
Convex Calibrated Surrogates for the Multi-Label F-Measure 

Convex Calibrated Surrogates for the Multi-Label F-Measure 
Supplementary Material 

Implementation of ‘decode’ 

In order to solve the combinatorial optimization problem involved in the mapping decode : Rs 2+1→{0, 1}s as defined in 
Eq. (7) efficiently, we make use of an O(s3)-time procedure due to Dembczynski et al. (2011). Specifically, Dembczynski 
et al. (2011) gave a procedure that, given a certain set of s2 + 1 statistics of the true conditional distribution p(y|x) at a 
point x ∈ X , computes in O(s3) time a Bayes optimal multi-label prediction h∗(x) ∈ {0, 1}s at that point with respect to 
the F1-measure by solving a similar combinatorial optimization problem (the approach generalizes easily to the Fβ -measure 
for general β). Our algorithm (Algorithm 2) can be viewed as effectively estimating the same s2 + 1 statistics from the 
training sample S; in particular, once a scoring function fS : X→Rs 2+1 is learned by minimizing our surrogate loss ψ, the 
estimated statistics at a point x ∈ X are given by γ−1(fS (x)) (where γ−1 is the inverse of the link function γ : [0, 1]→R 
associated with the strictly proper composite binary loss φ used in our surrogate, and is applied element-wise to fS (x)). Our 
‘decode’ mapping effectively corresponds to estimating a Bayes optimal prediction at x using these estimated statistics; we 
can therefore apply the procedure of Dembczynski et al. (2011) to these estimated statistics. 

The implementation below is described for a general input vector u ∈ Rs 2+1 (see Eq. (7)); in our Fβ learning algorithm, 
to make a prediction at x ∈ X , it would be applied to u = fS (x). The overall idea is that the combinatorial search over 
y b ∈ {0, 1}s is stratified over the s + 1 sets Ybl = {y b ∈ {0, 1}s : kybk1 = l}, l ∈ {0, 1, . . . , s}; to find an optimal element P
l,∗ b l,∗ s 

yb within each set Yl, one need only solve a problem of the form yb ∈ argmin Yl 
ybj Tjl for certain numbers Tjl, yb∈ b j=1 

which can be done simply by finding the smallest l numbers among {Tjl : j ∈ [s]} and setting the corresponding l entries of 
ybl,∗ to 1 (and remaining entries to 0). Solving these s + 1 subproblems and picking the best solution among them takes a 
total of O(s2 ln(s)) time; computing the s2 numbers Tjl involves a matrix multiplication that takes a total of O(s3) time.7 

Algorithm 2 Decode 
+1 1: Input: Vector u = (u0, (ujk)s ))> ∈ Rs 2 

j,k=1

2: Parameters: Link function γ : [0, 1]→R 
3: Define matrices Q ∈ [0, 1]s×s and V ∈ Rs×s as follows: 

Qjk = γ−1(ujk) 

−(1 + β)2 

Vkl = 
β2k + l 

4: Compute T = QV // matrix multiplication, O(s3) time 
5: For l = 1 . . . s: // for loop takes total O(s2 ln(s)) time 
6: Find the l smallest numbers among {Tjl : j ∈ [s]}; call the corresponding indices j1

l , . . . , jl l 
l,∗ 7: Define yb ∈ {0, 1}s as follows: � 

l,∗ 1 if j ∈ {j1l , . . . , jl } l,∗ Ps l yb = // this solves yb ∈ argmin ybj Tjl j yb∈Ybl j=1 0 otherwise. 

P∗ s l,∗ 8: Set z = yb Tjl l j=1 j 
9: End for 

∗ 10: Pick y b ∈ {0, 1}s as follows: 

∗ ∗ y b ∈ argmin y = 0) · γ−1(u0) + 1(b 6− 1(b y = 0) · z kybk1 
yb∈{0, yb1,∗ ,..., ybs,∗ } 

∗ 11: Output: y b ∈ {0, 1}s 

7One could in principle use faster matrix multiplication methods that take o(s 3) time, but in practice, this would be helpful for only 
extremely large values of s. 


