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Abstract 

The F -measure is a widely used performance 
measure for multi-label classification, where mul-
tiple labels can be active in an instance simultane-
ously (e.g. in image tagging, multiple tags can be 
active in any image). In particular, the F -measure 
explicitly balances recall (fraction of active la-
bels predicted to be active) and precision (fraction 
of labels predicted to be active that are actually 
so), both of which are important in evaluating the 
overall performance of a multi-label classifier. As 
with most discrete prediction problems, however, 
directly optimizing the F -measure is computa-
tionally hard. In this paper, we explore the ques-
tion of designing convex surrogate losses that are 
calibrated for the F -measure – specifically, that 
have the property that minimizing the surrogate 
loss yields (in the limit of sufficient data) a Bayes 
optimal multi-label classifier for the F -measure. 
We show that the F -measure for an s-label prob-
lem, when viewed as a 2s × 2s loss matrix, has 
rank at most s2 + 1, and apply a result of Ra-
maswamy et al. (2014) to design a family of con-
vex calibrated surrogates for the F -measure. The 
resulting surrogate risk minimization algorithms 
can be viewed as decomposing the multi-label 
F -measure learning problem into s2 + 1 binary 
class probability estimation problems. We also 
provide a quantitative regret transfer bound for 
our surrogates, which allows any regret guaran-
tees for the binary problems to be transferred to 
regret guarantees for the overall F -measure prob-
lem, and discuss a connection with the algorithm 
of Dembczynski et al. (2013). Our experiments 
confirm our theoretical findings. 
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1. Introduction 
The Fβ -measure is a widely used performance measure for 
multi-label classification (MLC) problems. In particular, 
in an MLC problem, multiple labels can be active in an 
instance simultaneously; a good example is that of image 
tagging, where several tags (such as sky, sand, water) 
can be active in the same image. In such problems, when 
evaluating the performance of a classifier on a particular 
instance, it is important to balance the recall of the classifier 
on the given instance, i.e. the fraction of active labels for 
that instance that are correctly predicted as such, and the 
precision of the classifier on the instance, i.e. the fraction 
of labels predicted to be active for that instance that are 
actually so. The Fβ -measure accomplishes this by taking the 
(possibly weighted) harmonic mean of these two quantities. 

Unfortunately, as with most discrete prediction problems, 
optimizing the Fβ -measure directly during training is com-
putationally hard. Consequently, one generally settles for 
some form of approximation. One approach is to simply 
treat the labels as independent, and train a separate binary 
classifier for each label; this is sometimes referred to as the 
binary relevance (BR) approach. Of course, this ignores the 
fact that labels can have correlations among them (e.g. sky 
and cloud may be more likely to co-occur than sky and 
computer). Several other approaches have been proposed 
in recent years (Dembczynski et al., 2013; Koyejo et al., 
2015; Wu & Zhou, 2017; Pillai et al., 2017). 

In this paper, we turn to the theory of convex calibrated sur-
rogate losses – which has yielded convex risk minimization 
algorithms for several other discrete prediction problems in 
recent years (Bartlett et al., 2006; Zhang, 2004b; Tewari & 
Bartlett, 2007; Steinwart, 2007; Duchi et al., 2010; Gao & 
Zhou, 2013; Ramaswamy et al., 2014; 2015) – to design 
principled surrogate risk minimization algorithms for the 
multi-label Fβ -measure. In particular, for an MLC problem 
with s tags, the total number of possible labelings of an 
instance is 2s (each tag can be active or inactive). Viewing 
the Fβ -measure as (one minus) a 2s × 2s loss matrix, we 
show that this matrix has rank at most s2 + 1, and apply the 
results of Ramaswamy et al. (2014) to design an output cod-
ing scheme that reduces the Fβ learning problem to a set of 
s2 + 1 binary class probability estimation (CPE) problems. 
By using a suitable binary surrogate risk minimization al-
gorithm (such as binary logistic regression) for these binary 
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problems, we effectively construct a (s2 + 1)-dimensional 
convex calibrated surrogate loss for the Fβ -measure. We 
also give a quantitative regret transfer bound for the con-
structed surrogate, which allows us to transfer any regret 
guarantees for the binary subproblems to guarantees on Fβ -
regret for the overall MLC problem. In particular, this means 
that using a consistent learner for the binary problems yields 
a consistent learner for the MLC problem (whose Fβ -regret 
goes to zero as the training sample size increases). 

Our algorithm is related to the plug-in algorithm of Dem-
bczynski et al. (2013), which also estimates s2 +1 statistics 
of the underlying distribution. Dembczynski et al. (2013) 
estimate these statistics by reducing the Fβ maximization 
problem to s multiclass CPE problems, each with at most 
s + 1 classes (plus one binary CPE problem); we do so by 
reducing the problem to s2 +1 binary CPE problems. As we 
show, both algorithms effectively estimate the same s2 + 1 
statistics, and indeed, both perform similarly in experiments. 
Interestingly, the algorithm of Dembczynski et al. (2013), 
while motivated primarily by the plug-in approach, can also 
be viewed as minimizing a certain convex calibrated surro-
gate loss (different from ours); conversely, our algorithm, 
while motivated primarily by the convex calibrated surro-
gates approach, can also be viewed as a plug-in algorithm. 
Our study brings out interesting connections between the 
two approaches; in addition, to the best our knowledge, our 
analysis is the first to provide a quantitative regret transfer 
bound for calibrated surrogates for the Fβ -measure. 

Organization. Section 2 discusses related work. Section 3 
gives preliminaries and background. Section 4 gives our con-
vex calibrated surrogates for the Fβ -measure; Section 5 pro-
vides a regret transfer bound for them. Section 6 discusses 
the relationship with the plug-in algorithm of Dembczynski 
et al. (2013). Section 7 summarizes our experiments. 

2. Related Work 
There has been much work on multi-label learning, learn-
ing with the Fβ -measure, and convex calibrated surrogates. 
Below we briefly discuss work that is most related to our 
study. For detailed surveys on multi-label learning, we refer 
the reader to Zhang & Zhou (2014) and Pillai et al. (2017). 

Bayes optimal multi-label classifiers. In an elegant study, 
Dembczynski et al. (2011) studied in detail the form of a 
Bayes optimal multi-label classifier for the F1-measure. In 
particular, they showed that, for an s-label MLC problem, 
given a certain set of s2 + 1 statistics of the true conditional 
label distribution (distribution over 2s labelings), one can 
compute a Bayes optimal classifier for the F1-measure in 
O(s3) time. Their result extends to general Fβ -measures. 
Bayes optimal classifiers have also been studied for other 
MLC performance measures, such as Hamming loss and 
subset 0-1 loss (Dembczynski et al., 2010). 

Consistent algorithms for multi-label learning. Dem-
bczynski et al. (2013) extended and operationalized the 
results of Dembczynski et al. (2011) by providing a consis-
tent plug-in MLC algorithm for the Fβ -measure. Specifi-
cally, they showed that the s2 +1 statistics of the conditional 
label distribution needed to compute a Bayes optimal classi-
fier can be estimated via s multiclass CPE problems, each 
with at most s + 1 classes, plus one binary CPE problem; 
the statistics estimated by solving these CPE problems can 
then be plugged into the O(s3)-time procedure of Dem-
bczynski et al. (2011) to produce a consistent plug-in algo-
rithm termed the exact F-measure plug-in (EFP) algorithm. 
Consistent learning algorithms have also been studied for 
other multi-label performance measures (Gao & Zhou, 2013; 
Koyejo et al., 2015).1 The simple approach of learning an 
independent binary classifier for each of the s labels, known 
as binary relevance (BR), is known to yield a consistent 
algorithm for the Hamming loss; it also yields a consis-
tent algorithm for the Fβ -measure under the assumption of 
conditionally independent labels, but can be arbitrarily bad 
otherwise (Dembczynski et al., 2011). 

Large-margin algorithms for multi-label learning. Sev-
eral studies have considered large-margin algorithms for 
multi-label learning with the Fβ -measure. These include 
the reverse multi-label (RML) and sub-modular multi-label 
(SML) algorithms of Petterson & Caetano (2010; 2011), 
which make use of the StructSVM framework (Tsochan-
tiridis et al., 2005), and more recently, the label-wise and 
instance-wise margin optimization (LIMO) algorithm due to 
Wu & Zhou (2017), which aims to simultaneously optimize 
several different multi-label performance measures. The 
RML and SML algorithms were proven to be inconsistent 
for the Fβ -measure and shown to be outperformed by the 
EFP algorithm by Dembczynski et al. (2013). We include a 
comparison with LIMO in our experiments. 

Multivariate Fβ -measure for binary classification. The 
Fβ -measure is also used as a multivariate performance mea-
sure in binary classification tasks with significant class im-
balance. This use of the Fβ -measure is related to, but dis-
tinct from, the use of the Fβ -measure in MLC problems. 
Several approaches have been proposed that aim to opti-
mize the multivariate Fβ -measure in binary classification 
(Joachims, 2005; Ye et al., 2012; Parambath et al., 2014). 

1Note that while the study of Koyejo et al. (2015) also includes 
the Fβ -measure (among other performance measures), their study 
is in the context of what has been referred to as the ‘expected 
utility maximization’ (EUM) framework; in contrast, our study 
is in the context of what has been referred to as the ‘decision-
theoretic analysis’ (DTA) framework. Their results are generally 
incomparable to ours. (In particular, under the EUM framework, 
Koyejo et al. (2015) showed that a thresholding approach leads 
to Bayes optimal performance; on the contrary, under the DTA 
framework, it was shown by Dembczynski et al. (2011) that a 
thresholding approach cannot be optimal for general distributions.) 
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Convex calibrated surrogates. Convex surrogate losses 
are frequently used in machine learning to design compu-
tationally efficient learning algorithms. The notion of cali-
brated surrogate losses, which ensures that minimizing the 
surrogate loss can (in the limit of sufficient data) recover 
a Bayes optimal model for the target discrete loss, was ini-
tially studied in the context of binary classification (Bartlett 
et al., 2006; Zhang, 2004a) and multiclass 0-1 classification 
(Zhang, 2004b; Tewari & Bartlett, 2007). In recent years, 
calibrated surrogates have been designed for several more 
complex learning problems, including general multiclass 
problems and certain types of subset ranking and multi-label 
problems (Steinwart, 2007; Duchi et al., 2010; Gao & Zhou, 
2013; Ramaswamy et al., 2013; 2014; 2015). In our work, 
we will make use of a result of Ramaswamy et al. (2014), 
who designed convex calibrated surrogates based on output 
coding for multiclass problems with low-rank loss matrices. 

3. Preliminaries and Background 
3.1. Problem Setup 

Multi-label classification (MLC). In an MLC problem, 
there is an instance space X , and a set of s labels or ‘tags’ 
L = [s] := {1, . . . , s} that can be associated with each 
instance in X . For example, in image tagging, X is the 
set of possible images, and L is a set of s pre-defined tags 
(such as sky, cloud, water etc) that can be associated 
with each image. The learner is given a training sample 
S = {(x1, y1), . . . , (xm, ym)} ∈ (X × {0, 1}s)m, where 
the labeling yi ∈ {0, 1}s indicates which of the s tags are ac-
tive in instance xi (specifically, yij = 1 denotes that tag j is 
active in instance xi, and yij = 0 denotes it is inactive). The 
goal is to learn from these examples a multi-label classifier 
h : X →{0, 1}s which, given a new instance x ∈ X , pre-
dicts which tags are active or inactive via h(x) ∈ {0, 1}s . 

Fβ -measure. For any β > 0, the Fβ -measure evaluates 
the quality of an MLC prediction as follows. Given a true 
labeling y ∈ {0, 1}s and a predicted labeling y b ∈ {0, 1}s , 
the recall and precision are given by P Ps s 

j=1 yj ybj j=1 yj ybj rec(y, yb) = ; prec(y, yb) = . 
kyk1 kybk1 

In words, the recall measures the fraction of active tags 
that are predicted correctly, and the precision measures the 
fraction of tags predicted as active that are actually so. The 
Fβ -measure balances these two quantities by taking their 
(weighted) harmonic mean: �� � � � �−1 

β2 1 1 1 Fβ (y, yb) = + 1+β2 1+β2 rec(y, yb) prec(y, yb) Ps 
(1 + β2) yj j=1 yj b

= . (1) 
β2kyk1 + kybk1 

Clearly, 0 ≤ Fβ (y, yb) ≤ 1. Higher values of the Fβ -

measure correspond to better quality predictions. We will 
take 0 = 1, so that when y = y b = 0, we have Fβ (0, 0) = 0 
1. The most commonly used instantiation is the F1-measure, 
which weighs recall and precision equally; other commonly 
used variants include the F2-measure, which weighs recall 
more heavily than precision, and the F0.5-measure, which 
weighs precision more heavily than recall. 

Learning goal. Assuming that training examples are drawn 
IID from some underlying probability distribution D on X× 
{0, 1}s, it is natural then to measure the quality of a multi-
label classifier h : X →{0, 1}s by its Fβ -generalization 
accuracy:2 

acc Fβ [ h ] = E(x,y)∼D[ Fβ (y, h(x)) ] . D 

The Bayes Fβ -accuracy is then the highest possible value 
of the Fβ -generalization accuracy for D: 

Fβ ,∗ Fβ acc = sup acc [ h ] . D D 
h:X →{0,1}s 

The Fβ -regret of a multi-label classifier h is then the differ-
ence between the Bayes Fβ -accuracy and the Fβ -accuracy 
of h: Fβ Fβ ,∗ Fβ regret [ h ] = acc − acc [ h ] . D D D 

Our goal will be to design consistent algorithms for the 
Fβ -measure, i.e. algorithms whose Fβ -regret converges (in 
probability) to zero as the number of training examples 
increases. In particular, since we cannot maximize the 
(discrete) Fβ -measure directly, we would like to design 
consistent algorithms that maximize a concave surrogate 
performance measure – or equivalently, minimize a convex 
surrogate loss – instead. For this, we will turn to the theory 
of convex calibrated surrogates. 

3.2. Convex Calibrated Surrogates for Multiclass 
Problems 

Here we review the theory of convex calibrated surrogates 
for multiclass classification problems, and in particular, the 
result of Ramaswamy et al. (2014) for low-rank multiclass 
loss matrices that we will use in our work. We will apply 
the theory to the multi-label Fβ -measure in Section 4. 

Multiclass classification. Consider a standard multiclass 
(not multi-label) learning problem with instance space X 
and label space Y = [n] (i.e., n classes). Let L ∈ Rn×n 

+ 
be a loss matrix whose (y, yb)-th entry ` y,y b = `(y, yb) (for 
each y, y b ∈ [n]) specifies the loss incurred on predicting y b
when the true label is y (the 0-1 loss L0-1 is a special case 
with `0-1 = 1(b 6 = y = y)). Then, given a training sample S y,y b
((x1, y1), . . . , (xm, ym)) ∈ (X ×Y)m with examples drawn 
IID from some underlying probability distribution D on 
X ×Y , the performance of a classifier h : X →Y is measured 
by its L-generalization error erL [h] = E(x,y)∼D[ ̀  y,h(x) ], D

2Note that our focus is on instance-averaged Fβ performance 
(Zhang & Zhou, 2014). 
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L,∗ L,∗ or its L-regret regretL [h] = erL [h] − er , where er = D D D D 
infh:X →Y erL [h] is the Bayes L-error for D. A learning D

algorithm that maps training samples S to classifiers hS 

is said to be (universally) L-consistent if for all D and for 
P

S ∼ Dm , regretL [hS ] −→0 as m→∞. D

Surrogate risk minimization and calibrated surrogates. 
Since minimizing the discrete loss L directly is computation-
ally hard, a common algorithmic framework is to minimize a 
surrogate loss ψ : [n] × Rd→R+ for some suitable d ∈ Z+. 
In particular, given a multiclass training sample S as above, 
one learns a d-dimensional ‘scoring’ function fS : X→Rd 

by solving Pm 
minf ψ(yi, f(xi)) i=1 

over a suitably rich class of functions f : X→Rd; and 
then returns hS = decode ◦ fS for some suitable map-
ping decode : Rd→[n]. In practice, the surrogate ψ is 
often chosen to be convex in its second argument to en-
able efficient minimization. It is known that if the mini-
mization is performed over a universal function class (with 
suitable regularization), then the resulting algorithm is uni-
versally ψ-consistent, i.e. that the ψ-regret converges to 

ψ ψ,∗ Pzero: regretψ [fS ] = er [fS ] − er −→0 as m→∞ (where D D D 
ψ er [f ] = E(x,y)∼D[ ψ(y, f(x)) ] is the ψ-generalization er-D

ψ,∗ ψ ror of f and er = inff :X→Rd er [f ] is the Bayes ψ-error). D D

The surrogate ψ, together with the mapping decode, is said 
to be L-calibrated if this also implies L-consistency, i.e. if 

P Pregretψ [fS ] −→0 =⇒ regretL [decode ◦ fS ] −→0 . D D

Thus, given a target loss L, the task of designing an L-
consistent algorithm reduces to designing a convex L-
calibrated surrogate-mapping pair (ψ, decode); the resulting 
surrogate risk minimization algorithm (implemented in a 
universal function class with suitable regularization) is then 
universally L-consistent. 

Result of Ramaswamy et al. (2014) for low-rank loss ma-
trices. The result of Ramaswamy et al. (2014) effectively 
decomposes multiclass problems into a set of binary CPE 
problems; to describe the result, we will need the following 
definition for binary losses: 
Definition 1 (Strictly proper composite binary losses (Reid 
& Williamson, 2010)). A binary loss φ : {±1} × R→R+ 

is strictly proper composite with underlying (invertible) link 
function γ : [0, 1]→R if for all q ∈ [0, 1] and u 6= γ(q) ∈ R: h i 

Ey∼Bin±1(q) φ(y, u) − φ(y, γ(q)) > 0 , 

where y ∼ Bin±1(q) denotes a {±1}-valued random vari-
able that takes value +1 with probability q and value −1 
with probability 1 − q. 

Intuitively, minimizing a strictly proper composite binary 
loss allows one to recover accurate class probability es-
timates for binary CPE problems: the learned real-valued 
score is simply inverted via γ−1 (Reid & Williamson, 2010). 

We can now state the result of Ramaswamy et al. (2014), 
which for multiclass loss matrices L of rank r, gives a family 
of r-dimensional convex L-calibrated surrogates defined in 
terms of strictly proper composite binary losses as follows 
(result specialized here to the case of square loss matrices, 
and stated with a small change in normalization): 

Theorem 2 (Ramaswamy et al. (2014)). Let L ∈ Rn×n be + 
> a rank-r multiclass loss matrix, with ` y,y b = a by b for some y 

a1, . . . , an, b1, . . . , bn ∈ Rr. Let φ : {±1} × R→R+ be 
any strictly proper composite binary loss, with underlying 
link function γ : [0, 1]→R. Define a multiclass surrogate ψ : 
[n] × Rr→R+ and mapping decode : Rr→[n] as follows: 

r � � X 
ψ(y, u) = eayj φ(+1, uj ) + (1 − eayj )φ(−1, uj ) 

j=1 
rX edecode(u) ∈ argmin yj γ

−1(uj ) + cbbb y , 
yb∈[n] j=1 

where 
ayj − amin eayj = (∈ [0, 1]) 
amax − amin ebb = (amax yj yj − amin) · bbPr 

cb = bby amin j=1 yj 

amin = min ayj 
y,j 

amax = max ayj . 
y,j 

Then (ψ, decode) is L-calibrated. 

The above result effectively decomposes the multiclass prob-
lem into r binary CPE problems, where the labels for these 
CPE problems can themselves be given as probabilities 
in [0, 1] rather than binary values (see Ramaswamy et al. 
(2014) for details). For our purposes, we will use the stan-
dard binary logistic loss for the binary CPE problems, which 
is known to be strictly proper composite (see Section 4 be-
low for more details). 

4. Convex Calibrated Surrogates for Fβ 

In order to construct convex calibrated surrogates – and cor-
responding surrogate risk minimization algorithms – for the 
multi-label Fβ -measure, we will start by viewing the multi-
label learning problem as a giant multiclass classification 
problem with n = 2s classes (this is only for the purpose 
of analysis and derivation of the surrogates; as we will see, 
the actual algorithms we will obtain will require learning 
only O(s2) real-valued score functions). To this end, let us 

∈ R{0,1}
s×{0,1}s 

define the Fβ -loss matrix LFβ as follows: + 

`
Fβ = 1 − Fβ (y, yb) . y,y b

LFβ has low rank. We show here that (a slightly shifted 
version of) the above loss matrix has rank at most s2 + 1. 

Proposition 3. rank(LFβ − 1) ≤ s2 + 1. 

http:functions).To
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Proof. We have, Ps 
(1 + β2) yj Fβ j=1 yj b

` − 1 = − Fβ (y, yb) = − . y,y b β2kyk1 + kybk1 

Stratifying over the s + 1 different values of kyk1 ∈ 
{0, 1 . . . , s}, we can write this as 

`
Fβ − 1 = − 1(kyk1 = 0) · 1(kybk1 = 0) y,y b Ps sX (1 + β2) yj j=1 yj b− 1(kyk1 = k) · 

β2k + kybk1 
k=1 

s sXX 
= ay,0 · byb,0 + ay,jk · byb,jk , 

j=1 k=1 

where 

ay,0 = 1(kyk1 = 0) (2) 
byb,0 = −1(kybk1 = 0) (3) 
ay,jk = 1(kyk1 = k) · yj (4) 

(1 + β2) · ybj 
byb,jk = − . (5) 

β2k + kybk1 

This proves the claim. 

LFβ -calibrated surrogates. Given the above result, we 
can now apply Theorem 2 to construct a family of (s2 + 1)-

3 dimensional convex calibrated surrogate losses for LFβ . 
Specifically, starting with any strictly proper composite bi-
nary loss φ : {±1} × R→R+ with underlying link function 
γ : [0, 1]→R, we define a multiclass surrogate ψ : {0, 1}s × 

+1→R+ Rs 2 and mapping decode : Rs 2 +1→{0, 1}s as fol-� �> 2

lows (where we denote u = u0, (ujk)s ∈ Rs +1): j,k=1 

ψ(y, u) 

= ay,0 · φ(+1, u0) + (1 − ay,0) · φ(−1, u0) 
s sXX 

+ ay,jk · φ(+1, ujk) + (1 − ay,jk) · φ(−1, ujk) 
j=1 k=1 

(6) 
decode(u) 

s sXX 
∈ argmin byb,0 · γ−1(u0) + byb,jk · γ−1(ujk) , 

yb∈{0,1}s 
j=1 k=1 

(7) 

where ay,0, ay,jk, byb,0, byb,jk are as defined in Eqs. (2-5). 
Then, by Theorem 2 and the proof of Proposition 3, it fol-
lows that (ψ, decode) is LFβ -calibrated.4 Therefore, the re-
sulting (ψ, decode)-based surrogate risk minimization algo-
rithm, when implemented in a universal function class (with 

3Note that minimizing the LFβ -generalization error is equiva-
lent to minimizing the (LFβ − 1)-generalization error, and there-
fore a calibrated surrogate for LFβ − 1 is also calibrated for LFβ . 

4Note that when applying Theorem 2 here, we have amin = 0 eand amax = 1, and therefore eay = ay, by b = byb , and cy b = 0. 

Algorithm 1 Surrogate risk minimization algorithm for 
multi-label Fβ -measure 
1: Input: Training sample S = ((x1, y1), . . . , (xm, ym)) 
∈ (X × {0, 1}s)m 

2: Parameters: (1) Strictly proper composite binary CPE 
loss φ : {±1} × R→R+; (2) Class F of functions 
f : X→Rs 2+1 Pm 3: Find fS ∈ argminf ∈F ψ(yi, f(xi)), where ψ is i=1 
as defined in Eq. (6) 

4: Output: Multi-label classifier hS = decode◦fS , where 
decode is as defined in Eq. (7) (see Appendix for effi-
cient implementation of decode) 

suitable regularization), is consistent for the Fβ -measure. 
The algorithm is summarized in Algorithm 2. Note that 
since ay,0, ay,jk ∈ {0, 1}, in this case minimizing the sur-
rogate risk above amounts to solving s2 + 1 binary CPE 
problems with standard binary (non-probabilistic) labels. 

Choice of strictly proper composite binary loss φ. As a 
specific instantiation, in our experiments, we will make use 
of the binary logistic loss φlog : {±1} × R→R+ given by 

−yu) φlog(y, u) = ln(1 + e (8) 

as the binary loss above; this is known to be strictly proper 
composite (Reid & Williamson, 2010), with underlying logit 
link function γlog : [0, 1]→R given by � � 

γlog(p) = ln 
p

. (9) 
1 − p 

Implementation of ‘decode’ mapping. The mapping 
Rs 2+1→{0, 1}s decode : above can be implemented in 

O(s3) time using a procedure due to Dembczynski et al. 
(2011); details are provided in the Appendix for complete-
ness. In particular, Dembczynski et al. (2011) show that if 
one knows the true conditional MLC distribution p(y|x), 
then one can use s2 + 1 statistics of this distribution to con-
struct a Bayes optimal classifier for the Fβ -measure; they 
then provide a procedure to perform this computation in 
O(s3) time. As we discuss in greater detail in Section 6, 
our surrogate loss ψ can be viewed as computing estimates 
of the same s2 + 1 statistics from the training sample S, 
and therefore our algorithm, which applies the ‘decoding’ 
procedure of Dembczynski et al. (2011) to these estimated 
quantities, can be viewed as effectively learning a form of 
‘plug-in’ multi-label classifier for the Fβ -measure. 

5. Regret Transfer Bound 
Above, we constructed a family of LFβ -calibrated surrogate-
mapping pairs (ψ, decode) (Eqs. (6-7)), yielding a fam-
ily of surrogate risk minimization algorithms for the Fβ -
measure (Algorithm 2). We now give a quantitative regret 



Convex Calibrated Surrogates for the Multi-Label F-Measure 

transfer bound showing that any guarantees on the surro- Theorem 5. Let φ : {±1}×R→R+ be a λ-strongly proper 
gate ψ-regret also translate to guarantees on the target Fβ - composite binary loss with underlying link function γ : 
regret. Specifically, the surrogate loss ψ was defined in [0, 1]→R. Let (ψ, decode) be defined as in Eqs. (6-7). Then 
terms of a constituent strictly proper composite binary loss for all probability distributions D on X × {0, 1}s and all 

+1 φ f : X→Rs 2 
, we have φ : {±1} × R→R+. We show that if the binary loss 

is strongly proper composite (a relatively mild condition r 
satisfied by several common strictly proper composite bi- Fβ 1 + β2 2(ln s + 1) 

regret [decode◦f ] ≤ · regretψ [f ] . D Dnary losses, including the logistic loss), then for all models β λ 
f : X→Rs 2+1, we can upper bound regretFβ [decode ◦ f ], D 

Proof. We have, the target Fβ -regret of the multi-label classifier given by 
h(x) = decode(f(x)), in terms of regretψ [f ], the surrogate Fβ D [decode ◦ f ] hX 

regretD regret of f . In order to prove the regret transfer bound, we �
� 

`
�i 

Fβ Fβ `will need the following definition: = Ex p(y|x) · − min y,decode(f (x)) y,y b
y b

y Definition 4 (Strongly proper composite binary losses hX �i 
> > (Agarwal, 2014)). Let λ > 0. A binary loss φ : {±1} × = Ex p(y|x) · a bdecode(f (x)) − min a by by y 

R→R+ is said to be λ-strongly proper composite with un- y
y bh i derlying (invertible) link function γ : [0, 1]→R if for all 

q ∈ [0, 1], u ∈ R: = Ex q(x)
>bdecode(f (x)) − min q(x)>by b

y b �i � h i h � �2 λ q(x)> 
γ−1(u) − q bdecode(f (x)) − by b= Ex max Ey∼Bin±1(q) φ(y, u) − φ(y, γ(q)) ≥ . 

y b2 � h �>� �i 

� � 

≤ Ex max q(x) − γ−1(f(x)) bdecode(f (x)) − by bWe note that the logistic loss (Eq. (8)) is known to be 4- y b
strongly proper composite with underlying link given by the (since by the definition of decode, 

i 




logit link (Eq. (9)) (Agarwal, 2014). 

−γ−1(f(x))> 

q(x) − γ−1(f(x)) 

(by the Cauchy-Schwarz inequality) 

bdecode(f (x)) − by b ≥ 0 ∀ yb) 
Additional notation. To prove our regret transfer bound, h i 

 



 

 we will also need some additional notation. In particular, ≤ Ex bdecode(f (x)) − by b· max 
2 2 y bfor each y, y b ∈ {0, 1}s , we will define the vectors ⎛ ⎞ h

 

 



 

 ay,0 q(x) − γ−1(f(x)) (13) ≤ 2 max by b · Ex . ⎜⎜⎜⎝ 

⎟⎟⎟⎠ 2 2 ay,11 
. . . 

y b
+1 ∈ {0, 1}s 2 (10) ay = 

Now, since φ is λ-strongly proper composite with link func-
tion γ, we have ay,ss ⎛ ⎞ 

Ex 

h

q(x) − γ−1(f(x)) 
i 

byb,0 2 ⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

byb,11 
. . . 

byb,ss 

2 
+1 ∈ Rs 2 , (11) h� �2 by b = 

X X 

= Ex q0(x) − γ−1(f0(x)) + 

s s � �2i 
qjk(x) − γ−1(fjk(x)) where ay,0, ay,jk, byb,0, byb,jk are as defined in Eqs. (2-5). 

j=1 k=1 Moreover, for each x ∈ X , we will define i h h 

X 

2 ≤ 

s

X Ex E φ(y, f0(x)) − φ(y, γ(q0(x)) + y∼Bin±1(q0(x)) 2+1 . (12) q(x) = Ey|x[ay] = p(y|x) · ay ∈ [0, 1]s 
λ h ii 

h h 

X sy∈{0,1}s 

Ey∼Bin±1(qjk (x)) φ(y, fjk(x)) − φ(y, γ(qjk(x)) 
Intuitively, the elements q0(x), (qjk(x))s of q(x) are j=1 k=1 j,k=1 

the ‘class probability functions’ corresponding to the s2 + 1 (by λ-strong proper compositeness of φ) ii binary CPE problems effectively created by the surrogate 2 
Ex Ey|x ψ(y, f(x)) − inf ψ(y, u) 

2 +1 u∈Rs

2+1 = loss ψ defined in Eq. (6). The function fS : X→Rs 
λ 

learned by minimizing ψ will be such that γ−1(fS (x)) will 2 
serve as an estimate of q(x). = regretψ [f ] . (14) Dλ 
Regret transfer bound. We are now ready to state and Moreover, we have 
prove the following regret transfer bound for the family of 
surrogate losses defined in the previous section: kb0k = 1 , 
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and for y b = 6 0, we have 
sX 

kbbk2 = (1 + β2)2 gk(kybk1) , y 2 
k=1 

where t 
gk(t) = . 

(β2k + t)2 

It can be verified that gk(t) is maximized at t ∗ = β2k, 
yielding for each y b = 6 0, 

sX 
kbybk2 ≤ (1 + β2)2 gk(β

2k) 2 
k=1 
sX 

= (1 + β2)2 1 
4β2k 

k=1 

(1 + β2)2 

≤ (ln s + 1) 
4β2 Ps 1 (since ≤ ln s + 1) . k=1 k 

This gives 
(1 + β2) √ 

max kbybk2 ≤ ln s + 1 . 
y b 2β 

Combining Eqs. (13-15) and applying Jensen’s inequality 
(to the convex function g(z) = z2) proves the claim. 

Remark. We note that Theorem 5 gives a self-contained 
proof that the surrogate-mapping pair (ψ, decode) defined in 
Eqs. (6-7) is LFβ -calibrated, since the result implies that for 
any sequence of models fS learned from training samples 
S ∼ Dm of increasing size m, 

P Fβ Pregretψ [fS ] −→0 =⇒ regret [decode ◦ fS ] −→0 . D D 

Nevertheless, since the design of our surrogate-mapping 
pair (ψ, decode) was based on the work of Ramaswamy 
et al. (2014), we chose to present their calibration result 
(Theorem 2) first. We also note that, while we have stated 
the above regret transfer bound for the Fβ -measure, a similar 
bound also applies more generally to all multiclass problems 
with low-rank matrices as considered in Theorem 2, thus 
yielding a stronger (quantitative) result than Theorem 2 
(Ramaswamy, 2015). 

6. Relationship with Plug-in Algorithm of 
Dembczynski et al. (2013) 

The plug-in algorithm of Dembczynski et al. (2013), termed 
exact F -measure plug-in (EFP), estimates the following 
statistics of the conditional label distribution p(y|x): 

P(kyk1 = 0 | x) 
P(kyk1 = k, yj = 1 | x) , P(yj = 0 | x) , j, k ∈ [s] . 

It formulates estimation of the first statistic above as a binary 
CPE problem (solved via binary logistic regression), and 
estimation of the remaining statistics as s multiclass CPE 
problems (one for each j ∈ [s]), each with s + 1 classes 

(solved via multiclass logistic regression). In practice, since 
the label vectors y are typically sparse (only a small subset 
of the s labels are active in any instance), the effective 
number of classes for each of the s problems is much smaller 
than s + 1, and Dembczynski et al. (2013) exploit this fact 
by considering the statistics P(kyk1 = k, yj = 1 | x) only 
for small k (based on the maximum number of active labels 
in the training instances). 

As the proof of Theorem 5 makes clear, our algorithm can 
be viewed as estimating the vector q(x) ∈ [0, 1]s 2+1, with 
estimation of each component formulated as a binary CPE 
problem; in particular, having learned a score vector fS : 

+1 X→Rs 2+1, our algorithm yields γ−1(fS (x)) ∈ [0, 1]s 2

as an estimate for q(x). A closer look reveals that q(x) 
captures essentially the same s2 + 1 statistics as above:5 

q0(x) = Ey|x[ay,0] = P(kyk1 = 0 | x) 
qjk(x) = Ey|x[ay,jk] = P(kyk1 = k, yj = 1 | x) , j, k ∈ [s] . 

Thus, both algorithms effectively estimate the same statistics 
of the conditional label distribution p(y|x); indeed, these 
are precisely the statistics needed to compute a Bayes opti-
mal multi-label classifier for the Fβ -measure (Dembczynski 
et al., 2011). In practice, as with the EFP algorithm, our 
algorithm can also be implemented to estimate qjk(x) only 
for small values of k (i.e. values of k for which labelings y 
with kyk1 = k are actually seen in the training data). 

7. Experiments 
We conducted two sets of experiments to evaluate our algo-
rithm. In the first experiment, we generated synthetic data 
from a known distribution for which the Bayes optimal F1 -
accuracy could be estimated, and tested the convergence of 
our algorithm to this optimal F1 performance. In the second 
set of experiments, we compared the performance of our 
algorithm to that of other algorithms on various benchmark 
data sets. We summarize both sets of experiments below. 

7.1. Synthetic Data: Convergence to Bayes Optimal F1 

In the first experiment, we tested the consistency behav-
ior of our algorithm on a synthetic data set from a known 
distribution for which the Bayes optimal F1 performance 
could be estimated. Specifically, we generated a multi-

R100 label data set with instances x in X = and s = 6 
labels/tags (i.e., labelings y in {0, 1}6), such that the vector 
q(x) ∈ [0, 1]37 containing the s2 + 1 = 37 statistics of the 
conditional label distribution p(y|x) needed to compute a 
Bayes optimal multi-label classifier for F1 (see Eq. (12)) 
could be obtained from a linear function of x. More pre-
cisely, we fixed a matrix W ∈ [0, 1]37×100 with entries 

5Note that for each j ∈ [s], the s + 1 probabilities P(kyk1 = 
k, yj = 1 | x) (k ∈ [s]) and P(yj = 0 | x) estimated by the j-
th multiclass problem in EFP add up to 1, so the EFP algorithm 
effectively estimates a total of s 2 + 1 statistics. 
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Figure 1. Convergence of our algorithm to Bayes optimal F1 per-
formance on synthetic multi-label data (see Section 7.1). 

drawn uniformly at random from [0, 1]; we checked that W 
has full row rank. We also fixed a vector α ∈ [0.1, 1]64 

with entries drawn uniformly from [0.1, 1]. To generate 
a data point (x, y), we then did the following: we first 
sampled p ∈ Δ64 ≡ Δ{0,1}6 from Dirichlet(α). We set 
q = Ey∼p[ay] ∈ [0, 1]37, where ay ∈ {0, 1}37 is as de-
fined in Eq. (10). We then took x = W†γlog(q), and drew 
y ∼ p (here W† denotes the pseudo-inverse of W). It 
can be verified that this gives q(x) = q = γ−1 (Wx), and log 
therefore, taking the function class F in our algorithm to 
be the class of linear functions (i.e., functions of the form 
x 7→ Vx for V ∈ R37×100) suffices to learn a Bayes opti-
mal multi-label classifier. 

With the above settings, we used our algorithm (with lo-
gistic binary loss φlog and linear function class) to learn a 
multi-label classifier from increasingly large training sam-
ples drawn according to the above distribution, and mea-
sured the F1 performance on a large test set of 15, 000 data 
points drawn from the same distribution. The results are 
shown in Figure 1. As can be seen, our algorithm indeed 
converges to a Bayes optimal classifier for F1. 

7.2. Real Data: Comparison with Other Algorithms 

In the second set of experiments, we evaluated the perfor-
mance of our algorithm on various benchmark multi-label 
data sets drawn from the Mulan repository6. Details of the 
data sets are provided in Table 1. All the data sets come 
with prescribed train/test splits. After training our models 
on the training set, we measure the instance-averaged F1 

performance on the test set (i.e., we compute the multi-label 
F1-measure on each test example and take the average). 

We compared with the following algorithms: EFP (Dem-
bczynski et al., 2013), LIMO (label-wise version recom-
mended for instance-averaged F1) (Wu & Zhou, 2017), and 
BR (which treats the s labels as conditionally independent 
and trains s binary logistic regression classifiers, one for 
each label). All algorithms were trained to learn linear 
models. Regularization parameters (for regularized logis-
tic regression in our algorithm, EFP, and BR; and for the 
margin-based objective in LIMO) were chosen by 5-fold 
cross-validation on the training set from {10−4 , . . . , 103} 

6http://mulan.sourceforge.net/datasets-mlc.html 

Table 1. Multi-label data sets used in experiments in Section 7.2. 
Data set # train # test # labels # features 
Scene 1211 1196 6 294 
Yeast 1500 917 14 103 
Birds 322 323 19 260 
Medical 333 645 45 1449 
Enron 1123 579 53 1001 
Mediamill 30993 12914 101 120 

Table 2. Comparison of F1 performance of our algorithm with 
other MLC algorithms on various Mulan multi-label data sets. 
Higher values are better. See Section 7.2 for details and for an 
explanation of the asterisks for the Birds data set. 

Data set Our algorithm EFP LIMO BR 
Scene 0.7445 0.7426 0.6325 0.6009 
Yeast 0.6571 0.6558 0.4914 0.6065 
Birds *0.5836 *0.5293 0.5463 0.5510 
Medical 0.7557 0.7685 0.7237 0.6507 
Enron 0.5868 0.6204 0.5764 0.5455 
Mediamill 0.5642 0.5600 0.5135 0.5229 

(for all algorithms, the parameter value maximizing aver-
age F1-measure across the 5 folds was selected). For our 
algorithm and EFP, as discussed in Section 6, we generally 
implemented the algorithms to estimate only a small subset 
of the s2 + 1 statistics in q(x) (only those corresponding to 
numbers of active labels seen in the training data); for the 
Birds data set, this resulted in poor performance for both al-
gorithms, and so for this data set we trained both algorithms 
to perform a full estimation of all s2 + 1 statistics. 

The results are shown in Table 2 (the asterisks in the re-
sults for the Birds data set denote the full estimation of 
s2 + 1 statistics for this data set, as discussed above). As 
expected, the performance of our algorithm is similar to 
that of EFP. BR, as expected, is generally a relatively weak 
baseline. LIMO is sometimes competitive, but since it aims 
to simultaneously optimize several multi-label performance 
measures, we do not expect it to outperform algorithms de-
signed for a specific performance measure, and indeed this 
is borne out in our experiments. 

8. Conclusion 
We have provided a family of convex calibrated surrogate 
losses for the multi-label Fβ -measure, together with a quan-
titative regret transfer bound. Our surrogates effectively 
decompose the Fβ learning problem over s labels into (at 
most) s2 +1 binary class probability estimation (CPE) prob-
lems. The regret transfer bound allows us to transfer any 
regret guarantees on the binary CPE learners to regret guar-
antees on the overall Fβ learner. Although motivated from a 
different viewpoint, like the EFP algorithm of Dembczynski 
et al. (2013), our algorithm can also be viewed as a type 
of ‘plug-in’ algorithm for the Fβ -measure. While we have 
described the algorithm in the context of multi-label classi-
fication, the algorithm can also be used for binary sequence 
labeling tasks where the Fβ -measure is useful. 
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