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A. Proof of Theorem 1
In this section, before presenting the proof of Theorem 1, we start with defining some useful notations. Recall that in (3),
the empirical risk function for linear regression problem is defined as

min
W

: f̂Ω(W ) =
1

2|Ω|
∑
n∈Ω

∣∣∣yn − g(W ;aTnX)
∣∣∣2. (22)

Population risk function, which is the expectation of the empirical risk function, is defined as

min
W

: fΩ(W ) = EX
1

2|Ω|
∑
n∈Ω

∣∣∣yn − g(W ;aTnX)
∣∣∣2. (23)

Then, the road-map of the proof can be summarized in the following three steps.

First, we show the Hessian matrix of the population risk function fΩt is positive-definite at ground-truth parametersW ∗

and then characterize the local convexity region of fΩt nearW ∗, which is summarized in Lemma 2.

Second, f̂Ωt is non-smooth because of ReLU activation, but fΩt is smooth. Hence, we characterize the gradient descent

term as ∇f̂Ωt(W
(t)) = 〈∇2fΩt(Ŵ

(t)
),W (t) −W ∗〉+

(
f̂Ωt(W

(t))− fΩt(W
(t))
)
. During this step, we need to apply

concentration theorem to bound ∇f̂Ωt to its expectation∇fΩt , which is summarized in Lemma 3.

Third, we take the momentum term of β(W (t) −W (t−1)) into consideration and obtain the following recursive rule:[
W (t+1) −W ∗

W (t) −W ∗

]
= L(β)

[
W (t) −W ∗

W (t−1) −W ∗

]
. (24)

Then, we know iterates W (t) converge to the ground-truth with a linear rate which is the largest singlar value of matrix
L(β). Recall that AGD reduces to GD with β = 0, so our analysis applies to GD method as well. We are able to show the
convergence rate of AGD is faster than GD by proving the largest singluar value of L(β) is smaller than L(0) for some
β > 0. Lemma 4 provides the estimation error of W (0) and sample complexity to guarantee ‖L(β)‖2 is less than 1 for
t = 0.
Lemma 2. Let fΩt be the population risk function in (23) for regression problems, then for anyW that satisfies

‖W ∗ −W ‖2 ≤
ε0σK

44κ2γK2
, (25)

the second-order derivative of fΩt is bounded as

(1− ε0)σ2
1(A)

11κ2γK2
I � ∇2fΩt(W ) � 4σ2

1(A)

K
I. (26)

Lemma 3. Let f̂Ωt and fΩt be the empirical and population risk functions in (22) and (23) for regression problems,
respectively. Then, for any fixed pointW satisfies (25), we have 6

∥∥∥∇fΩt(W )−∇f̂Ωt(W )
∥∥∥

2
. σ2

1(A)

√
(1 + δ2)d logN

|Ωt|
‖W −W ∗‖2, (27)

with probability at least 1−K2 ·N−10.

Lemma 4. Assume the number of samples |Ωt| & κ3(1 + δ2)σ4
1(A)Kd log4N , the tensor initialization method via

Subroutine 1 outputsW (0) such that

‖W (0) −W ∗‖2 . κ6σ2
1(A)

√
K4(1 + δ2)d logN

|Ωt|
‖W ∗‖2 (28)

with probability at least 1−N−10.

6We use f(d) & ( or .,h)g(d) to denote there exists some positive constant C such that f(d) ≥ ( or ≤,=)C · g(d) when d is
sufficiently large.
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The proofs of Lemmas 2 and 3 are included in Appendix A.1 and A.2, respectively, while the proof of Lemma 4 can be
found in Appendix D. With these three preliminary lemmas on hand, the proof of Theorem 1 is formally summarized in the
following contents.

Proof of Theorem 1. The update rule ofW (t) is

W (t+1) =W (t) − η∇f̂Ωt(W
(t)) + β(W (t) −W (t−1))

=W (t) − η∇fΩt(W
(t)) + β(W (t) −W (t−1)) + η(∇fΩt(W

(t))−∇f̂Ωt(W
(t))).

(29)

Since∇2
Ωt

is a smooth function, by the intermediate value theorem, we have

W (t+1) = W (t) − η∇2fΩt(Ŵ
(t)

)(W (t) −W ∗)

+ β(W (t) −W (t−1))

+ η
(
∇fΩt(W

(t))−∇f̂Ωt(W
(t))
)
,

(30)

where Ŵ
(t)

lies in the convex hull ofW (t) andW ∗.

Next, we have[
W (t+1) −W ∗

W (t) −W ∗

]
=

[
I − η∇2fΩt(Ŵ

(t)
) + βI βI

I 0

][
W (t) −W ∗

W (t−1) −W ∗

]
+ η

[
∇fΩt(W

(t))−∇f̂Ωt(W
(t))

0

]
. (31)

Let L(β) =

[
I − η∇2fΩt(Ŵ

(t)
) + βI βI

I 0

]
, so we have

∥∥∥∥[W (t+1) −W ∗

W (t) −W ∗

]∥∥∥∥
2

= ‖L(β)‖2

∥∥∥∥[ W (t) −W ∗

W (t−1) −W ∗

]∥∥∥∥
2

+ η

∥∥∥∥[∇fΩt(W
(t))−∇f̂Ωt(W

(t))
0

]∥∥∥∥
2

.

From Lemma 3, we know that

η
∥∥∥∇fΩt(W

(t))−∇f̂Ωt(W
(t))
∥∥∥

2
. ησ2

1(A)

√
(1 + δ2)d logN

|Ωt|
‖W −W ∗‖2. (32)

Then, we have

‖W (t+1) −W ∗‖2 .

(
‖L(β)‖2 + ησ2

1(A)

√
(1 + δ2)d logN

|Ωt|

)
‖W (t) −W ∗‖2

:hν(β)‖W (t) −W ∗‖2.

(33)

Let ∇2f(Ŵ
(t)

) = SΛST be the eigen-decomposition of∇2f(Ŵ
(t)

). Then, we define

L̃(β) :=

[
ST 0

0 ST

]
L(β)

[
S 0
0 S

]
=

[
I − ηΛ + βI βI

I 0

]
. (34)

Since
[
S 0
0 S

] [
ST 0

0 ST

]
=

[
I 0
0 I

]
, we know L(β) and L̃(β) share the same eigenvalues. Let λi be the i-th eigenvalue

of ∇2fΩt(Ŵ
(t)

), then the corresponding i-th eigenvalue of L(β), denoted by δi(β), satisfies

δ2
i − (1− ηλi + β)δi + β = 0. (35)

Then, we have

δi(β) =
(1− ηλi + β) +

√
(1− ηλi + β)2 − 4β

2
, (36)



Fast Learning of Graph Neural Networks with Guaranteed Generalizability: One-hidden-layer Case

and

|δi(β)| =

{√
β, if β ≥

(
1−
√
ηλi
)2
,

1
2

∣∣∣(1− ηλi + β) +
√

(1− ηλi + β)2 − 4β
∣∣∣ , otherwise.

(37)

Note that the other root of (35) is abandoned because the root in (36) is always no less than the other root with |1− ηλi| < 1.
By simple calculations, we have

δi(0) > δi(β), for ∀β ∈
(
0, (1− ηλi)2

)
. (38)

Moreover, δi achieves the minimum δ∗i = |1−
√
ηλi| when β =

(
1−
√
ηλi
)2

.

Let us first assumeW (t) satisfies (25), then from Lemma 2, we know that

0 <
(1− ε0)σ2

1(A)

11κ2γK2
≤ λi ≤

4σ2
1(A)

K
.

Let γ1 =
(1−ε0)σ2

1(A)
11κ2γK2 and γ2 =

4σ2
1(A)
K . If we choose β such that

β∗ = max
{

(1−√ηγ1)2, (1−√ηγ2)2
}
, (39)

then we have β ≥ (1−
√
ηλi)

2 and δi = max
{
|1−√ηγ1|, |1−

√
ηγ2|

}
for any i.

Let η = 1
2γ2

, then β∗ equals to
(

1−
√

γ1

2γ2

)2

. Then, for any ε0 ∈ (0, 1/2), we have

‖L(β∗)‖2 = max
i
δi(β

∗) = 1−
√

γ1

2γ2
= 1−

√
1− ε0

88κ2γK
≤ 1− 1− (3/4) · ε0√

88κ2γK
. (40)

Then, let

ησ2
1(A)

√
(1 + δ2)d logN

|Ωt|
.

ε0

4
√

88κ2γK
, (41)

we need |Ωt| & ε−2
0 κ2γM(1 + δ2)σ2

1(A)K3d logN . Combining (40) and (41), we have

ν(β∗) ≤ 1− 1− ε0√
88κ2γK

. (42)

Let β = 0, we have

ν(0) ≥ ‖A(0)‖2 = 1− 1− ε0

88κ2γK
,

ν(0) . ‖A(0)‖2 + ησ2
1(A)

√
(1 + δ2)d logN

|Ωt|
≤ 1− 1− 2ε0

88κ2γK

if |Ωt| & ε−2
0 κ2γM(1 + δ2)σ2

1(A)K3d logN .

Hence, with η = 1
2γ2

and β =
(
1− γ1

2γ2

)2
, we have

‖W (t+1) −W ∗‖2 ≤
(

1− 1− ε0√
88κ2γK

)
‖W (t) −W ∗‖2, (43)

providedW (t) satisfies (25), and
|Ωt| & ε−2

0 κ2γ(1 + δ2)σ4
1(A)K3d logN. (44)

Then, we can start mathematical induction of (43) over t.

Base case: According to Lemma 4, we know that (25) holds forW (0) if

|Ωt| & ε−2
0 κ9γ2(1 + δ2)σ4

1(A)K8d logN. (45)
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According to Theorem 1, it is clear that the number of samples |Ωt| satisfies (45), then (25) indeed holds for t = 0. Since
(25) holds for t = 0 and |Ωt| in Theorem 1 satisfies (44) as well, we have (43) holds for t = 0.

Induction step: Assuming (43) holds forW (t), we need to show that (43) holds forW (t+1). That is to say, we need |Ωt|
satisfies (44), which holds naturally from Theorem 1.

Therefore, when |Ωt| & ε−2
0 κ9γ2(1 + δ2)σ4

1(A)K8d logN , we know that (43) holds for all 0 ≤ t ≤ T − 1 with probability
at least 1−K2T ·N−10. By simple calculations, we can obtain

‖W (T ) −W ∗‖2 ≤
(

1− 1− ε0√
88κ2γK

)T
‖W (0) −W ∗‖2 (46)

A.1. Proof of Lemma 2

In this section, we provide the proof of Lemma 2 which shows the local convexity of fΩt in a small neighborhood of
W ∗. The roadmap is to first bound the smallest eigenvalue of ∇2fΩt in the ground truth as shown in Lemma 5, then show
that the difference of ∇2fΩt between any fixed point W in this region and the ground truth W ∗ is bounded in terms of
‖W −W ∗‖2 by Lemma 6.
Lemma 5. The second-order derivative of fΩt at the ground truthW ∗ satisfies

σ2
1(A)

11κ2γK2
� ∇2fΩt(W

∗) � 3σ2
1(A)

K
. (47)

Lemma 6. SupposeW satisfies (25), we have∥∥∇2fΩt(W )−∇2fΩt(W
∗)
∥∥

2
≤ 4σ2

1(A)
‖W ∗ −W ‖2

σK
. (48)

The proofs of Lemmas 5 and 6 can be found in Sec. A.3. With these two preliminary lemmas on hand, the proof of Lemma
2 is formally summarized in the following contents.

Proof of Lemma 2. By the triangle inequality, we have∣∣∣ ∥∥∇2fΩt(W )
∥∥

2
−
∥∥∇2fΩt(W

∗)
∥∥

2

∣∣∣ ≤ ‖∇2fΩt(W
∗)−∇2fΩt(W )‖2,

and ∥∥∇2fΩt(W )
∥∥

2
≤
∥∥∇2fΩt(W

∗)
∥∥

2
+ ‖∇2fΩt(W

∗)−∇2fΩt(W )‖2,∥∥∇2fΩt(W )
∥∥

2
≥
∥∥∇2fΩt(W

∗)
∥∥

2
− ‖∇2fΩt(W

∗)−∇2fΩt(W )‖2.

The error bound of ‖∇2fΩt(W
∗)−∇2fΩt(W )‖2 can be derived from Lemma 6, and the error bound of∇2fΩt(W

∗) is
provided in Lemma 5.

Therefore, for anyW satisfies (25), we have

(1− ε0)σ2
1(A)

11κ2γK2
≤
∥∥∇2fΩt(W )

∥∥
2
≤ 4σ2

1(A)

K
. (49)

A.2. Proof of Lemma 3

The proof of Lemma 3 is mainly to bound the concentration error of random variables zn(j, k) as shown in (60). We
first show that zn(j, k) is a sub-exponential random variable, and the definitions of sub-Gaussian and sub-exponential
random variables are provided in Definitions 1 and 2. Though Hoeffding’s inequality provides the concentration error
for sum of independent random variables, random variables zn(j, k) with different j, k are not independent. Hence, we
introduce Lemma 7 to provide the upper bound for the moment generation function of the sum of partly dependent random
variables and then apply standard Chernoff inequality. Lemmas 8 and 9 are standard tools in analyzing spectral norms of
high-demensional random matrices.
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Definition 1 (Definition 5.7, (Vershynin, 2010)). A random variable X is called a sub-Gaussian random variable if it
satisfies

(E|X|p)1/p ≤ c1
√
p (50)

for all p ≥ 1 and some constant c1 > 0. In addition, we have

Ees(X−EX) ≤ ec2‖X‖
2
ψ2
s2 (51)

for all s ∈ R and some constant c2 > 0, where ‖X‖ψ2
is the sub-Gaussian norm of X defined as ‖X‖ψ2

=
supp≥1 p

−1/2(E|X|p)1/p.

Moreover, a random vector X ∈ Rd belongs to the sub-Gaussian distribution if one-dimensional marginal αTX is
sub-Gaussian for any α ∈ Rd, and the sub-Gaussian norm ofX is defined as ‖X‖ψ2 = sup‖α‖2=1 ‖αTX‖ψ2 .

Definition 2 (Definition 5.13, (Vershynin, 2010)). A random variable X is called a sub-exponential random variable if it
satisfies

(E|X|p)1/p ≤ c3p (52)

for all p ≥ 1 and some constant c3 > 0. In addition, we have

Ees(X−EX) ≤ ec4‖X‖
2
ψ1
s2 (53)

for s ≤ 1/‖X‖ψ1 and some constant c4 > 0, where ‖X‖ψ1 is the sub-exponential norm of X defined as ‖X‖ψ1 =
supp≥1 p

−1(E|X|p)1/p.

Lemma 7. Given a sampling set X = {xn}Nn=1 that contains N partly dependent random variables, for each n ∈ [N ],
suppose xn is dependent with at most dX random variables in X (including xn itself), and the moment generate function
of xn satisfies Exnesxn ≤ eCs

2

for some constant C that may depend on xn. Then, the moment generation function of∑N
n=1 xn is bounded as

EX es
∑N
n=1 xn ≤ eCdXNs

2

. (54)

Lemma 8 (Lemma 5.2, (Vershynin, 2010)). Let B(0, 1) ∈ {α
∣∣‖α‖2 = 1,α ∈ Rd} denote a unit ball in Rd. Then, a subset

Sξ is called a ξ-net of B(0, 1) if every point z ∈ B(0, 1) can be approximated to within ξ by some point α ∈ B(0, 1), i.e.
‖z −α‖2 ≤ ξ. Then the minimal cardinality of a ξ-net Sξ satisfies

|Sξ| ≤ (1 + 2/ξ)d. (55)

Lemma 9 (Lemma 5.3, (Vershynin, 2010)). Let A be an N × d matrix, and let Sξ be a ξ-net of B(0, 1) in Rd for some
ξ ∈ (0, 1). Then

‖A‖2 ≤ (1− ξ)−1 max
α∈Sξ

|αTAα|. (56)

The proof of Lemma 7 can be found in Appendex A.3. With these preliminary Lemmas and definition on hand, the proof of
Lemma 3 is formally summarized in the following contents.

Proof of Lemma 3 . We have

f̂Ωt(W ) =
1

2|Ωt|
∑
n∈Ωt

∣∣∣yn − g(W ;aTnX)
∣∣∣2 =

1

2|Ωt|
∑
n∈Ωt

∣∣∣yn − K∑
j=1

φ(aTnXwj)
∣∣∣2, (57)

and

fΩt(W ) = EX f̂Ωt(W ) =
1

2|Ωt|
∑
n∈Ωt

Ex
∣∣∣yn − K∑

j=1

φ(aTnXwj)
∣∣∣2. (58)
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The gradients of f̂Ωt are

∂f̂Ωt

∂wk
(W ) =

1

K2|Ωt|
∑
n∈Ωt

(
yn −

K∑
j=1

φ(aTnXwj)
)
XTanφ

′(aTnXwk)

=
1

K2|Ωt|
∑
n∈Ωt

( K∑
j=1

φ(aTnXw
∗
j )−

K∑
j=1

φ(aTnXwj)
)
XTanφ

′(aTnXwk)

=

K∑
j=1

1

K2|Ωt|
∑
n∈Ωt

(
φ(aTnXw

∗
j )− φ(aTnXwj)

)
XTanφ

′(aTnXwk).

(59)

Let us define
zn(k, j) = XTanφ

′(aTnXwk)
(
φ(aTnXw

∗
j )− φ(aTnXwj)

)
, (60)

then for any normalized α ∈ Rd, we have

p−1
(
EX
∣∣αTXTanφ

′(aTnXwk)
(
φ(aTnXw

∗
j )− φ(aTnXwj)

)∣∣p)1/p

≤p−1
(
EX
∣∣αTXTan

∣∣2p · EX ∣∣φ′(aTnXwk)
(
φ(aTnXw

∗
j )− φ(aTnXwj)

)∣∣2p)1/2p

≤p−1
(
EX
∣∣αTXTan

∣∣2p)1/2p

·
(
EX
∣∣aTnX(w∗j −wj)

∣∣2p)1/2p

(61)

where the first inequality comes from the Cauchy-Schwarz inequality. Furthermore, aTnX belongs to the Gaussian
distribution and thus is a sub-Gaussian random vector as well. Then, from Definition 1, we have(

EX
∣∣αTXTan

∣∣2p)1/2p

≤ (2p)1/2‖XTan‖ψ2
≤ (2p)1/2‖an‖2,

and
(
EX
∣∣aTnX(w∗j −wj)

∣∣2p)1/2p

≤ (2p)1/2‖an‖2 · ‖w∗j −wj‖2.
(62)

Then, we have

p−1
(
EX
∣∣αTXTanφ

′(aTnXwk)
(
φ(aTnXw

∗
j )− φ(aTnXwj)

)∣∣p)1/p

≤p−1 · 2p‖an‖22 · ‖w∗j −wj‖2
≤2σ2

1(A) · ‖w∗j −wj‖2.

(63)

Therefore, from Definition 2, zn(k, j) belongs to the sub-exponential distribution with

‖zn‖φ1 ≤ 2σ2
1(A) · ‖w∗j −wj‖2. (64)

Recall that each node is connected with at most δ other nodes. Hence, for any fixed zn, there are at most (1 + δ2)
(including zn itself) elements in

{
zl
∣∣l ∈ Ωt

}
are dependant with zn. From Lemma 7, the moment generation function of∑

n∈Ωt
(zn − EXzn) satisfies

EXes
∑
n∈Ωt

(zn−EXzn) ≤ eC(1+δ2)|Ωt|s2 . (65)

By Chernoff inequality, we have

Prob
{∥∥∥ 1

|Ωt|
∑
n∈Ωt

(
zn(k, j)− EXzn(k, j)

)∥∥∥
2
> t

}
≤ eC(1+δ2)|Ωt|s2

e|Ωt|ts
(66)

for any s > 0.
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Let s = t/
(
C(1 + δ2)‖zn‖2φ1

)
and t =

√
(1+δ2)d logN

|Ωt| ‖zn‖φ1 , we have

∥∥∥ 1

|Ωt|
∑
n∈Ωt

(
zn(k, j)− EXzn(k, j)

)∥∥∥
2
≤C

√
(1 + δ2)d logN

|Ωt|
σ2

1(A) · ‖w∗j −wj‖2

≤Cσ2
1(A)

√
(1 + δ2)d logN

|Ωt|
· ‖W ∗ −W ‖2

(67)

with probability at least 1−N−d.

In conclusion, by selecting ξ = 1
2 in Lemmas 8 and 9, we have

∥∥∥∂f̂Ωt

∂wk
(W )− ∂fΩt

∂wk
(W )

∥∥∥
2
≤

K∑
k=1

K∑
j=1

1

K2

∥∥∥ 1

|Ωt|
∑
n∈Ωt

zn(k, j)− EXzn(k, j)
∥∥∥

2

≤Cσ2
1(A)

√
(1 + δ2)d logN

|Ωt|
· ‖W ∗ −W ‖2

(68)

with probability at least 1−
(

5
N

)d
.

A.3. Proof of auxiliary lemmas for regression problems

A.3.1. PROOF OF LEMMA 5

Proof of Lemma 5 . For any normalized α ∈ RKd, the lower bound of∇2fΩt(W
∗) is derived from

αT∇2f(W ∗)α =
1

K2|Ωt|
∑
n∈Ωt

EX
[( K∑

j=1

αTj X
Tanφ

′(aTnXw
∗
j )
)2
]

≥ 1

K2|Ωt|
∑
n∈Ωt

‖an‖22
11κ2γ

‖α‖22 =
σ2

1(A)

11κ2γK2
,

(69)

where the last inequality can be derived from Lemma D.6 in (Zhong et al., 2017c). In spite that the error bound in (Zhong
et al., 2017c) is given in terms of xn instead ofXTan, both xn andXTan belong to Gaussian distribution. Hence, we can
follow the similar steps in (Zhong et al., 2017c) to derive the results for Gaussian random variableXTan with 0 mean and
‖an‖22 variance.

Next, the upper bound of ∇2fΩt(W
∗) is derived from

αT∇2f(W ∗)α

=
1

K2|Ωt|
∑
n∈Ωt

EX
[( K∑

j=1

αTj X
Tanφ

′(aTnXw
∗
j )
)2
]

=
1

K2|Ωt|
∑
n∈Ωt

K∑
j1=1

K∑
j2=1

EX
[
αTj1X

Tanφ
′(aTnXw

∗
j1)αTj2X

Tanφ
′(aTnXw

∗
j2)

]

≤ 1

K2|Ωt|
∑
n∈Ωt

K∑
j1=1

K∑
j2=1

[
EX |αTj1X

Tan|4 · EX |φ′(aTnXw∗j1)|4 · EX |αTj2X
Tan|4 · EX |φ′(aTnXw∗j2)|4

] 1
4

≤ 1

K2|Ωt|
∑
n∈Ωt

K∑
j1=1

K∑
j2=1

3σ2
1(A)‖αj1‖2‖αj2‖2

≤3σ2
1(A)

‖α‖22
K

,

(70)

which completes the proof.
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A.3.2. PROOF OF LEMMA 6

Proof of Lemma 6 . The second-order derivative of fΩt is written as

∂2fΩt

∂wj1∂wj2

(W )− ∂2fΩt

∂wj1∂wj2

(W ∗)

=
1

K2|Ωt|
∑
n∈Ωt

EX(XTan)(XTan)T
[
φ′(aTnXwj1)φ′(aTnXwj2)− φ′(aTnXw∗j1)φ′(aTnXw

∗
j2)
]

=
1

K2|Ωt|
∑
n∈Ωt

EX(XTan)(XTan)T
(
φ′(aTnXwj1)− φ′(aTnXw∗j1)

)
φ′(aTnXwj2)

− 1

K2|Ωt|
∑
n∈Ωt

EX(XTan)(XTan)Tφ′(aTnXw
∗
j1)
(
φ′(aTnXw

∗
j2)− φ′(aTnXwj2)

)
.

(71)

For any normalized α ∈ Rd, we have∣∣∣αT [ ∂2fΩt

∂wj1∂wj2

(W )− ∂2fΩt

∂wj1∂wj2

(W ∗)
]
α
∣∣∣

≤
∣∣∣ 1

K2|Ωt|
∑
n∈Ωt

EX(αTXTan)2
(
φ′(aTnXwj1)− φ′(aTnXw∗j1)

)
φ′(aTnXwj2)

∣∣∣
+
∣∣∣ 1

K2|Ωt|
∑
n∈Ωt

EX(αTXTan)2φ′(aTnXw
∗
j1)
(
φ′(aTnXw

∗
j2)− φ′(aTnXwj2)

)∣∣∣
≤ 1

K2|Ωt|
∑
n∈Ωt

EX
∣∣αTXTan

∣∣2 · ∣∣∣φ′(aTnXwj1)− φ′(aTnXw∗j1)
∣∣∣

+
1

K2|Ωt|
∑
n∈Ωt

EX
∣∣αTXTan

∣∣2 · ∣∣∣φ′(aTnXw∗j2)− φ′(aTnXwj2)
∣∣∣.

(72)

It is easy to verify there exists a basis such that B = {α,β,γ,α⊥4 , · · · ,α⊥d } with {α,β,γ} spanning a subspace that
contains α,wj1 and w∗j1 . Then, for anyXTan ∈ Rd, we have a unique z =

[
z1 z2 · · · zd

]T
such that

XTan = z1α+ z2β + z3γ + · · ·+ zdα
⊥
d .

Also, sinceXTan ∼ N (0, ‖an‖22Id), we have z ∼ N (0, ‖an‖22Id). Then, we have

EX
∣∣αTXTan

∣∣2 · ∣∣∣φ′(aTnXwj1)− φ′(aTnXw∗j1)
∣∣∣

=Ez1,z2,z3 |φ′
(
wT
j1 x̃
)
− φ′

(
w∗j1

T x̃
)
| · |aT x̃|2

=

∫
|φ′
(
wT
j1 x̃
)
− φ′

(
w∗j1

T x̃
)
| · |aT x̃|2 · fZ(z1, z2, z3)dz1dz2dz3,

where x̃ = z1α + z2β + z3γ and fZ(z1, z2, z3) is the probability density function of (z1, z2, z3). Next, we consider
spherical coordinates with z1 = r cosφ1, z2 = r sinφ1 sinφ2, z3 = z2 = r sinφ1 cosφ2. Hence,

EX
∣∣αTXTan

∣∣2 · ∣∣∣φ′(aTnXwj1)− φ′(aTnXw∗j1)
∣∣∣

=

∫ ∫ ∫
|φ′
(
wT
j1 x̃
)
− φ′

(
w∗j1

T x̃
)
| · |r cosφ1|2 · fZ(r, φ1, φ2)r2 sinφ1drdφ1dφ2.

(73)

It is easy to verify that φ′
(
wT
j1
x̃
)

only depends on the direction of x̃ and

fZ(r, φ1, φ2) =
1

(2π‖an‖22)
3
2

e
− x

2
1+x2

2+x2
3

2‖an‖22 =
1

(2π‖an‖22)
3
2

e
− r2

2‖an‖22
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only depends on r. Then, we have

EX
∣∣αTXTan

∣∣2 · ∣∣∣φ′(aTnXwj1)− φ′(aTnXw∗j1)
∣∣∣

=

∫ ∫ ∫
|φ′
(
wT
j1(x̃/r)

)
− φ′

(
w∗j1

T (x̃/r)
)
| · |r cosφ1|2 · fZ(r)r2 sinφ1drdφ1dφ2

=

∫ ∞
0

r4fz(r)dr

∫ π

0

∫ 2π

0

| cosφ1|2 · sinφ1 · |φ′
(
wT
j2(x̃/r)

)
− φ′

(
w∗j2

T (x̃/r)
)
|dφ1dφ2

≤3‖an‖22 ·
∫ ∞

0

r2fz(r)dr

∫ π

0

∫ 2π

0

sinφ1 · |φ′
(
wT
j2(x̃/r)

)
− φ′

(
w∗j2

T (x̃/r)
)
|dφ1dφ2

=3‖an‖22 · Ez1,z2,z3
∣∣φ′(wT

j1 x̃
)
− φ′

(
w∗j1

T x̃
)
|

=3‖an‖22 · EX
∣∣φ′(aTnXwj1

)
− φ′

(
aTnXw

∗
j1

)∣∣

(74)

Define a set A1 = {x|(w∗j1
Tx)(wj1

Tx) < 0}. If x ∈ A1, then w∗j1
Tx and wj1

Tx have different signs, which means the
value of φ′(wT

j1
x) and φ′(w∗j1

Tx) are different. This is equivalent to say that

|φ′(wT
j1x)− φ′(w∗j1

Tx)| =

{
1, if x ∈ A1

0, if x ∈ Ac1
. (75)

Moreover, if x ∈ A1, then we have

|w∗j1
Tx| ≤|w∗j1

Tx−wj1
Tx| ≤ ‖w∗j1 −wj1‖ · ‖x‖. (76)

Define a set A2 such that

A2 =
{
x
∣∣∣ |w∗j1Tx|‖w∗j1‖‖x‖

≤
‖w∗j1 −wj1‖
‖w∗j1‖

}
=
{
θx,w∗j1

∣∣∣| cos θx,w∗j1
| ≤
‖w∗j1 −wj1‖
‖w∗j1‖

}
. (77)

Hence, we have that

Ex|φ′(wT
j1x)− φ′(w∗j1

Txi2)| = Prob(x ∈ A1) ≤ Prob(x ∈ A2). (78)

Since x ∼ N (0, I), θx,w∗j1 belongs to the uniform distribution on [−π, π], we have

Prob(x ∈ A2) =
π − arccos

‖w∗j1−wj1‖
‖w∗j1‖

π

≤ 1

π
tan(π − arccos

‖w∗j1 −wj1‖
‖w∗j1‖

)

=
1

π
cot(arccos

‖w∗j1 −wj1‖
‖w∗j1‖

)

≤ 2

π

‖w∗j1 −wj1‖
‖w∗j1‖

.

(79)

Hence, (81) and (79) suggest that

EX
∣∣φ′(aTnXwj1

)
− φ′

(
aTnXw

∗
j1

)∣∣ ≤ 6

π

‖w∗j1 −wj1‖
‖w∗j1‖

. (80)

Then, we have

EX
∣∣αTXTan

∣∣2 · ∣∣∣φ′(aTnXwj1)− φ′(aTnXw∗j1)
∣∣∣

=3‖an‖22 · EX
∣∣φ′(aTnXwj1

)
− φ′

(
aTnXw

∗
j1

)∣∣
≤6‖an‖22

π
·
‖wj1 −w∗j1‖2
‖w∗j1‖2

,

(81)
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All in all, we have

∥∥∇2fΩt(W )−∇2fΩt(W
∗)
∥∥

2
≤

K∑
j1

K∑
j2

∥∥∥ ∂2fΩt

∂wj1∂wj2

(W )− ∂2fΩt

∂wj1∂wj2

(W ∗)
∥∥∥

2

≤K2 max
j1,j2

∥∥∥ ∂2fΩt

∂wj1∂wj2

(W )− ∂2fΩt

∂wj1∂wj2

(W ∗)
∥∥∥

2

≤K2 · 12‖an‖22
π

max
j

‖wj −w∗j‖2
‖w∗j‖2

≤4σ2
1(A)

‖W ∗ −W ‖2
σK

.

(82)

A.3.3. PROOF OF LEMMA 7

Proof of Lemma 7 . According to the Definitions in (Janson, 2004), there exists a family of {(Xj , wj)}j , where Xj ⊆ X
and wj ∈ [0, 1], such that

∑
j wj

∑
xnj∈Xj

xnj =
∑N
n=1 xn, and

∑
j wj ≤ dX by equations (2.1) and (2.2) in (Janson,

2004). Then, let pj be any positive numbers with
∑
j pj = 1. By Jensen’s inequality, for any s ∈ R, we have

es
∑N
n=1 xn = e

∑
j pj

swj
pj

Xj ≤
∑
j

pje
swj
pj

Xj
, (83)

where Xj =
∑
xnj∈Xj

xnj .

Then, we have

EX es
∑N
n=1 xn ≤EX

∑
j

pje
swj
pj

Xj
=
∑
j

pj
∏
Xj

EX e
swj
pj

xnj

≤
∑
j

pj
∏
Xj

e

Cw2
j

p2
j

s2

≤
∑
j

pje

C|Xj |w
2
j

p2
j

s2

.

(84)

Let pj =
wj |Xj |1/2∑
j wj |Xj |1/2 , then we have

EX es
∑N
n=1 xn ≤

∑
j

pje
C
(∑

j wj |Xj |
1/2
)2
s2 = eC

(∑
j wj |Xj |

1/2
)2
s2 . (85)

By Cauchy-Schwarz inequality, we have(∑
j

wj |Xj |1/2
)2 ≤∑

j

wj
∑
j

wj |Xj | ≤ dXN. (86)

Hence, we have
EX es

∑N
n=1 xn ≤ eCdXNs

2

. (87)
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B. Proof of Theorem 2
Recall that the empirical risk function in (4) is defined as

min
W

: f̂Ω(W ) =
1

|Ω|
∑
n∈Ω

−yn log
(
g(W ;aTnX)

)
− (1− yn) log

(
1− g(W ;aTnX)

)
. (88)

The population risk function is defined as

fΩ(W ) :=EX,yn f̂Ω(W )

=EXEyn|X
[ 1

|Ω|
∑
n∈Ω

−yn log
(
g(W ;aTnX)

)
− (1− yn) log

(
1− g(W ;aTnX)

)]
=EX

1

|Ω|
∑
n∈Ω

−g(W ∗;aTnX) log
(
g(W ;aTnX)

)
− (1− g(W ∗;aTnX)) log

(
1− g(W ;aTnX)

)
.

(89)

The road-map of proof for Theorem 2 follows the similar three steps as those for Theorem 1. The major differences lie
in three aspects: (i) in the second step, the objective function f̂Ωt is smooth since the activation function φ(·) is sigmoid.

Hence, we can directly apply the mean value theorem as ∇f̂Ωt(W
(t)) = 〈∇2f̂Ωt(Ŵ

(t)
),W (t) −W ∗〉 to characterize

the effects of the gradient descent term in each iteration, and the error bound of ∇2f̂Ωt is provided in Lemma 10; (ii) the
objective function is the sum of cross-entry loss functions, which have more complex structure of derivatives than those
of square loss functions; (iii) as the convergent point may not be the critical point of empirical loss function, we need to
provide the distance from the convergent point to the ground-truth parameters additionally, where Lemma 11 is used.

Lemmas 10 and 11 are summarized in the following contents. Also, the notations . and & follow the same definitions as in
(27). The proofs of Lemmas 10 and 11 can be found in Appendix B.1 and B.2, respectively.

Lemma 10. For anyW that satisfies

‖W −W ∗‖ ≤ 2σ2
1(A)

11κ2γK2
(90)

then the second-order derivative of the empirical risk function in (88) for binary classification problems is bounded as

2(1− ε0)

11κ2γK2
σ2

1(A) � ∇2f̂Ωt(W ) � σ2
1(A). (91)

provided the number of samples satisfies

|Ωt| & ε−2
0 (1 + δ2)κ2γσ4

1(A)K6d logN. (92)

Lemma 11. Let f̂Ωt and fΩt be the empirical and population risk function in (88) and (89) for binary classification
problems, respectively, then the first-order derivative of f̂Ωt is close to its expectation fΩt with an upper bound as

‖∇fΩt(W )−∇f̂Ωt(W )‖2 . K2σ2
1(A)

√
(1 + δ2)d log d

|Ωt|
(93)

with probability at least 1−K2N−10.

With these preliminary lemmas, the proof of Theorem 2 is formally summarized in the following contents.

Proof of Theorem 2. The update rule ofW (t) is

W (t+1) =W (t) − η∇f̂Ωt(W
(t)) + β(W (t) −W (t−1)) (94)

Since Ŵ is a critical point, then we have∇f̂Ωt(Ŵ ) = 0. By the intermediate value theorem, we have

W (t+1) = W (t) − η∇2f̂Ωt(Ŵ
(t)

)(W (t) − Ŵ )

+ β(W (t) −W (t−1))
(95)
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where Ŵ
(t)

lies in the convex hull ofW (t) and Ŵ .

Next, we have [
W (t+1) −W ∗

W (t) −W ∗

]
=

[
I − η∇2f̂Ωt(Ŵ

(t)
) + βI βI

I 0

] [
W (t) −W ∗

W (t−1) −W ∗

]
. (96)

Let P (β) =

[
I − η∇2f̂Ωt(Ŵ

(t)
) + βI βI

I 0

]
, so we have

∥∥∥∥[W (t+1) −W ∗

W (t) −W ∗

]∥∥∥∥
2

= ‖P (β)‖2

∥∥∥∥[ W (t) −W ∗

W (t−1) −W ∗

]∥∥∥∥
2

.

Then, we have

‖W (t+1) −W ∗‖2 .‖P (β)‖2‖W (t) −W ∗‖2 (97)

Let λi be the i-th eigenvalue of∇2f̂Ωt(Ŵ
(t)

), and δi be the i-th eigenvalue of matrix P (β). Following the similar analysis
in proof of Theorem 1, we have

δi(0) > δi(β), for ∀β ∈
(
0, (1− ηλi)2

)
. (98)

Moreover, δi achieves the minimum δ∗i = |1−
√
ηλi| when β =

(
1−
√
ηλi
)2

.

Let us first assumeW (t) satisfies (90) and the number of samples satisfies (92), then from Lemma 10, we know that

0 <
2(1− ε0)σ2

1(A)

11κ2γK2
≤ λi ≤ σ2

1(A).

We define γ1 =
2(1−ε0)σ2

1(A)
11κ2γK2 and γ2 = σ2

1(A). Also, for any ε0 ∈ (0, 1), we have

ν(β∗) = ‖P (β∗)‖2 = 1−
√

γ1

2γ2
= 1−

√
1− ε0

11κ2γK
(99)

Let β = 0, we have

ν(0) = ‖A(0)‖2 = 1− 1− ε0

11κ2γK
.

Hence, with probability at least 1−K2 ·N−10, we have

‖W (t+1) −W ∗‖2 ≤
(

1−
√

1− ε0

11κ2γK

)
‖W (t) −W ∗‖2, (100)

provided thatW (t) satisfies (25), and

|Ωt| & ε−2
0 κ2γ(1 + δ2)σ4

1(A)K6d logN. (101)

According to Lemma 4, we know that (90) holds forW (0) if

|Ωt| & ε−2
0 κ8γ2(1 + δ2)K8d logN. (102)

Combining (101) and (102), we need |Ωt| & ε−2
0 κ8γ2(1 + δ2)σ4

1(A)K8d logN .

Finally, by the mean value theorem, we have

f̂Ωt(Ŵ ) ≤ f̂Ωt(W
∗) +∇f̂Ωt(W

∗)
T

(Ŵ −W ∗) +
1

2
(Ŵ −W ∗)T∇2f̂Ωt(W̃ )(Ŵ −W ∗) (103)
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for some W̃ between Ŵ andW ∗. Since Ŵ is the local minima, we have f̂Ωt(Ŵ ) ≤ f̂Ωt(W
∗). That is to say

∇f̂Ωt(W
∗)
T

(Ŵ −W ∗) +
1

2
(Ŵ −W ∗)T∇2f̂Ωt(W̃ )(Ŵ −W ∗) ≤ 0 (104)

which implies
1

2
‖∇2f̂Ωt(W̃ )‖2‖Ŵ −W ∗‖22 ≤ ‖∇f̂Ωt(W

∗)‖2‖Ŵ −W ∗‖2. (105)

From Lemma 10, we know that

‖∇2f̂Ωt(W̃ )‖2 ≥
2(1− ε0)

11κ2γK2
σ2(A). (106)

From Lemma 11, we know that

‖∇f̂Ωt(W
∗)‖2 = ‖∇f̂Ωt(W

∗)−∇fΩt(W
∗)‖2 . K2σ2

1(A)

√
(1 + δ2)d logN

|Ωt|
. (107)

Plugging inequalities (106) and (107) back into (105), we have

‖Ŵ −W ∗‖2 . (1− ε0)−1κ2γK4

√
(1 + δ2)d log d

|Ωt|
. (108)

B.1. Proof of Lemma 10

The roadmap of proof for Lemma 10 follows the similar steps as those of Lemma 2 for regression problems. Lemmas 12, 13
and 14 are the preliminary lemmas, and their proofs can be found in Appendix B.2. The proof of Lemma 10 is summarized
after these preliminary lemmas.

Lemma 12. The second-order derivative of fΩt at the ground truthW ∗ satisfies

4σ2
1(A)

11κ2γK2
I � ∇2fΩt(W

∗) � σ2
1(A)

4
I. (109)

Lemma 13. Suppose fΩt is the population loss function with respect to binary classification problems, then we have

‖∇2fΩt(W )−∇2fΩt(W
∗)‖2 . ‖W −W ∗‖2. (110)

Lemma 14. Suppose f̂Ωt is the empirical loss function with respect to binary classification problems, then the second-order
derivative of f̂Ωt is close to its expectation with an upper bound as

‖∇2fΩt(W )−∇2f̂Ωt(W )‖2 . K2σ2
1(A)

√
(1 + δ2)d log d

|Ωt|
(111)

with probability at least 1−K2N−10.

Proof of Lemma 10 . For anyW , we have∣∣∣‖∇2fΩt(W )‖2 − ‖∇2fΩt(W
∗)‖2

∣∣∣ ≤ ‖∇2fΩt(W )−∇2fΩt(W
∗)‖2. (112)

That is

‖∇2fΩt(W )‖2 ≤ ‖∇2fΩt(W
∗)‖2 + ‖∇2fΩt(W )−∇2fΩt(W

∗)‖2
and ‖∇2fΩt(W )‖2 ≥ ‖∇2fΩt(W

∗)‖2 − ‖∇2fΩt(W )−∇2fΩt(W
∗)‖2

(113)
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Then, for anyW that satisfies ‖W −W ∗‖ ≤ 2σ2
1(A)

11κ2γK2 , from Lemmas 12 and 13, we have

2

11κ2γK2
σ2

1(A) � ∇2fΩt(W ) � 1

2
σ2

1(A). (114)

Next, we have

‖∇2f̂Ωt(W )‖2 ≤ ‖∇2fΩt(W )‖2 + ‖∇2f̂Ωt(W )−∇2fΩt(W )‖2
and ‖∇2f̂Ωt(W )‖2 ≥ ‖∇2fΩt(W )‖2 − ‖∇2f̂Ωt(W )−∇2fΩt(W )‖2

(115)

Then, from (114) and Lemma 14, we have

2(1− ε0)

11κ2γK2
σ2

1(A) � ∇2f̂Ωt(W ) � σ2
1(A) (116)

provided that the sample size |Ωt| & ε−2
0 (1 + δ2)κ2γσ4

1(A)K6d logN .

B.2. Proof of auxiliary lemmas for binary classification problems

B.2.1. PROOF OF LEMMA 12

Proof of Lemma 12 . Since EXyn = gn(W ∗;an), then we have

∂2fΩt(W
∗)

∂w∗j∂w
∗
k

=EX
∂2f̂Ωt(W

∗)

∂w∗j∂w
∗
k

=EX
1

K2|Ωt|
∑
n∈Ωt

1

g(W ;an)
(
1− g(W ;an)

)φ′(wT
j X

Tan)φ′(wT
kX

Tan)(XTan)(XTan)T ,

(117)

for any j, k ∈ [K].

Then, for any α =
[
αT1 , αT2 , · · · , αTK

]T ∈ Rdk with αj ∈ Rd, the lower bound can be obtained from

αT∇2fΩt(W
∗)α =EX

1

K2|Ωt|
∑
n∈Ωt

(∑K
j=1α

T
j X

Tanφ
′(w∗j

TXTan)
)2

g(W ∗;an)
(
1− g(W ∗;an)

)
≥EX

4

K2|Ωt|
∑
n∈Ωt

( K∑
j=1

αTj X
Tanφ

′(w∗j
TXTan)

)2

≥ 4σ2
1(A)

11κ2γK2
.

(118)

Also, for the upper bound, we have

αT∇2fΩt(W
∗)α =EX

1

K2|Ωt|
∑
n∈Ωt

(∑K
j=1α

T
j X

Tanφ
′(w∗j

TXTan)
)2

g(W ∗;an)
(
1− g(W ∗;an)

)
=EX

1

|Ωt|
∑
n∈Ωt

(∑K
j=1α

T
j X

Tanφ
′(w∗j

TXTan)
)2

∑K
j1=1 φ(w∗j1

TXTan)
∑K
j2=1

(
1− φ(w∗j2

TXTan)
)

≤EX
1

|Ωt|
∑
n∈Ωt

∑K
j=1

(
αTj X

Tan
)2∑K

j=1

(
φ′(w∗j

TXTan)
)2∑K

j1=1 φ(w∗j1
TXTan)

∑K
j2=1

(
1− φ(w∗j2

TXTan)
) .

(119)
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For the denominator item, we have

K∑
j1=1

φ(w∗j1
TXTan)

K∑
j2=1

(
1− φ(w∗j2

TXTan)
)
≥

K∑
j=1

φ(w∗j
TXTan)

(
1− φ(w∗j

TXTan)
)

=

K∑
j=1

φ′(w∗j
TXTan)

≥4

K∑
j=1

φ′(w∗j
TXTan)2.

(120)

Hence, we have

αT∇2fΩt(W
∗)α ≤ EX

1

4|Ωt|
∑
n∈Ωt

K∑
j=1

(αTj X
Tan)2 ≤ 1

4
σ2

1(A). (121)

B.2.2. PROOF OF LEMMA 13

Proof of Lemma 13 . Recall that

∂2fΩt(W )

∂wj∂wk

=EX
1

K2|Ωt|
∑
n∈Ωt

(
g(W ∗;an)

g2(W ;an)
+

1− g(W ∗;an)

(1− g(W ;an))2

)
φ′(wT

j X
Tan)φ′(wT

kX
Tan)(XTan)(XTan)T ,

(122)

and

∂2fΩt(W )

∂w2
j

=EX
1

K2|Ωt|
∑
n∈Ωt

(
g(W ∗;an)

g2(W ;an)
+

1− g(W ∗;an)

(1− g(W ;an))2

)
φ′(wT

j X
Tan)2(XTan)(XTan)T

− EX
1

K|Ωt|
∑
n∈Ωt

(
− g(W ∗;an)

g(W ;an)
+

1− g(W ∗;an)

1− g(W ;an)

)
φ′′(wT

j X
Tan)(XTan)(XTan)T .

(123)

Let us denote Aj,k(W ;an) as

Aj,k(W ;an) =


1
K2

( g(W ∗;an)
g2(W ;an) + 1−g(W ∗;an)

(1−g(W ;an))2

)
φ′(wT

j X
Tan)φ′(wT

kX
Tan)

− 1
K

(
− g(W ∗;an)

g(W ;an) + 1−g(W ∗;an)
1−g(W ;an)

)
φ′′(wT

j X
Tan), when j = k;

1
K2

( g(W ∗;an)
g2(W ;an) + 1−g(W ∗;an)

(1−g(W ;an))2

)
φ′(wT

j X
Tan)φ′(wT

kX
Tan), when j 6= k.

(124)

Further, let us define M(W ;an) = max
{

2
K3

1
g3(W ;an) ,

2
K3

1
(1−g(W ;an))3 ,

1
K2

1
g2(W ;an) ,

1
K2

1
((1−g(W ;an))2

}
.

Then, by the mean value theorem, we have

Aj,k(W ;an)−Aj,k(W ;an) =

K∑
l=1

〈∂Aj,k
∂wl

(W̃ ;an),wl −w∗l 〉. (125)

For ∂Aj,k∂wl
, we have

∂Aj,k
∂wl

(W̃ ;an) = Bj,k,l(W̃ ;an)XTan (126)
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with

|Bj,k,l(W̃ ;an)| ≤ 2

K3

1

g3(W̃ ;an)
+

2

K3

1

(1− g(W̃ ;an))3
+

1

K2

1

g(W̃ ;an)
+

1

K2

1

(1− g(W̃ ;an))2

≤4M(W̃ ;an).

(127)

for all j ∈ [K], k ∈ [K], l ∈ [K].

Therefore, for any α ∈ RKd, we have

αT∇2fΩt(W )α

≤ 1

|Ωt|
∑
n∈|Ωt|

K∑
j=1

K∑
k=1

EX
∣∣∣αTj ∂fΩt

∂wj∂wk
(W )αk

∣∣∣
=

1

|Ωt|
∑
n∈|Ωt|

K∑
j=1

K∑
k=1

EX
∣∣∣ K∑
l=1

|Bj,k,l(W̃ ;an)|〈wl −w∗l ,X
Tan〉〈αj ,XTan〉〈αk,XTan〉

∣∣∣
=

1

|Ωt|
∑
n∈|Ωt|

K∑
j=1

K∑
k=1

( K∑
l=1

EX |Bj,k,l(W̃ ;an)|2
) 1

2
( K∑
l=1

EX
∣∣〈wl −w∗l ,X

Tan〉〈αj ,XTan〉〈αk,XTan〉
∣∣2) 1

2

≤ 1

|Ωt|
∑
n∈|Ωt|

K∑
j=1

K∑
k=1

36K
1
2

(
EXM2(Ŵ ;an)

) 1
2 ·
( K∑
l=1

‖wl −w∗l ‖22
) 1

2 ‖aj‖2‖ak‖2

≤ 1

|Ωt|
∑
n∈|Ωt|

36K3
(
EXM2(Ŵ ;an)

) 1
2 ‖W −W ∗‖2

(a)

. eσ
2
1(A)‖W −W ∗‖2

.‖W −W ∗‖2,
(128)

where (a) comes from Lemma 5 in (Fu et al., 2018).

B.2.3. PROOF OF LEMMA 14

Proof of Lemma 14 . Recall that

∂2f̂Ωt(W )

∂wj∂wk

=
1

K2|Ωt|
∑
n∈Ωt

(
yn

g2(W ;an)
+

1− yn
(1− g(W ;an))2

)
φ′(wT

j X
Tan)φ′(wT

kX
Tan)(XTan)(XTan)T ,

(129)

and

∂2f̂Ωt(W )

∂w2
j

=
1

K2|Ωt|
∑
n∈Ωt

(
yn

g2(W ;an)
+

1− yn
(1− g(W ;an))2

)
φ′(wT

j X
Tan)2(XTan)(XTan)T

− 1

K|Ωt|
∑
n∈Ωt

(
− yn
g(W ;an)

+
1− yn

1− g(W ;an)

)
φ′′(wT

j X
Tan)(XTan)(XTan)T .

(130)

When yn = 1 and j 6= k, we have

∂2f̂Ωt(W )

∂wj∂wk
=

1

K2|Ωt|
∑
n∈Ωt

φ′(wT
j X

Tan)φ′(wT
kX

Tan)

g2(W ;an)
(XTan)(XTan)T , (131)
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and

φ′(wT
j X

Tan)φ′(wT
kX

Tan)

g2(W ;an)
=
φ(wT

j X
Tan)(1− φ(wT

j X
Tan))φ(wT

kX
Tan)(1− φ(wT

kX
Tan))(

1
K

∑K
l=1 φ(wT

l X
Tan)

)2
≤K2

φ(wT
j X

Tan)(1− φ(wT
j X

Tan))φ(wT
kX

Tan)(1− φ(wT
kX

Tan))

φ(wT
j X

Tan)φ(wT
kX

Tan)

=K2(1− φ(wT
j X

Tan))(1− φ(wT
kX

Tan)) ≤ K2.

(132)

When yn = 1 and j = k, we have

∂2f̂Ωt(W )

∂wj∂wk
=

1

|Ωt|
∑
n∈Ωt

[ 1

K2

φ′(wT
j X

Tan)φ′(wT
kX

Tan)

g2(W ;an)
+

1

K

φ′′(wT
j X

Tan)

g(W ;an)

]
(XTan)(XTan)T , (133)

and ∣∣∣φ′′(wT
j X

Tan)

g(W ;an)

∣∣∣ =
φ(wT

kX
Tan)(1− φ(wT

kX
Tan)) ·

∣∣1− 2φ(wT
kX

Tan)
∣∣

1
K

∑K
l=1 φ(wT

l X
Tan)

≤ K. (134)

Similar to (132) and (134), we can obtain the following inequality for yn = 0.

φ′(wT
j X

Tan)φ′(wT
kX

Tan)(
1− g(W ;an)

)2 ≤ K2, and
∣∣∣φ′′(wT

j X
Tan)

1− g(W ;an)

∣∣∣ ≤ K. (135)

Then, for any α ∈ Rd, we have

αT
∂2f̂Ωt(W )

∂wj∂wk
α =

1

|Ωt|
∑
n∈Ωt

[
1

K2

(
yn

g2(W ;an)
+

1− yn
(1− g(W ;an))2

)
φ′(wT

j X
Tan)φ′(wT

kX
Tan)

−
1{j=k}

K

(
− yn
g(W ;an)

+
1− yn

1− g(W ;an)

)
φ′′(wT

j X
Tan)

]
(αTXTan)2

:=
1

|Ωt|
∑
n∈Ωt

Hj,k(an) · (αTXTan)2.

(136)

Next, we show that Hj,k(an) · (αTXTan)2 belongs to the sub-exponential distribution. For any p ∈ N+, we have(
EX,yn

[∣∣Hj,k(an) · (αTXTan)2
∣∣p])1/p

≤
(
EX
[∣∣4(αTXTan)2

∣∣p])1/p

≤8‖an‖22p ≤ 8σ2
1(A)p

(137)

Hence, Hj,k(an) · (αTXTan)2 belongs to the sub-exponential distribution with ‖Hj,k(an)(αTXTan)2‖ψ1 = 8σ2
1(A).

Then, the moment generation function of Hj,k(an) · (αTXTan)2 can be bounded as

EesHj,k(an)·(αTXTan)2

≤ eCσ
2
1(A)s2 (138)

for some positive constant C and any s ∈ R. From Lemma 7 and Chernoff bound, we have

αT
(∂2f̂Ωt(W )

∂wj∂wk
− ∂2fΩt(W )

∂wj∂wk

)
α ≤ Cσ2

1(A)

√
(1 + δ2)d logN

|Ωt|
(139)

with probability at least 1−N−d. By selecting ξ = 1
2 in Lemmas 8 and 9, we have∥∥∥∥∥∂2f̂Ωt(W )

∂wj∂wk
− ∂2fΩt(W )

∂wj∂wk

∥∥∥∥∥
2

≤ Cσ2
1(A)

√
(1 + δ2)d logN

|Ωt|
(140)
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with probability at least 1−
(

5
N

)d
.

In conclusion, we have

‖∇2fΩt(W )−∇2f̂Ωt(W )‖2 ≤
K∑
j=1

K∑
k=1

∥∥∥∥∥∂2f̂Ωt(W )

∂wj∂wk
− ∂2fΩt(W )

∂wj∂wk

∥∥∥∥∥
2

≤CK2σ2
1(A)

√
(1 + δ2)d log d

|Ωt|

(141)

with probability at least 1−
(

5
d

)d
.

B.2.4. PROOF OF LEMMA 11

Proof of Lemma 11. Recall that the first-order derivative of f̂Ωt(W ) is calculated from

∂f̂Ωt(W )

∂wj
= − 1

K|Ωt|
∑
n∈Ω

yn − g(W ;an)

g(W ;an)
(
1− g(W ;an)

)φ′(wT
j X

Tan)XTan. (142)

Similar to (134), we have ∣∣∣φ′(wT
j X

Tan)

g(W ;an)

∣∣∣ =
φ(wT

kX
Tan)(1− φ(wT

kX
Tan))

1
K

∑K
l=1 φ(wT

l X
Tan)

≤ K. (143)

Similar to (137), for any fixed α ∈ RdK , we can show that random variable αT ∂f̂Ωt (W )

∂wj
belongs to sub-exponential

distribution with the same bounded norm up to a constant. Hence, by applying Lemma 7 and the Chernoff bound, we have

∥∥∥∇fΩt(W )−∇f̂Ωt(W )
∥∥∥

2
. K2σ2

1(A)

√
(1 + δ2)d logN

|Ωt|
(144)

with probability at least 1−
(

5
N

)d
.

C. Proof of Lemma 1
Proof of Lemma 1. Let Ã denote the adjacency matrix, then we have

σ1(Ã) = max
z

zT Ãz

zTz
≥ 1T Ã1

1T1
= 1 +

∑N
n=1 δn
N

, (145)

where δn denotes the degree of node vn. Let z be the eigenvetor of the maximum eigenvalue σ1(A). Since σ1(A) =

D−1/2ÃD−1/2 andD is diagonal matrix, then z is the eigenvector to σ1(Ã) as well. Then, let n ∈ [N ] be the index of
the largest value of vector zn as zn = ‖z‖∞, we have

σ1(Ã) =
(Ãz)n
zn

=
ãTnz

zn
≤ ‖an‖1‖z‖∞

zn
= 1 + δ. (146)

where ãn is the n-th row of Ã.

SinceD is a diagonal matrix with ‖D‖2 ≤ 1 + δ, then we can conclude the inequality in this lemma.

D. Proof of Lemma 4
The proof of Lemma 4 is divided into three major parts to bound I1, I2 and I3 in (153). Lemmas 15, 16 and 17 provide the
error bounds for I1, I2 and I3, respectively. The proofs of these preliminary lemmas are similar to those of Theorem 5.6 in
(Zhong et al., 2017b), the difference is to apply Lemma 7 plus Chernoff inequality instead of standard Hoeffding inequality,
and we skip the details of the proofs of Lemmas 15, 16 and 17 here.
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Lemma 15. SupposeM2 is defined as in (7) and M̂2 is the estimation ofM2 by samples. Then, with probability 1−N−10,
we have

‖M̂2 −M2‖ . σ2
1(A)

√
(1 + δ2)d logN

|Ω|
, (147)

provided that |Ω| & (1 + δ2)d log4N .

Lemma 16. Let V̂ be generated by step 4 in Subroutine 1. SupposeM3(V̂ , V̂ , V̂ ) is defined as in (9) and M̂3(V̂ , V̂ , V̂ )

is the estimation ofM3(V̂ , V̂ , V̂ ) by samples. Further, we assume V ∈ Rd×K is an orthogonal basis ofW ∗ and satisfies

‖V V T − V̂ V̂
T
‖ ≤ 1/4. Then, provided that N & K5 log6 d, with probability at least 1−N−10, we have

‖M̂3(V̂ , V̂ , V̂ )−M3(V̂ , V̂ , V̂ )‖ . σ2
1(A)

√
(1 + δ2)K3 logN

|Ω|
. (148)

Lemma 17. SupposeM1 is defined as in (6) and M̂1 is the estimation ofM1 by samples. Then, with probability 1−N−10,
we have

‖M̂1 −M1‖ . σ2
1(A)

√
(1 + δ2)d logN

|Ω|
(149)

provided that |Ω| & (1 + δ2)d log4N .

Lemma 18 ((Zhong et al., 2017b), Lemma E.6). Let V ∈ Rd×K be an orthogonal basis of W ∗ and V̂ be generated by
step 4 in Subroutine 1. Assume ‖M̂2 −M2‖2 ≤ σK(M2)/10. Then, for some small ε0, we have

‖V V T − V̂ V̂
T
‖2 ≤

‖M2 − M̂2‖
σK(M2)

. (150)

Lemma 19 ((Zhong et al., 2017b), Lemma E.13). Let V ∈ Rd×K be an orthogonal basis ofW ∗ and V̂ be generated by
step 4 in Subroutine 1. AssumeM1 can be written in the form of (6) with some homogeneous function φ1, and let M̂1 be
the estimation ofM1 by samples. Let α̂ be the optimal solution of (11) with ŵj = V̂ ûj . Then, for each j ∈ [K], if

T1 := ‖V V T − V̂ V̂
T
‖2 ≤

1

κ2
√
K
,

T2 := ‖ûj − V̂
T
wj‖2 ≤

1

κ2
√
K
,

T3 := ‖M̂1 −M1‖2 ≤
1

4
‖M1‖2,

(151)

then we have ∣∣∣‖wj‖2 − α̂j
∣∣∣ ≤ (κ4K

3
2

(
T1 + T2

)
+ κ2K

1
2T3

)
‖W ∗‖2. (152)

Proof of Lemma 4. we have

‖w∗j − α̂jV̂ ûj‖2 ≤
∥∥∥w∗j − ‖wj‖2V̂ ûj + ‖wj‖2V̂ ûj − α̂jV̂ ûj

∥∥∥
2

≤
∥∥∥w∗j − ‖wj‖2V̂ ûj‖2

∥∥∥
2

∥∥∥‖wj‖2V̂ ûj − α̂jV̂ ûj
∥∥∥

2

≤‖w∗j‖2‖w∗j − V̂ ûj‖2 +
∣∣∣‖wj‖2 − α̂j

∥∥∥
2
‖V̂ ûj‖2

≤σ1

(
‖w∗j − V̂ V̂

T
w∗j‖2 + ‖V̂

T
w∗j − ûj‖2

)
+
∣∣∣‖wj‖2 − α̂j

∣∣∣
:=σ1

(
I1 + I2

)
+ I3.

(153)

From Lemma 18, we have

I1 = ‖w∗j − V̂ V̂
T
w∗j‖2 ≤ ‖V V

T − V̂ V̂
T
‖2 ≤

‖M̂2 −M2‖2
σK(M2)

, (154)
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where the last inequality comes from Lemma 15. Then, from (7), we know that

σK(M2) . min
1≤j≤K

‖w∗j‖2 . σK(W ∗). (155)

From Theorem 3 in (Kuleshov et al., 2015), we have

I2 = ‖V̂
T
w∗j − ûj‖2 .

κ

σK(W ∗)
‖M̂3(V̂ , V̂ , V̂ )−M3(V̂ , V̂ , V̂ )‖2. (156)

To guarantee the condition (151) in Lemma 19 hold, according to Lemmas 15 and 16, we need |Ω| & κ3(1 + δ2)Kd logN .
Then, from Lemma 19, we have

I3 =
(
κ4K3/2(I1 + I2) + κ2K1/2‖M̂1 −M1‖

)
‖W ∗‖2. (157)

Since d� K, according to Lemmas 15, 16 and 17, we have

‖w∗j − α̂jV̂ ûj‖2 . κ6σ2
1(A)

√
K3(1 + δ2)d logN

|Ω|
‖W ∗‖2 (158)

provided |Ω| & (1 + δ2)d log4N .
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