized setting) SupposeH is connected and the trained
{EL}L∈L satisfy

∀L,L′ ∈ H : ε̂S(EL, DL′) ≤ εL,L′ ,

for εL,L′ > 0. Furthermore, for 0 < δ < 1 suppose the num-
ber of sentences for each aligned corpora for each training

pair (L,L′) is Ω

(
1

ε2
L,L′
·
(
logN (F , εL,L′

16M ) + log(K/δ)
))

.

Then, with probability 1 − δ, for any pair of languages
(L,L′) ∈ L × L and L = L1, L2, . . . , Lm = L′ a
path between L and L′ in H , we have ε(EL, DL′) ≤
2ρ2

∑m−1
k=1 εLk,Lk+1

.

We comment that Theorem 4.3 is completely parallel to The-
orem 4.1, except that we use generalized definitions under
the randomized setting instead. Hence all the discussions
before on Theorem 4.1 also apply here.

5. Discussion and Conclusion
In this paper we provided the first theoretical study on using
language-invariant representations for universal machine
translation. Our results are two-fold. First, we showed that
without appropriate assumption on the generative structure
of languages, there is an inherent tradeoff between learning
language-invariant representations versus achieving good
translation performance jointly in general. In particular, our
results show that if the distributions (language models) of
the target language differ between different translation pairs,
then any machine translation method based on learning
language-invariant representations is bound to achieve a
large error on at least one of the translation tasks, even with
unbounded computational resources.

On the positive side, we also show that, under appropriate
generative model assumption of languages, e.g., a typical
encoder-decoder model, it is not only possible to recover
the ground-truth translator between any pair of languages
that appear in the parallel corpora, but also we can hope
to achieve a small translation error on sentences from un-
seen pair of languages, as long as they are connected in the
so-called translation graph. This result holds in both deter-
ministic and randomized settings. In addition, our result
also characterizes how the relationship (distance) between
these two languages in the graph affects the quality of trans-
lation in an intuitive manner: a graph with long connections
results in a poorer translation.
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