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A. Experimental Settings

For all experiments if not specified, we inherit the experi-
mental settings of GP-GAN (Mescheder et al., 2018). All
training images are resized to 128 x 128 for consistency.
For the discriminator, gradient penalty on real samples (R;-
regularizer) is adopted with the regularization parameter
~v = 10.0. We use the Adam optimizer with learning rate
1 x 10~% and coefficients (31, B2) = (0.0,0.99). 60,000
iterations are used for training. Because of limited compu-
tation power, we use a batch size of 16. For the CelebA
dataset, the dimension of the latent vector z is set to 256;
while for the small datasets (i.e., Flowers, Cars, and Cathe-
dral) and their 1K variants, that dimension is set to 64.

The experimental settings for the extremely limited datasets,
i.e., Flowers-25 and FFHQ-25, are provided in Appendix B.

The FID scores are calculated based on
10,000/8,189/8,144/7,350 real and generated im-
ages on CelebA, Flowers, Cars, and Cathedral, respectively.
The same FID calculations are employed for experiments
on the corresponding 1K variants.

For Scratch, we employ the same architecture as our method
without the /(3 AdaFM parameters, because s and 3s are
now redundant if we train the source filter W (refer to (2)
of the main manuscript).

Regarding the training of our method, we fix the scale v = 1
and shift 3 = 0 in the first 10,000 iterations and only update
the tailored specific part for a stable initialization; after that,
we jointly train both the v/3 AdaFM parameters and the
specific part to deliver the presented results.

A.1. On Specifying the General Part of the
Discriminator for Transfer

To figure out the suitable general part of the discriminator
to be transferred from the pretrained GP-GAN model to the
target CelebA dataset, we design a series of experiments
with increasing number of lower groups included/frozen in
the transferred/frozen general part; the remaining high-level
specific part is reinitialized and trained with CelebA. The
architecture for the discriminator with the D2 general part
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Figure 15. The architecture for the discriminator with the D2 gen-
eral part. The overall architecture is inherited from the GP-GAN.

is shown in Figure 15, as an illustrative example.

Based on the transferred general part of the generator and
discriminator, we next reinitialize and train the remaining
specific part on CelebA. The employed reinitialization are
as follows.

* For all layers except FC in the generator/discriminator,
we use the corresponding parameters from the pre-
trained GP-GAN model as initialization.

* Regarding FC layers in generator/discriminator, since
the pretrained GP-GAN model on ImageNet used a
conditional-generation architecture (i.e., the input of
the generator FC layer consists both the noise z and the
label embedding y, whereas the discriminator FC layer
has multiple heads (each corresponds to one class)),
we can not directly transfer the FC parameters therein
to initialize our model (without labels). Consequently,
we randomly initialize both FC layers in the generator
and discriminator.
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Figure 16. Demonstration of the generative process learned on
extremely limited data. Since the continuous latent z-space is
likely redundant, the generator often maps close latent vectors to
similar outputs.

B. On Generation with Extremely Limited
Data with 25 Samples

Considering the challenging settings with extremely limited
data in quantity (i.e., 25 data samples), we transfer the G4D6
general part from the pretrained GP-GAN model (termed
Our-G4D6) and apply GP (gradient penalty) on both real
and fake samples with the regularization parameter v = 20.
The dimension of the latent vector z is set to 4. 60,000
training iterations are used.

The FID scores are calculated following (Noguchi & Harada,
2019). For Flowers-25, 251 real passion images and 251
generated images are used to calculate the FID; for FFHQ-
25, 10,000 real face images and 10,000 generated images
are used.

Since the target data (25 samples) are extremely limited,
we find that the generator managed to learn a generative
mapping that captures the generation over the 25 training
samples, as illustrated in Figure 16. As the latent z-space is
continuous and likely redundant for the extremely limited
data, the learned generator often maps close latent vectors
to a similar output. Regarding the interpolations shown in
Figure 12 of the main paper, we use an amplification process
(see Figure 17) to get the presented results. Note Figure 17
also empirically verifies the above intuition. The demon-
strated results are as expected, because, on one hand, only
25 training images are available, while on the other hand,
the gradient penalty applied to discriminator (in addition
to regularizations from the proposed techniques) implicitly
imposes smoothness to the output space of the generator.

C. More Analysis and Discussions
C.1. On the Worse FID of G2D0 than That of G4D0

The worse FID of G2DO is believed caused by the insuffi-
ciently trained low-level filters, which are time-consuming
and data-demanding to train. Specifically, by taking a close
look at the generated samples, we find that

- there are generated samples that look similar to each
other, indicating a relatively low generative diversity;

- most of the generated samples contain strange textures
that look like water spots, as shown in Figure 18.

Such phenomena are deemed to have negative effects on the
FID score.

Figure 18. Samples generated from a model with the G2DO0 general
part. Water-spot shaped textures appear in the hair area (see the
yellow boxes).

C.2. On Selecting the Optimal GmDn with the Best
Generalization

Supplementing Figures 3 and 4 of the main paper, we eval-
uate various settings of GmDn for the transfered general
part, with the same experimental settings of Section 3 of the
main paper. The corresponding FID scores are summarized
in Figure 20, where one may observe interesting patterns of
the transfer properties of the pretrained GAN model.

* It seems that the performance is, in general, more sensi-
tive to the setting of Gm than that of Dn, meaning that
the generator general part may play a more important
role in generation tasks.

* Besides, it’s clear that compromise arises in both Gm
and Dn directions; this is expected as the low-level
filters are more generally applicable while the high-
level ones are more domain specific.

* Moreover, it seems interesting correlations exist be-
tween Gm (generator general part) and Dn (discrimi-
nator general part), which might be worthy of future
explorations.
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Figure 17. The amplification process employed to yield the smooth interpolations for our method.
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Figure 19. TransferGAN shows mode/training collapse on the three small datasets.
* Finally, the G4D2 general part delivers the best perfor- G2 G4 < G6

mance among the tested settings, justifying its adoption

in the main paper. %0

25

It’s extremely challenging (if not impossible) to choose the 120
optimal GmDn general part that generalizes well to various
target domains (beyond CelebA). To alleviate this concern,

we’d like to point out that our AdaFM may greatly relax 115

the requirement of an optimal GmDn, as reflected by our-
G4D2’s boosted performance on various target datasets. Em-
pirically, we find that the G4 generator general part works
reasonably well for most situations; the setting for the dis-

criminator general part (i.e., Dn) is more data-size related,  Fjgyre 20. FID scores from various settings for GmDn. GmDn
e.g., the D2 setting may be suitable for a target domain with indicates freezing the lower m/n groups as the general part of
>7K data samples, D5 for ~1K samples, and D6 for ~25 generator/discriminator. It’s clear that the adopted G4D2 general
samples. part is a reasonable choice for transfer.
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C.3. On Figure 8 of the Main Manuscript

Regarding the FID curves shown in Figure 8 of the main
manuscript, one may concern the final performance of
Scratch if it’s trained for long time. To address that concern,
we run Scratch on Flowers for 150,000 iterations and find
that Scratch converges to a worse FID=18.1 than our method
at 60,000 iterations. Similar phenomena also manifest in
Figure 10 of the main manuscript. These results empirically
prove that the transferred/frozen general part deliver both
improved training efficiency and better final performance.

Regarding more generated samples for comparing our
method with Scratch, we show in Figure 21, 22 and 23 more
randomly generated samples from our method and Scratch
as a supplementary for Figure 8 of the main manuscript.
Thanks to the transferred low-level filters and the better
adaption to target domain via AdaFM, our method shows a
much higher generation quality than Scratch.

C.4. On the Failing of TransferGAN on the Three
Small Datasets

Since the FC layers from the pretrained GP-GAN model on
ImageNet is not directly applicable to the target domain (as
discussed in Section A.1), we implement the TransferGAN
method by initializing parameters of all layers (except the
FC layer, whose parameters are randomly initialized) with
the corresponding parameters from the pretrained GP-GAN
model. A similar architecture of the pretrained GP-GAN
model is therefore employed for TransferGAN.

When only a small (or limited) amount of training data are
available, (e.g., on the three small datasets: Flowers, Cars,
and Cathedral), TransferGAN is prone to overfitting because
of its large amount of trainable parameters. Specifically, the
number of the trainable parameters within the TransferGAN
generator is 96.1M; by comparison, the generator of our
method only contains 24.4M trainable parameters. Accord-
ingly, TransferGAN suffers from mode/training collapse on
the three small datasets, as shown in Figure 19.

C.5. Early Stopping for Generation with Limited Data

Concerning early stopping for generation with limited data,
we find that the discriminator loss may be leveraged for that
goal, as overfitting empirically manifests as a decreasing
discriminator loss in our setup.

Specifically, with the GP-GAN settings, we empirically find
that the discriminator loss stables roughly within [0.8, 1.3]
when the training is successful without clear overfitting.
However, if the discriminator loss falls into [0.5,0.7] and
remains there for a period, overfitting likely starts arising;
accordingly, that may be a proper time for early stopping.

C.6. On Figure 13(c) of the Main Manuscript

Figure 13(c) shows the sorted demonstration of the learned
~ from the last convolutional layer in Group2. We sort the
~’s learned on different target datasets as follows.

1. Reshape each ~ matrix into a vector; stack these vec-
tors into a matrix M, so that each row represents the ~
from a specific target dataset;

2. Clip all the values of M to [0.9, 1.1] and then re-scale
to [0, 1] for better contrast;

3. For the i-th row/target-dataset, find the set of column
indexes s; = {j|Vk # ¢,M,; ; — My, ; > 0.03}; sort
s} according to the values M, , to yield s;;

4. Concatenate {s;} with the remaining column indexes
to yield the sorted indexes t; sort the columns of the
matrix M according to ¢ to deliver the presented matrix
in Figure 13(c).

C.7. Comparison of AdaFM and Weight Demodulation

Supplementing Section 3.3 of the main manuscript, we fur-
ther compare the weight demodulation (Karras et al., 2019b)
with our AdaFM below.

Recall that AdaFM uses learnable matrix parameters {-, 3}
to modulate/adapt a transfered/frozen convolutional filter
(see (2) of the main manuscript); by comparison, the weight
demodulation uses 3 = 0 and rank-one v = ns”, where
s is parametrized as a neural network to control style and
7 calculated based on s and the convolutional filter W (see
(3) of the main manuscript). Therefore, a direct comparison
of AdaFM and the weight demodulation is not feasible.

On one hand, it’s interesting to consider generalizing our
AdaFM with neural-network-parameterized {-, 3} for bet-
ter adaptation of the transfered general part, for introduction
of conditional information, or for better generation like in
StyleGANZ2; we leave that as future research. On the other
hand, if we degrade the weight demodulation by setting s
as a learnable vector parameter, the weight demodulation
may work similar to FS (see the comparison between FS
and AdaFM in Figure 7 of the main manuscript), because
both of them have almost the same flexibility.

D. Medical/Biological Applications with
Gray-Scale Images

Concerning medical/biological applications with gray-scale
images, we conduct experiments on a gray-scale variant of
Cathedral, termed gray-Cathedral. The randomly generated
samples are shown in Figure 24. Obviously, without AdaFM,
worse (blurry and messy) details are observed in the gener-
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Figure 21. More generated samples on CelebA, supplementing Figure 8§ of the main manuscript. (a) Our; (b) Scratch.

ated images, likely because of the mismatched correlation
among channels between source and target domains.

E. Contributions of the Proposed AdaFM and
the Transferred General Part

To demonstrate the contribution of the proposed AdaFM,
the randomly generated samples from our method (with
AdaFM) and SmallHead (without AdaFM) on different tar-
get domains are shown in Figures 25, 26, and 27, respec-
tively. Note that the only difference between our method
and SmallHead is the use of AdaFM. It’s clear that, with
AdaFM, our method delivers significantly improved genera-
tion quality over the Smallhead.

It is worth noting that on all these perceptually-distinct target
datasets (e.g., CelebA, Flowers, Cathedral), the proposed
SmallHead with the transferred general part has proven
to train successfully and delivers diverse and relatively-
realistic generations, despite without modulations from
AdaFM. Such phenomena prove that the G4D2 general part
discovered in Section 3.1 of the main manuscript generalizes
well to various target domains.

F. Style Mixing on Flowers and CelebA

The style-mixing results shown in Figure 12 of the main
manuscript are obtained as follows.

Following (Karras et al., 2019a), given the generative pro-
cess of a “‘source” image, we replace its style input of Group
53 (the arrow on the left of the specific part of our model; see
Figure 1(h)) with that from a “Destination” image, followed
by propagating through the rest of the generator to generate
a new image with mixed style.

A similar style mixing is conducted on CelebA, with the
results shown in Figure 28. We observe that the style in-
puts from the “Source” images control the identity, posture,
and hair type, while the style inputs from the “Destination”
images control the sex, color, and expression.

>We choose Group 5 for example demonstration; one can of
course control the input to other groups, or even hierarchically
control all of them.
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(a) (b)

Figure 23. More generated samples on Cathedral, supplementing Figure 8 of the main manuscript. (a) Our; (b) Scratch.
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(b) SmallHead without AdaFM

Figure 24. Randomly generated samples on gray-Cathedral, supplementing Section 4.4 in the main manuscript. Better viewed with zoom
in.
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Figure 25. Randomly generated samples from our method and SmallHead on CelebA. (a) Our (with AdaFM); (b) SmallHead (without
AdaFM).
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Figure 26. Randomly generated samples from our method and SmallHead on Flowers. (a) Our (with AdaFM); (b) SmallHead (without
AdaFM).
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Figure 27. Randomly generated samples from our method and SmallHead on Cathedral. (a) Our (with AdaFM); (b) SmallHead (without
AdaFM).
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Destination

Figure 28. Style mixing on CelebA via the tailored specific part of our method. The “Source” sample controls the identity, posture, and
hair type, while the “Destination” sample controls the sex, color, and expression.



