Convex Calibrated Surrogates for the Multi-Label F-Measure

Convex Calibrated Surrogates for the Multi-Label F-Measure
Supplementary Material

Implementation of ‘decode’

In order to solve the combinatorial optimization problem involved in the mapping decode : RSQH%{O, 1}# as defined in
Eq. (7) efficiently, we make use of an O(s3)-time procedure due to Dembczynski et al. (2011). Specifically, Dembczynski
et al. (2011) gave a procedure that, given a certain set of s? + 1 statistics of the true conditional distribution p(y|z) at a
point x € X, computes in O(s) time a Bayes optimal multi-label prediction h*(z) € {0, 1}* at that point with respect to
the Ij-measure by solving a similar combinatorial optimization problem (the approach generalizes easily to the Fg-measure
for general 3). Our algorithm (Algorithm 2) can be viewed as effectively estimating the same s? + 1 statistics from the
training sample S’ in particular, once a scoring function fg : X’ —R"+1 s learned by minimizing our surrogate loss 1), the
estimated statistics at a point z € X are given by v~ (fg(z)) (where v~ is the inverse of the link function ~ : [0, 1] =R
associated with the strictly proper composite binary loss ¢ used in our surrogate, and is applied element-wise to fs(x)). Our
‘decode’ mapping effectively corresponds to estimating a Bayes optimal prediction at = using these estimated statistics; we
can therefore apply the procedure of Dembczynski et al. (2011) to these estimated statistics.

The implementation below is described for a general input vector u € Rs*+1 (see Eq. (7)); in our Fjg learning algorithm,
to make a prediction at € X, it would be applied to u = f5(x). The overall idea is that the combinatorial search over
y € {0,1}* is stratified over the s + 1 sets Y, = {y € {0,1}* : |||l = }.1 € {0,1,..., s}; to find an optimal element
yb* within each set )A)l, one need only solve a problem of the form y** & argminy 3 E‘;:l y; Ty for certain numbers Ty,
which can be done simply by finding the smallest / numbers among {7}; : j € [s]} and setting the corresponding  entries of
y"* to 1 (and remaining entries to 0). Solving these s + 1 subproblems and picking the best solution among them takes a
total of O(s?In(s)) time; computing the s> numbers T}j; involves a matrix multiplication that takes a total of O(s®) time.”

Algorithm 2 Decode

1: Input: Vector u = (uy, (uj;g);k:l))T € RS+
2: Parameters: Link function v : [0, 1] >R
3: Define matrices Q € [0,1]°*® and V € R**¢ as follows:

Qir = 7 (uj)
—(1 2
L =)
B2k +1
4: Compute T = QV  // matrix multiplication, O(s®) time
5:Forl=1...s: // for loop takes total O (s In(s)) time
6: Find the [ smallest numbers among {7}; : j € [s]}; call the corresponding indices j!, ..., j!
7: Define y* € {0,1}* as follows:
. 1 iftje {54 . . . .
:f/\;’ = { 0 otlZerw{iZel:. ik // this solves y* € argming Zj:l ¥ T
8: Setzf =35, g’fj*le
9: End for

10: Pick y* € {0, 1}* as follows:

' ipmin —1(F=0) 7 Huo) + 1T £ 0) - 2]y,
ye{0,y1*,...,y5*}

11: Output: y* € {0,1}°

"One could in principle use faster matrix multiplication methods that take o(s®) time, but in practice, this would be helpful for only
extremely large values of s.



