Fast Learning of Graph Neural Networks with Guaranteed Generalizability: One-hidden-layer Case

A. Proof of Theorem 1

In this section, before presenting the proof of Theorem 1, we start with defining some useful notations. Recall that in (3),
the empirical risk function for linear regression problem is defined as

min:  fo(W 9(W3ia X)‘ (22)

Population risk function, which is the expectation of the empirical risk function, is defined as

min:  fo(W g(W aTX)‘ (23)

Then, the road-map of the proof can be summarized in the following three steps.

First, we show the Hessian matrix of the population risk function fg, is positive-definite at ground-truth parameters W*
and then characterize the local convexity region of fo, near W*, which is summarized in Lemma 2.

Second, fgt is non-smooth because of ReLU activation, but fq, is smooth. Hence, we characterize the gradient descent
term as V fo, (W®) = (V2 fo, (W )), w® _ w4 (th(W(t)) — fa, (W(t))). During this step, we need to apply
concentration theorem to bound V th to its expectation V fq, , which is summarized in Lemma 3.

Third, we take the momentum term of 5 (W(t) — W(t_l)) into consideration and obtain the following recursive rule:

(t+1) *
[W w } (24)

w _w
w _w

—269) [ ey vy

Then, we know iterates W () converge to the ground-truth with a linear rate which is the largest singlar value of matrix
L(3). Recall that AGD reduces to GD with § = 0, so our analysis applies to GD method as well. We are able to show the
convergence rate of AGD is faster than GD by proving the largest singluar value of L(/3) is smaller than L(0) for some

8 > 0. Lemma 4 provides the estimation error of W(®) and sample complexity to guarantee || L(/)]|; is less than 1 for
t=0.

Lemma 2. Let fq, be the population risk function in (23) for regression problems, then for any W' that satisfies

00K

W* - W 2
the second-order derivative of fq, is bounded as
1—¢9)o?(A 40%(A

11k2yK? - K

Lemma 3. Let fQ , and fq, be the empirical and population risk functions in (22) and (23) for regression problems,
respectively. Then, for any fixed point W satisfies (25), we have °

(1+42)dlog N

|90 (W) = Ve, (W), £ o)y =00

W — W72, 27

with probability at least 1 — K2 - N—19,
Lemma 4. Assume the number of samples |Q:| > (1 + 6%)oi(A)Kdlog N, the tensor initialization method via
Subroutine 1 outputs WO such that

K4(1+ 62)dlog N
62|

W =Wz < UI(A)\/ W72 (28)

with probability at least 1 — N 10,

SWe use f(d) > (or <,=)g(d) to denote there exists some positive constant C' such that f(d) > (or <,=)C - g(d) when d is
sufficiently large.
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The proofs of Lemmas 2 and 3 are included in Appendix A.l and A.2, respectively, while the proof of Lemma 4 can be
found in Appendix D. With these three preliminary lemmas on hand, the proof of Theorem 1 is formally summarized in the
following contents.

Proof of Theorem 1. The update rule of w® is

w it —_w® _ nvfﬂt(W(t)) + 5(W(t) _ W(t—l))

R 29
=W — )V fo, WD) + WO — WD) 4 (V fo, (W) -V fo, WH)). @

Since V%t is a smooth function, by the intermediate value theorem, we have

= (1) .
WD =W V2 fo (W)W - W)
+BW® — WD)y (30)
+ n(vat (W(t)) - vat (W(t)))?

where ﬁ\/(t) lies in the convex hull of W) and W*.

Next, we have

W(t+1) _ W* _ 2 /\(t) W(t) _ W* v W(t) - v ¢ W(t)
[ Ve w ] _ [I i (W) 61 o1 [w(t—w_w*} M[ fou (W) = Vo )} an

()
Let L(B) = [I B nV2f9t§W )+ AT ﬂOI] , S0 we have

=[ILB)Il;

) 0

W(t—l) o W*

W(tJrl) o W*
wi —wr

W]

o H [mew(”) ~Va, <W<“>]
2

2
From Lemma 3, we know that

(14 0%)dlog N

W — W*,. (32)
|Qt| || H2

0| Vs, (W) = Vo, W) S not(a)

Then, we have

(14 6%)dlog N

W = w < (B + a4 [0

>IIW(“ W
(33)

~(B)|[ WO — W .
Let ng(ﬁ\/(t)) = SAS” be the eigen-decomposition of V2f(ﬁ\/(t)). Then, we define

L(8) = [SOT SOT} L(8) {ﬁ g]{I Tnh st BOI] (34)

0 S|lo s"| |0 I
(¢t
of V2 fq, (W( )), then the corresponding i-th eigenvalue of L(3), denoted by d;(3), satisfies

T ~
Since {S 0} {S 0 ] = {I O} , we know L(3) and L($3) share the same eigenvalues. Let \; be the i-th eigenvalue

82— (1 —nh\i+B)s+p=0. (35)

Then, we have

(L—nXi+8)+ /A —nXi+5)2—4p

6:i(B) = ) (36)
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and

(37

P A G OO
Z - %’(1_77)%‘*'5)4‘\/(1—77)\1‘4-6)2—46‘,otherwise.

Note that the other root of (35) is abandoned because the root in (36) is always no less than the other root with |1 — n);| < 1.
By simple calculations, we have

5:(0) > 6;(B), for VB € (0,(1—nX)?). (38)
Moreover, §; achieves the minimum &7 = |1 — /nX;| when 3 = (1 — \/n/\i)z.
Let us first assume W satisfies (25), then from Lemma 2, we know that

(1—z0)0}(4) _, _ 403(4)
< A

0<
11k%2yK? b

4"17() . If we choose 3 such that

8" =max {(1 - im)* (1 - Viz)*}, (39)
then we have 8 > (1 — v/nX;)? and 6; = max {|1 — /71|, |1 — /72| } for any i.

2
Letn = i, then 5* equals to (1 -, /2"%) . Then, for any ¢ € (0,1/2), we have

(1—€0)o?(A)

11k2yK?2 and T2 =

Letvy; =

’)/1 — &0 1—(3/4)'80
LB = maX(S =1- <1- . 40
L@l = 272 88/@27K 88k2yK “0)
Then, let
5 (1+62)dlog N €0
o (A < , 41
no1(A4) €2 44/88K2yK
we need || > ey 2k2yM (1 + §2)0?(A)K3dlog N. Combining (40) and (41), we have
1-— €o
v(f*) <1l — ———. 42
(B*) < S K (42)
Let 8 = 0, we have
1-— o
> |A =1- ——
10) 2 [AO) =1 - g
1+ 62)dlog N 1—2¢
0) < JlA(0 24, [(LEO)dIog N ) 1= 325
(0) S A0 +not(A) [ SEEES <1 - Lo
if |Q] > eg2k2yM (1 + 6%)0?(A)K3dlog N.
Hence, with = i and 8 = ( - 27712)2, we have
1—¢
WD Wy < (1 - —2= ) |[W® — W, 43
H < (1- )l I (43)
provided W® satisfies (25), and
Q4] = e 2K2y(1 + 620t (A)K3dlog N. (44)

Then, we can start mathematical induction of (43) over t.

Base case: According to Lemma 4, we know that (25) holds for w O it

Q] = 526292 (1 + 6%)of (A)K8dlog N. (45)



Fast Learning of Graph Neural Networks with Guaranteed Generalizability: One-hidden-layer Case

According to Theorem 1, it is clear that the number of samples |€);| satisfies (45), then (25) indeed holds for ¢ = 0. Since
(25) holds for ¢t = 0 and |€2;| in Theorem 1 satisfies (44) as well, we have (43) holds for ¢ = 0.

Induction step: Assuming (43) holds for W(t), we need to show that (43) holds for WD That s to say, we need |Q;|
satisfies (44), which holds naturally from Theorem 1.

Therefore, when || > 5 2.%7%(1 + 62)of (A)K8dlog N, we know that (43) holds for all 0 < ¢ < T — 1 with probability
atleast 1 — KT - N—19. By simple calculations, we can obtain

1—60

/38K2YK

T
W — Wl <(1- )W O - W, (46)

O

A.1. Proof of Lemma 2

In this section, we provide the proof of Lemma 2 which shows the local convexity of fq, in a small neighborhood of
W*. The roadmap is to first bound the smallest eigenvalue of V2 fq, in the ground truth as shown in Lemma 5, then show
that the difference of V2 fq, between any fixed point W in this region and the ground truth W* is bounded in terms of
|[W — W*||2 by Lemma 6.

Lemma 5. The second-order derivative of fq, at the ground truth W™ satisfies

2 2
oi(A) 2 * 301(A)
B A W) < :
11k27K2 ~ Vil WH) = —¢ “47)
Lemma 6. Suppose W satisfies (25), we have
* t -
192 (W) = 92 o, (W), < 202(a) =W UK” Iz, (48)

The proofs of Lemmas 5 and 6 can be found in Sec. A.3. With these two preliminary lemmas on hand, the proof of Lemma
2 is formally summarized in the following contents.

Proof of Lemma 2. By the triangle inequality, we have

920, (W), = [92 0, (W), | < V20, (W) = V2 fa (W)

and
[V fa, (W), < [[V2 fo, (W) |, + IV fo, (W) = V2 fo,(W)]|2,
V2 fa, (W), = [|V2 fo, (W) ||, = IV2 fo, (W) = V2 fo, (W) 2.

The error bound of ||V2 fq, (W) — V2 fq, (W)||2 can be derived from Lemma 6, and the error bound of V2 fq, (W) is
provided in Lemma 5.

Therefore, for any W satisfies (25), we have

(1- 50)0%(14

402(A
S < |92 o, W), < A,

K

(49)

A.2. Proof of Lemma 3

The proof of Lemma 3 is mainly to bound the concentration error of random variables z,(j, k) as shown in (60). We
first show that z, (7, k) is a sub-exponential random variable, and the definitions of sub-Gaussian and sub-exponential
random variables are provided in Definitions 1 and 2. Though Hoeffding’s inequality provides the concentration error
for sum of independent random variables, random variables z, (j, k) with different j, k are not independent. Hence, we
introduce Lemma 7 to provide the upper bound for the moment generation function of the sum of partly dependent random
variables and then apply standard Chernoff inequality. Lemmas 8 and 9 are standard tools in analyzing spectral norms of
high-demensional random matrices.
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Definition 1 (Definition 5.7, (Vershynin, 2010)). A random variable X is called a sub-Gaussian random variable if it
satisfies

(E|X )" < e1v/p (50)
forall p > 1 and some constant c; > 0. In addition, we have
EeS(X_]EX) < eCzH-XHiQS2 (51)
or all s € R and some constant co > 0, where || X is the sub-Gaussian norm of X defined as || X =
P2 P2
sup,; p~ /2 (E|X|P)1/P,
Moreover, a random vector X € R? belongs to the sub-Gaussian distribution if one-dimensional marginal o™ X is

sub-Gaussian for any o € R%, and the sub-Gaussian norm of X is defined as | X || 4, = SUP||f|a=1 o X ||y,

Definition 2 (Definition 5.13, (Vershynin, 2010)). A random variable X is called a sub-exponential random variable if it
satisfies

(E|X|P)P < csp (52)

forall p > 1 and some constant c3 > 0. In addition, we have
Ees(X—EX) < eC4\|X|\§132 (53)

for s < 1/|| Xy, and some constant cy > 0, where || X ||y, is the sub-exponential norm of X defined as || X |y, =
SUp,>1 p~H(E|X|P)VP.

Lemma 7. Given a sampling set X = {x,,}N_, that contains N partly dependent random variables, for each n € [N],
suppose T, is dependent with at most dy random variables in X (including x,, itself), and the moment generate function
of x,, satisfies E, e < eCs” for some constant C' that may depend on x,. Then, the moment generation function of
Zﬁ;l Xy, is bounded as

EX@S 25:1 In S eCdXst . (54)
Lemma 8 (Lemma 5.2, (Vershynin, 2010)). Let B(0,1) € {a|||al|z = 1, € R%} denote a unit ball in R%. Then, a subset

S is called a &-net of B(0, 1) if every point z € B(0, 1) can be approximated to within & by some point o € B(0, 1), i.e
|z — a|l2 < & Then the minimal cardinality of a §-net S¢ satisfies

S| < (1+2/6). (55)

Lemma 9 (Lemma 5.3, (Vershynin, 2010)). Let A be an N x d matrix, and let S¢ be a &-net of B(0,1) in R? for some
&€ (0,1). Then

|Allz < (1 - &) max |a” Aal. (56)

The proof of Lemma 7 can be found in Appendex A.3. With these preliminary Lemmas and definition on hand, the proof of
Lemma 3 is formally summarized in the following contents.

Proof of Lemma 3. We have

fo,(W Q‘Qf g(W;alX ‘ _ Z Z al Xw)) : (57)
e, =1
and
fo,(W) = Ex fo,(W 2|Q| > Eufyn - Z¢ al Xuw,)[ (58)

nel;
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The gradients of fo , are

5th 1 K T . - o
ow, ") I 22 (v 2 dlah Xw;)) X and (al Xwy)
1 K K
o > (Z¢ (an Xw)) = o TX'wy) Tand/ (a, Xwy,) (59)
neQy  j=1 j=1

K
=2 KQTQ” > (6l Xw)) — d(a) Xw;)) X and’ (al Xwy).

Let us define
zn(k,j) = X and'(af Xwy) (¢(ay Xw}) — ¢(ay Xw;)), (60)
then for any normalized o € R, we have
1/p
p! (EX‘QTXTan¢/(aZka) (¢(a) Xw}) — ¢(a), Xw;)) |p)
—1 T~T . |2P s T * T 2p\ 1/2P

<p @ﬂaX%M EHM%XWMWM&W—W%X%»!> (61)

» 1/2p

<p! (EX‘aTXTanIQp) 1/2p . (EX’aZX('w;f B wj)‘z )

where the first inequality comes from the Cauchy-Schwarz inequality. Furthermore, a’ X belongs to the Gaussian
distribution and thus is a sub-Gaussian random vector as well. Then, from Definition 1, we have

2 1/210
(Bx|a? XTa,[*) "™ < @)1 X anl, < 20)2 a2,

(62)
% 2 1/2p *
and  (Ex|a? X (w; —w))[*) " < (20)"2anls - ] — ;).
Then, we have
1/p
(EX|aTXTan¢ (@ Xwy) (¢(al Xw?) — ¢(al Xw;)) }”)
L apllan3 - flw - wjll 63)
3201(A) Nlwj —wjo.
Therefore, from Definition 2, z,, (k, j) belongs to the sub-exponential distribution with
Iznlls, < 207 (A) - [lw] — w;]2. (64)

Recall that each node is connected with at most § other nodes. Hence, for any fixed z,, there are at most (1 + §2)
(including z,, itself) elements in {zz }l € Qt} are dependant with z,,. From Lemma 7, the moment generation function of
Znth (zn, — Ex z,,) satisfies

s nen, (Fn—Exzn) £ ,C(1467)[Qs” (65)

]Exe

By Chernoff inequality, we have

(66)

eC(148%)[Q]s>
6|Qt |ts

Prob{Hmlt| Z (zn(k,j) — IElen(lc,j))H2 >t

ne,

for any s > 0.
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Lets =t/(C(1+6%)||znl3,) and t = (1+5|2S){f10gN |20l ¢, » we have
1 ) , 1+ 02)dlog N .
[ 3 thd) - Exza) |, <0/ 0B R (4) - o s
ned; ’ (67)
1+ 02)dlog N
<cap(ay | THIINEN ey,
62|
with probability at least 1 — N,
In conclusion, by selecting £ = 5 in Lemmas 8 and 9, we have
dfa 8fsz H H :
: : n(k,9) = Exczn(k, )|
Hawk 8wk ZZKQ |Q | o j) X% ( J) 2
(68)
14 62)dlog N .
<Cai(a) M W W
|€2:]
with probability at least 1 — ( %)d. O
A.3. Proof of auxiliary lemmas for regression problems
A.3.1. PROOF OF LEMMA 5
Proof of Lemma 5 . For any normalized o € R%4, the lower bound of V2 fq, (W) is derived from
K 2
T2 * T T T *
P 2
(69)

3 Hanllz 2 = o1 (A)
—K2|Q | 11k24 12 7 11K29 K2’
ned;

where the last inequality can be derived from Lemma D.6 in (Zhong et al., 2017c¢). In spite that the error bound in (Zhong
etal., 2017c¢) is given in terms of x,, instead of X Tan, both x,, and X Tan belong to Gaussian distribution. Hence, we can
follow the similar steps in (Zhong et al., 2017c) to derive the results for Gaussian random variable X T a,, with 0 mean and
|la||3 variance.

Next, the upper bound of V? fq, (W™) is derived from
aTVQf(W*)a

K 2
s 23 x| (el X ens @l xw))

j=1
=1

, (70)

K K
1 Y ald
<gay o 2 2 |Exlef X7 au|t Ex|¢/(af Xuwj,)I* - Exla], X" a,|* - Ex|o(af Xuw, )

K K
1
S IDIPIEHCY LR LAE

which completes the proof. O



Fast Learning of Graph Neural Networks with Guaranteed Generalizability: One-hidden-layer Case

A.3.2. PROOF OF LEMMA 6

Proof of Lemma 6 . The second-order derivative of fq, is written as
oy o

8wj18wj2 8wj18wj2

Km' D Ex(XTan)(X )" |/ (al Xw;, ) (af, Xwj,) - ¢/ (af Xwj, )¢/ (af Xw},)]

(W)
(71
K2|Q| Z Ex(X"a,)(X"a,)" (¢ (al Xw;,) — ¢/ (al Xw?)) ¢ (af Xw;,)
B m > Ex(X"an)(X"an)"¢/(a Xwj)(¢/(ag Xw],) = ¢'(ay Xwy,)).
ne
For any normalized o« € R?, we have

‘aT[ anQt W) — anQt

awjl aw]é awjl awjz

W

1 *
<l s 22 Bx(eT X ) (¢ (@] Xwy,) — o (@] X))o (] Xuwy,)
ne,

1 / % / k /
+ ‘m Z EX(GTXTGTL)2¢ (anwjl)(qﬁ (avTLXU’jg) —¢ (agijz))‘ (72)

(ag Xwj,) = ¢ (a;, Xw},)

K2|Q | Z IEX|aTXTan’

Z Ex |aTXTan‘
ne,

TXw ) QS/(O’ZXU)J'Q) .

K2|Q|

It is easy to verify there exists a basis such that B = {a, 8,7, af, -,z } with {e, 3,7} spanning a subspace that

. . T
contains o, w;, and w}fl. Then, for any XTan € R%, we have a unique z = [zl 29 - Zd] such that

XTa, =+ 2B+ z3y+ -+ zdaj‘.
Also, since X "a,, ~ N(0,]||a,||31,), we have z ~ N(0, ||a,||3I4). Then, we have
IEX|aTXTan‘2 ng’(aZijl) — qu’(aZXw;fl)
=E., o009 (wiw) ¢'(w}," )| " 2

/|gz§ (w;‘IT )| la w|2 fz(z1, 22, 23)dz1dzodzs,

where £ = z1a + 293 + 237y and fz(z1, 29, z3) is the probability density function of (z1, 29, z3). Next, we consider
spherical coordinates with z; = 7 cos ¢1, zo = rsin ¢; sin ¢2, 23 = 22 = rsin ¢; cos ¢2. Hence,

EX‘aTXTan|2

¢ (an Xwj,) — ¢ (ay Xw;,)

(73)
= / / / ¢/ (w] ) — ¢/(W;IT )| |rcosn|® - fz(r, é1, ¢2)r? sin ¢rdrdeg des.
It is easy to verify that ¢’ (w£ %) only depends on the direction of & and
1 _ #f+ad+ad 1 __ 2
fz(ridn,dg) = —————e 2enlB — _— _— ¢ 2lani3

3 3
(27lan|3)? (27|an]3)?
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only depends on r. Then, we have
2 *
EX|aTXTan‘ qS’(aZijl) —qS’(aZijl)

:///|¢’(w;‘-r1 (z/r)) — gzﬁ'(w;lT(i/r)ﬂ |rcosgr|? - fz(r)r? sin ¢y drdg,de,

27
:/ 4fz / / | cos ¢1]? - sin ¢y - |¢)( (i/r))fgb’(wh (cc/r))|d¢1d¢2
<Slanlg [ rnir [ [ siwon 10/ (wh@/0) - ¢ (" @) ldondsn

=3[|an|3 - Ex, 2oz |6 (w] @) — & (w], " 7))

=3]la, 3 - Ex|¢' (af Xw;,) — ¢/ (af Xw},)|

(74)

Define a set A; = {:B|(w;f1T:c)(wj1Tw) < 0}. If x € A4, then w;flT:B and w;, Tz have different signs, which means the

value of ¢’ ('w;f1 x) and ¢/ (wlex) are different. This is equivalent to say that

1, ife e A
"(wha) — ¢ (wh, "x)| = ’ .
o) o'ty T = T
Moreover, if x € A1, then we have

x T

x| <jwj," @ —w;, T@| < wj, —wy, |-l

Define a set A5 such that

wt Tz wi —w;
./422{:13 wi, = _ [lw], mll}:{%w;1

[, [zl = [l |

[ w3, — wy‘lll}
w3,

m,w;l‘ =~
Hence, we have that
Eo|¢'(w! ) — ¢ (w}, " ®;,)| = Prob(z € A;) < Prob(z € Ay).

Since  ~ N (0, 1), 0z v belongs to the uniform distribution on [—7, 7], we have

T — arccos Hwﬁliull‘“ !
w}
Prob(x € A) = =
Y
wi —w,;
= tan(m — arccos I, - jl”)
m [[w, |
wi —w;
~ cot(arccos I3, 1 H)
™ w3,
Sg ||w;<1 _*wjl ”
T il

Hence, (81) and (79) suggest that

Ex|¢' (af Xwj,) — ¢/ (al Xw?)| <

Then, we have
Ex|a”XTa,|* |/ (al Xw;,) — ¢/ (al Xw},)
=3|lanll3 - Ex|¢' (af Xw;, ) — ¢/ (af Xw},)|

6llanl llws, —ws |l

@ [ w3, ||2

(75)

(76)

(77)

(78)

(79)

(80)

81
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All in all, we have

0? fQ 82fQ
2 2 * < t _— Je *
192 o, (W) = V2 fo, (W), _ZZHawﬁawh W)~ Gw 0w, W |,
2
<K?max 5 .faﬂt -(W *%(W*)‘
Ju.gz 10w, Owj, w;, OWj, 2 (82)
e 2l wjls
- ™ i il
it =Wl
O

A.3.3. PROOF OF LEMMA 7

Proof of Lemma 7 . According to the Definitions in (Janson, 2004), there exists a family of {(X;, w;)};, where X; C X
and w; € [0,1], such that Zj w; anj cx,; Tn; = 25:1 Ty, and Zj w; < dx by equations (2.1) and (2.2) in (Janson,
2004). Then, let p; be any positive numbers with ) ;pj = 1. By Jensen’s inequality, for any s € R, we have

N ps X VWi ox.
e o1 — o2 Pipy Xi < E pjeri 7, (83)
J

where X; = Zmnj cx; Tn-

Then, we have

N SwJ'X, ﬂrn
EX@SZHZI Tn SEX E p]e Pj E— E p] HEX@ Pj J
J X

cw?
< ij H Z (84)
clx; \wj 2

< ije ’3
J

w; | X2

—=L—L—— then we have
> wil X512

Letp; =

ExesTioan < 3,0 (S min )2 _ o( 2wl ?)'s (85)
J

By Cauchy-Schwarz inequality, we have

(ij|Xj\1/2)2§ijij|le <dxN. (86)
7 ; 7

Hence, we have
N 2
EX@S > ne1Tn < ecdx Ns ) (87)
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B. Proof of Theorem 2
Recall that the empirical risk function in (4) is defined as
. R 1
win: - fo(W) =q; > —ynlog (9(W3al X)) — (1 - yn)log (1 - g(W;al X)). (88)
neQ

The population risk function is defined as
fa(W) :=Ex y, fo(W)

“ExEy, x| 151 >~y log (9(W:al X)) = (1 - ya)log (1 - g(W;al X))

1
9 =, (89)
1 . .
=Ex 1o > —g(W*al X)log (9(W;al X)) — (1 — g(W*;al X)) log (1 — g(W;al X)).
ne)

The road-map of proof for Theorem 2 follows the similar three steps as those for Theorem 1. The major differences lie
in three aspects: (i) in the second step, the objective function fq, is smooth since the activation function ¢(+) is sigmoid.

Hence, we can directly apply the mean value theorem as V fq, (W ®)) = (V2 fq, (‘//1\/'(t))7 W® — W*) to characterize
the effects of the gradient descent term in each iteration, and the error bound of V2 th is provided in Lemma 10; (ii) the
objective function is the sum of cross-entry loss functions, which have more complex structure of derivatives than those
of square loss functions; (iii) as the convergent point may not be the critical point of empirical loss function, we need to
provide the distance from the convergent point to the ground-truth parameters additionally, where Lemma 11 is used.

Lemmas 10 and 11 are summarized in the following contents. Also, the notations < and 2 follow the same definitions as in
(27). The proofs of Lemmas 10 and 11 can be found in Appendix B.1 and B.2, respectively.

Lemma 10. For any W that satisfies

202(A)
W-WwH| < —2 L 90
|| |< o ©0
then the second-order derivative of the empirical risk function in (88) for binary classification problems is bounded as
2(1—e0) » 27 2
WUl(A) X Vifa, (W) =2 0i(A). ©On
provided the number of samples satisfies
Q4] 2 e5%(1 + 6*)K?y0 1 (A)KSdlog N. (92)

Lemma 11. Ler th and fq, be the empirical and population risk function in (88) and (89) for binary classification
problems, respectively, then the first-order derivative of fq, is close to its expectation fq, with an upper bound as

(1+46%)dlogd

IV fo, (W) = Vfo,(W)l2 £ K*07(A) o 93)
with probability at least 1 — K2N 10,
With these preliminary lemmas, the proof of Theorem 2 is formally summarized in the following contents.
Proof of Theorem 2. The update rule of W) is
WD —w® _ v i, (WD) + W — wt-b) (94)
Since ﬁ\/ is a critical point, then we have V fQ . (1/7[\/') = 0. By the intermediate value theorem, we have
WD = WO — 2 fo, (W (WO — W) ©3)

+ ﬁ(W(t) _ W(t—l))
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where ﬁ\/(t) lies in the convex hull of W*) and ﬁ\/

Next, we have

WD w1 avrf,, (W) 4 81 BI w —w* 96
® _ (t—1) | (96)
w® —w I wt-b _w
~ /\(f)
Let P(B) = [I_nvzfﬁt?)v )+ 81 5011,50 we have
w D W*] ‘ w _wr
o || =1PO | | e ]
H[W()—W ) wi-b _w
Then, we have
WD — W, SIP(B) || W — W 97)

At
Let \; be the i-th eigenvalue of V2 fq, (W( )), and J; be the i-th eigenvalue of matrix P(/5). Following the similar analysis

in proof of Theorem 1, we have
6:(0) > 6;(B), for VB € (0,(1—nX)?). (98)

Moreover, d; achieves the minimum 0} = |1 — +/n);| when 5 = (1 — \/77/\1-)2.
Let us first assume W (") satisfies (90) and the number of samples satisfies (92), then from Lemma 10, we know that

2(1 — eo)oi(A)

0< <\ <02(A).

11k2yK?
We define v, = 2(11%)&2&‘4) and v = 07 (A). Also, for any gq € (0, 1), we have
* * 71 1_60
=||P =1—/—=1—/=—— 99
V(ﬁ) ” (ﬂ )H2 272 1152,}/}'{ (99)
Let 5 = 0, we have
1—60
0) = |A0)s =1 — -2
0) = A0 =1~ o

Hence, with probability at least 1 — K2 - N~10, we have

* 1 *
WD =W < (17 ) IW O =W, (100)

provided that W satisfies (25), and
| 2 eg*Kk2y(1 + 6%)o1(A) K dlog N. (101)
According to Lemma 4, we know that (90) holds for w O if
Q4] > 5 2K%2(1 + 6%)K3dlog N. (102)
Combining (101) and (102), we need Q| > 5 2637%(1 + 62)o}(A)K3dlog N.

Finally, by the mean value theorem, we have

Joo (W) < fo, (W) + ¥ fo, (W) (W~ W) + (W W)V fo, (W)(W — W) (103)
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for some W between W and W*. Since W is the local minima, we have fa, (ﬁ\/) < fa,(W™). Thatis to say

R —~ 1 ~ N~ o~
Vo (W) (W = W) 4 S(W = W TV fo, (W)W = W*) <0 (104)
which implies
1 ¢ A7 A7 * 7 * 17 *
§IIV2fnt(W)II2HW = W3 < Vo, (W)W — W |s. (105)
From Lemma 10, we know that
V2 fa, W)y > M(,'2(14). (106)
i ~ 11k2yK?

From Lemma 11, we know that

(1+0%)dlog N

IV fa, (W)|l2 = [V fo, (W") = Vo, (W2 S K*07(A) 0] (107)

Plugging inequalities (106) and (107) back into (105), we have
W = Wl 5 (1 - eo) ety [ LS ITOE (108)
O

B.1. Proof of Lemma 10

The roadmap of proof for Lemma 10 follows the similar steps as those of Lemma 2 for regression problems. Lemmas 12, 13
and 14 are the preliminary lemmas, and their proofs can be found in Appendix B.2. The proof of Lemma 10 is summarized
after these preliminary lemmas.

Lemma 12. The second-order derivative of fq, at the ground truth W™ satisfies

40t (A) 2 o _ 01(A)
S0 p < W*) <
112y K2 — Vifa (W) =

I (109)
Lemma 13. Suppose fq, is the population loss function with respect to binary classification problems, then we have
IV fa, (W) = V2 fa,(W¥)[l2 S [|W — W72. (110)

Lemma 14. Suppose th is the empirical loss function with respect to binary classification problems, then the second-order
derivative of fq, is close to its expectation with an upper bound as

(1+0%)dlogd

IV2fa, (W) = V2 fa, (W2 S K01 (A) o] (i
with probability at least 1 — K2N 10,
Proof of Lemma 10 . For any W, we have
IV2 fa, (W)ll2 = V2 fa,(WH)l2| < [V fa,(W) — V2 fa, (W7)||2. (112)
That is
IV2 fo, (W)ll2 < V2 fo, W)z + V2 fo, (W) = V2 fo (W) 2 (113)

and  [[V*fo,(W)ll2 > [ V2 fo, (W2 = [V* fo, (W) = V2 fo, (W7)]|2
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Then, for any W that satisfies |[W — W*|| < ﬁ:i(ﬁ{)z , from Lemmas 12 and 13, we have

2

W o1 (A) 2 V2 fq, (W) =<

o?(A). (114)

Next, we have

IV2 fo, (W)l < IV fo, (W) ]l2 + IV fo, (W) = V2 fa, (W)]|

. R (115)
and  ||V2fo,(W)ll2 2 [|V2 fo,(W)ll2 — |V fo, (W) — VZfa,(W)]2
Then, from (114) and Lemma 14, we have
2(1—e0) » 27 2
T2 1A 2V o (W) X ai(4) (116)
provided that the sample size Q| > ;% (1 + §2)x%vy0f (A)KSdlog N. O
B.2. Proof of auxiliary lemmas for binary classification problems
B.2.1. PROOF OF LEMMA 12
Proof of Lemma 12 . Since Exy,, = go(W™; a,,), then we have
P fo,(W") _p 0 fo, (W)
ow; 0wy, X 6w*-8w’,;
1 (117)
1o T xT 100 Ty T T T _\T
K2|Q | g W an ( —g(W,an))¢ (w] a )¢ (wk a )( a )( a )
ney
for any j, k € [K].
Then, for any o = [alT, al, - aIT<]T € R% with aj € R?, the lower bound can be obtained from
TxT T T 2
e el (BT
(8 Q, o =Ly -
K2|Qt| neQ, W an)( 79(W ;an))
4 2 11
| |n€Q j=1
< 402(A)
T1lk2yK?2
Also, for the upper bound, we have
T T 5T 2
- ( jlaTX an¢' (w *Xan)>
K2|Q| Z g(W™; an)( —g(W ;an))
K T T / xT T 2
(Zj po; X ang' (wi X an>) (119)

|Qt| 2

=, Zh 1¢< s TXTan) Yk (1 o(wh, "X ay))
X Z ( TXTG,7,)2 Zj(zl (d)/(w;TXTan))2 |
- |Qt| nGQt ji=1 ¢( j TXTan) Zg:1 (1 - ¢('w;2TXTan))
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For the denominator item, we have

K K K
> dwi "X an) Y (1-¢w;, "X an)) > d(w;" X an) (1 - ¢(w;" X ay))
J1=1 J2=1 Jj=1
K
— Z <z§’('w*TXTan)
=1
K
>42qzﬁ’(w*TXTan)2
j=1
Hence, we have
1 K 1
TV fo,(WHa < EX4\Qt| Z 2:(01;"1)(1%%)2 < Zg%(A).
neQ j=1

B.2.2. PROOF OF LEMMA 13

Proof of Lemma 13 . Recall that

> fa, (W)
8fwj8wk
W - 1-g(W*:a, , ,
"LEQ n bl n
and
52 w gW*;a, 1—-g(W*:a, ,
Bt EX g : 5 (7 a) * T awrncgy )] X o (K e (X o)
/'LEQ b n

K|Qt| Z < W an) + 1—g(W*;an))(b//(w}“XTan)(XTan)(XTan>T.

= gW;a,) 1-9g(W;a,)

Let us denote A; (W ay,) as

%(Q(W*ﬂln) + (1 g(W*san) )¢/( TXTa'n)dj/(w{XTan)

9>*(Wsan) 1( g(Wa) n))? ( )
1 g(W™;a, 1—g(W*;a, 1 T T L A
— L + - w: X" a,), when =k;
Ajr(Wia,) = w(— Lvay T ey )9 (W) ) J

o (U)o e ) ¢ (w! X T a,) ¢ (wf X an), when j # k.

Further, let us define M (W a,,) = max {% 93(Vl£;an) ’ % (l—g(V%f;an)V‘ ’ % 92(Vi1/;an) ’ % ((1—9(‘71";an))2 }

Then, by the mean value theorem, we have

OA;

Aje(Wian) — Ajx(Wian) = Z< B,

=1

(W a,),w; —wj).

OA;

Je, » We have

For

DA

. (W;a,) = Bjxi(W;a,) X a,

(120)

(121)

(122)

(123)

(124)

(125)

(126)
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with
W 2 1 2 1 1 1 1 1
|B‘,k,l<W;an)|§7~7+7 i T +— —
J K p(Wia,) K°(1-9(W;a,))? K2g(Wia,) K (1-gW;a,))? (127
<4M(W;ay,).

forall j € [K],k € [K],1 € [K].
Therefore, for any o € R¥?, we have
TV fo,(W)a

T 8th

7 0w 0wy, (W)ak‘

Z|B et ( W a,)|(w, —wi, X a,)(a;, X a,)(ag, X a,)

nelQ| j=1 =1
) K K , K o 1 K 5\ 2
=100 SN (ZEX|Bj7k,l(W;an)|2> (ZEX]<wl —w}, X" a,)(aj, X a,) (o, X a,))| )
nel| j=1k=1 “i=1 =1

(a)
S| W — Wl

SIW = W72,
(128)
where (a) comes from Lemma 5 in (Fu et al., 2018). O
B.2.3. PROOF OF LEMMA 14
Proof of Lemma 14 . Recall that
0*fo,(W)
awjawk
-y T T T T T T \T (123)
n "(w; X ! X X X
o)) (e + T )W X a)d ol X7 a,) (X a,) (X a, )",
and
32135%( L —yn 1o TyT  \2(yT T T
1y (130)
—Jn " T T T T T
K|Qt|n§ ( SWian 1—g(W;an)>¢ (10 X7 an) (X)X n)
When y,, = 1 and j # k, we have
0% fa,(W o'( TXTan)qb/( TXTan) T T \T
awjawk K2|Qt| 2 TWaL) (X"a,)(X"a,)", (131)



Fast Learning of Graph Neural Networks with Guaranteed Generalizability: One-hidden-layer Case

and
<;S’(wJTXTan)¢’(w£XTan) _gb(w]TXTan)(l — gb(w]TXTan))qS(w{XTan)(l —d(wrXTa,))
g*(W:an) B (£ 25, o(w] X a,))’
<R p(wl X a,)(1 - ¢(wl X" a,))p(wf X a,)(1 — p(w] X" a,)) (132)
- o(wl X" a,)p(wf X a,)

=K*(1-¢(w! X" a,))(1 - p(w} X" a,)) < K*.

When y,, = 1 and j = k, we have

02 1 ¢'(wfX"a,)¢ (wl X a 1 ¢"(wlfX"a
OhW)_ 3 [ M R ) | L ) (X a) (X, (3)
dw; 0wy, IQt| = 2(W;a,) K g(W;a,)
and
\¢"<w;~f X'an)| _ d(wiX"an)(1 - ¢(wiX"a,)) - [1 - 20(wi X an)| _ (134)
9(W;a,) 22l o(wf X a,) o
Similar to (132) and (134), we can obtain the following inequality for y,, = 0.
"(wfX"a,)¢' (wlfX"a, "(wiX"ay,
¢/ (w )¢’ (wy : )g 2 and ¢w; X" an) <K. (135)
(1-g(W;a,)) 1-9(Wsa,)

Then, for any o € R?, we have

anQ ( 1—yn , T , T
T t T T
“ W |Qt| 2 [K?( 2(W: an>+<1—g<w;an>>2)¢’(wa an)¢/ (W X" az)
_ ]l{j:k} _ Yn 1- Yn i T wvT T T 2 136
K ( oWiay) " 1—g(W;an))¢ (w; X “n)} (@ X" ay) (136)

oI XTa )2
g Hjp(ayp) (" X" ay)”.
neQ,

IQtI

Next, we show that H; x(a,) - (@” X" a,)? belongs to the sub-exponential distribution. For any p € N*, we have

(Ex’y [’ jk(@n) - (aTXTan)z‘le/p S(EX[‘4(aTXTan)2|pD1/p

(137)
<8llan|l3p < 807 (A)p
Hence, H; 1.(a,) - (T X a,)? belongs to the sub-exponential distribution with || H; x(a,)(a” X a,)?||,, = 803(A).
Then, the moment generation function of H; ;(a,) - (X Tan) can be bounded as
]EesHj,k(a,,L).(aTXTa,,L)Z < eC’af(A)s2 (138)
for some positive constant C and any s € R. From Lemma 7 and Chernoff bound, we have
9 fa, (W) 9 fa,(W) (1+ 62)dlog N
T : - L < Coi(A)y]| —2—2— 139
« ( Ow; 0wy, Ow; 0wy, )a < Coi(4) |2] (139)
with probability at least 1 — N~¢. By selecting £ = m Lemmas 8 and 9, we have
0*fo,(W)  9*fa,(W) (1+6%)dlog N
: - : <Coi(A)y | ——t2— 140
Ow 0wy, Ow;0wy, ||~ oi(4) €2 (0
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with probability at least 1 — (2)".

In conclusion, we have

0 fo, (W) 9%fa, (W)

K K
IV fo, (W) — V2 fo, (W 2};

ow j0wy, ow; 0wy,
(141)
1+ 62)dlogd
<CK2 Q(A) ( + ) 0og
€|
with probability at least 1 — ( g)d. O
B.2.4. PROOF OF LEMMA 11
Proof of Lemma 11. Recall that the first-order derivative of th (W) is calculated from
afﬂ w g(W;an) 1o T T T
+ — ¢ wX an X ay,. (142)
ij K|Qt| 26;29 W a, ( 9(W;a,)) (w; )
Similar to (134), we have
(b’('w;fXTan) _ d(wlXTa,)(1 - ¢(wlX"ay)) K (143)
9(W;ay) LYK swlXTa,)

Similar to (137), for any fixed @ € R4¥, we can show that random variable angtiu(,JW) belongs to sub-exponential

distribution with the same bounded norm up to a constant. Hence, by applying Lemma 7 and the Chernoff bound, we have

(1 +62)dlog N

|V fo, (W) = Vo, (W) < K0} (4) o (144)
t
with probability at least 1 — (%)d. O
C. Proof of Lemma 1
Proof of Lemma 1. Let A denote the adjacency matrix, then we have
~ 2TAz _ 1T A1 Egzl on
o1(A) = max g > 171 =1+ N (145)

Where dp, denotes the degree of node v,,. Let z be the eigenvetor of the maximum eigenvalue o (A). Since 01(A) =
~1/2AD~'/? and D is diagonal matrix, then z is the eigenvector to o1 (A) as well. Then, let n € [N] be the index of
the largest value of vector z,, as z,, = ||z||o0, We have

~T

- A .
Ul(A): ( Z)n — a,z < Ha”le”OO =144. (146)
Zn, Zn Zn,
where a,, is the n-th row of A.
Since D is a diagonal matrix with ||D|2 < 1 + §, then we can conclude the inequality in this lemma. O

D. Proof of Lemma 4

The proof of Lemma 4 is divided into three major parts to bound I;, I and I3 in (153). Lemmas 15, 16 and 17 provide the
error bounds for I, Is and I3, respectively. The proofs of these preliminary lemmas are similar to those of Theorem 5.6 in
(Zhong et al., 2017b), the difference is to apply Lemma 7 plus Chernoff inequality instead of standard Hoeffding inequality,
and we skip the details of the proofs of Lemmas 15, 16 and 17 here.
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Lemma 15. Suppose M is defined as in (7) and M o is the estimation of M 5 by samples. Then, with probability 1 — N 10,
we have
(1+42)dlog N

| M — Mo < 0F(A) a

(147)

provided that |Q| > (1 + 6%)dlog* N.

Lemma 16. Let V be generated by step 4 in Subroutine 1. Suppose Mg(‘A/, ‘7, ‘7) is defined as in (9) and ]/\23(‘7, ‘7, ‘7)
is the estimation of M 3(V , V', V') by samples. Further, we assume V' € R>¥ is an orthogonal basis of W* and satisfies

T
|[VVT — V'V || <1/4. Then, provided that N > K°log® d, with probability at least 1 — N~'°, we have

)K3log N
€2

— & o o PP > (1+ 62
|M3(V,V, V)~ M3(V,V,V)| <03 (A) (148)

Lemma 17. Suppose M is defined as in (6) and M 1 is the estimation of M, by samples. Then, with probability 1 — N 10,
we have

(14+62)dlog N

| M — M| S o7 (A) o

(149)
provided that |Q| > (1 + 6%)dlog® N.

Lemma 18 ((Zhong et al., 2017b), Lemma E.6). Let V € R X be an orthogonal basis of W* and V be generated by
step 4 in Subroutine 1. Assume | My — Ms||2 < o (M3)/10. Then, for some small €y, we have

T | My — AMQH
T _ < )
Vve=vvil < = o)

(150)
Lemma 19 ((Zhong et al., 2017b), Lemma E.13). Let V € R¥*K be an orthogonal basis of W* and V be generated by

step 4 in Subroutine 1. Assume M can be written in the form of (6) with some homogeneous function o1, and let M| be
the estimation of M1 by samples. Let & be the optimal solution of (11) withw; = Vu;. Then, for each j € [K], if

T o= [VVT -V < —
b ‘T VK
N ~T__ 1
Ty = ||'u,J -V ’ijQ < 7/{‘/2 I (151)

_ 1
T3 =My — M|z < Z||M1||27

then we have s )
[wslla = 85| < (6K (T2 + T2) + 2K 3T W (152)

Proof of Lemma 4. we have
lw; = @ Vslle <|w] = lw; 12Va; + lw;|:Va; -8V,

<[ew; = sV || [10s112 Vs - @V |

<0 1285 = Vgl + [l 1o = & Vsl (153
. SS5T ST ~ ~

<or(|fw; = VV @ o + [V @) = @yl2) + [ w2 — &

Z:(Tl(Il +12) +I3

From Lemma 18, we have

| My — Ms||s

154
o) (154)

j— AAT—* T > T
L =|w; -VV wj|s <[[VV' = VV |5 <
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where the last inequality comes from Lemma 15. Then, from (7), we know that

< i ey < *
o1 (M2) S min[w] 2 S o (W*), (155)

From Theorem 3 in (Kuleshov et al., 2015), we have

K

R0,V 0) - MV VT
O'K(W*)H 3( ) ) ) 3( ) ) )”2 (156)

T R
L=V w;-ujl2 S

To guarantee the condition (151) in Lemma 19 hold, according to Lemmas 15 and 16, we need |Q| = x3(1 + §%) Kdlog N.
Then, from Lemma 19, we have

Iy = (K;4K3/2(11 L)+ 2KV M, — M1|\) W (157)

Since d > K, according to Lemmas 15, 16 and 17, we have

K3(1+ 0%)dlog N
€2

lw) — &; Vg2 < HGof(A)\/ W™ (158)

provided || > (1 + 62)dlog* N. O
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