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A. Additional Related Work

Event Sequence Modeling With the increasing availability of multi-type event sequences, there has been considerable
interest in modeling such data for both prediction and inference. The majority of prior research in this direction has been
based on the theory of point processes (Daley & Vere-Jones, 2003), a particular class of stochastic processes that characterize
the distribution of random points on the real line. Notably, Hawkes process (Hawkes, 1971a;b), a special class of point
process, has been widely investigated, partly due to its ability to capture mutual excitation among events and its mathematical
tractability. Hawkes process-based methods (Eichler et al., 2017; Xu et al., 2016; Hall & Willett, 2016; Yang et al., 2017;
Achab et al., 2018), however, assume that past events can only independently and additively influence the occurrence of
future events, and that influence can only be excitative; these inherent limitations have restricted their modeling flexibility
and render them unable to capture complex event interaction in real-world data.

As such, other more flexible models have been proposed, including the piecewise-constant conditional intensity model
(PCIM) (Gunawardana et al., 2011) and its variants (Weiss & Page, 2013; Bhattacharjya et al., 2018), and more recently a
class of models loosely referred to as neural point processes (NPPs) (Du et al., 2016; Xiao et al., 2017; Mei & Eisner, 2017;
Xiao et al., 2019; Zhang et al., 2020). These models, particularly NPPs, generally enjoy better predictive performance than
parametric point processes, since they use more expressive machine learning models (e.g., decision trees, random forests, or
recurrent neural networks) to sequentially compute the conditional intensity until next event is generated. A significant
weakness of these models, however, is that they are generally uninterpretable and thus unable to provide summary statistics
for determining the Granger causality among event types.

Granger Causality Discovery In his seminal paper, Granger (1969) first proposed the concept of Granger causality
for time series data. Many approaches have been proposed for uncovering Granger causality for multivariate time series,
including the Hiemstra-Jones test (Hiemstra & Jones, 1994) and its improved variant (Diks & Panchenko, 2006), Lasso-
Granger method (Arnold et al., 2007), and approaches based on information-theoretic measures (Hlavackova-Schindler et al.,
2007). However, as these methods are designed for the synchronous multivariate time series, they are not directly applicable
to asynchronous multi-type event sequence data, since otherwise one has to discretize the continuous observation window.

Didelez (2008) first established the Granger causality for event types in event sequences under the framework of marked
point processes. Later, Eichler et al. (2017) shows that Granger causality for Hawkes processes is entirely encoded in the
excitation kernel functions (also called impact function). To our best knowledge, existing research for Granger causality
discovery from event sequences appears to be limited to the case of Hawkes process (Eichler et al., 2017; Xu et al., 2016;
Achab et al., 2018), possibly because of this direct link between the process parameterization and Granger causality.

Prediction Attribution for Black-Box Models Prediction attribution, the task of assigning to each input feature a score
for representing the feature’s contribution to model prediction, has been attracting considerable interest in the field due to its
ability to provide insight into predictions made by black-box models such as neural networks. While various approaches
have been proposed, there are two prominent groups of approaches: perturbation-based and gradient-based approaches.
Perturbation approaches (Zeiler & Fergus, 2014) typically comprise, first, removing, masking, or altering a feature, and then
measuring the attribution score of that feature by the change of the model’s output. While perturbation-based methods are
simple, intuitive, and applicable to almost all black-box models, the quality of the resultant scores is often sensitive to how
the perturbation is performed. Moreover, as these methods scale linearly with the number of input features, they become
computationally unaffordable for high-dimensional inputs.

In contrast, backpropagation-based methods construct the attribution scores based on the estimation of local gradients
of the model around the input instance with backpropagation. The ordinary gradients, however, could suffer from a
“saturation” problem for neural networks with activation functions that contain constant-valued regions (e.g., rectifier linear
unit (ReLUs)); that is, the gradient coming into a ReLLU during the backward pass is zero’d out if the input to the ReLU
during the forward pass is in a constant region. One valid solution to this issue is to replace gradients with discrete gradients
and use a modified form of backpropagation to compose discrete gradients into attributions, such as layer-wise relevance
propagation (LRP) (Bach et al., 2015) and DeepLIFT (Shrikumar et al., 2017). Another solution, proposed by Integrated
Gradient (IG) (Sundararajan et al., 2017), is to use the line integral of the gradients along the path from the input to a chosen
baseline. Sundararajan et al. (2017) show that IG satisfies many desirable properties, as detailed in Proposition 1.

It is worth mentioning that much existing work often uses the intermediate results, produced by certain intelligible neural
network architecture, as the attribution scores for an input. A most notable example of such an idea is the use of attention



CAUSE: Learning Granger Causality from Event Sequences using Attribution Methods

weights induced by some attention mechanism as the importance of the input (Bahdanau et al., 2015; Xu et al., 2015).
Recently, however, there are growing concerns on the validity of attention weights being used as the explanation of neural
networks (Jain & Wallace, 2019; Serrano & Smith, 2019). In particular, Jain & Wallace (2019) show that across a variety of
NLP tasks, the learned attention weights are frequently uncorrelated with feature importance produced by gradient-based
prediction attribution methods, and random permutation of attention weights can nonetheless yield equivalent predictions.

B. Additional Technical Details
B.1. Proof of Proposition 1

Proof. That both 1G and DeepLIFT satisfy A1-A4 has been established in (Sundararajan et al., 2017). P1 is straightforward
from the definion of either method. Thus, we only prove that both methods satisfy batchability (P2) with F(X) £

i1 f(xi).
To prove that IG satisfies batchability, we first rewrite the IG(F, X, X)) as follows:

GEX.X) = (X-X)0 [ VxF[X +a(X - X)do

~®-X)0 [ Y VxSl +alx—x)]da
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where the second step is due to that summation and gradients are swapable, and the third step is because the gradients of
different terms are separable. Thus, we have

1
[IG(F7XﬂX)]:,i = (xi —xy) @/ Vi f [x; + a(x — %) da = IG(f, %, X;), (14)
0

which establishes the formula.

The proof of DeepLIFT satisfying batchability can be established in a similar way as IG. The key part, shown in the
Proposition 2 of (Ancona et al., 2018), is that the attribution scores produced by DeepLIFT for a neural-network-like
function f, an input x, and a baseline x, i.e., DeepLIFT( f, x, x) can be viewed as the Hadamard product between x — x
and a modified gradient of f at all its internal nonlinear layers. Since the last layer of F' is a simple linear addition of all
f(x;)’s, the modified gradient of F' for input x; is the same as the one of f for x;. Thus, we have

[DeepLIFT(F, X, X)]. ; = DeepLIFT(f,x;,x;). (15)
O

B.2. Proof of Proposition 2

We first briefly review Shapley values. Suppose there is a team of d players working together to earn a certain amount of
value. The value that every coalition U C [d] achieves is v(U), where v : 2¢ + R is a value function. Shapley values,
proposed by Shapley (1953), provide a well-motivated way to decide how the total earning v([d]) should be distributed
among such d players. Specifically, the Shapley value for each player i € [d] is defined as

Ull(d—|U| —1)!
3 (Ultd - U] =1)Y

UC[d\{i} '

U U{i}) —o(U)]. (16)

For any target function f € F,, input x € X, and baseline x € X, we define a value function vy x(U) £ f(xy Uxg)

for any U € [d], where xpy U x5 is the spliced data point between x and x, defined in (3). Then the Shapley values
[®v; . (1)]ic[q) can be viewed as an attribution method that provides the attribute scores for any f, x, and x.
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Now we prove that this attribution method based on Shapley valeus satisfies all four axioms (A1-A4) and the fidelity-to-
control (P1), as stated in Proposition 2.

Proof. First, itis clear from the definition of Shapley values in (16) that ¢, (-) satisfies linearity (A1) and implementation
variance (A4). Since Shapley (1953) shows that for any value function v, the Shapley values ¢, (+) satisfies that

d
d)u([d]) - ¢u(®) = Z¢1J(i)7

substituting our definition of the value function ¢, __(-) into the above equation yields

d
f(X) - f(K) = Z stf,xé(i)v

which establishes the completeness (A2). For any i € [d] and U C [d] \ {i}, we have

Vixx (U U{i}) = vpxx(U) = f(xvupy Uxony) — f(xo Uxg)

Note that xg7y (i3 U X (53 and xp U X only potentially differ on the ¢-th dimension. If f does not depend on the i-th
dimension of its input or z; = z; (which implies xyu () U Xg 33 = Xu U Xg), then f(xpupiy UXpy(53) = f(xv Uxg)
and thereby ¢, . (i) = 0. Thus, ¢, (-) satisfies null player (A3) and fidelity-to-control (P1).

O

B.3. Proof of Proposition 3

Proof. We omit the index s in this proof for brevity. First, we rewrite Y/lm k as

;Qx
)
(]
P'j‘ .
=

Il

k/)Aj(fkv Xi; XZ)

i=1 j=1
= Uk =) | DA (froxi, %)
i=1 i=j

:ZH(ICJ = k/) ZAj(Fk,i7Xn7§n) ’
i=j

where in the step step, we replace f with F. Since F}, ;, i.e., f:f“ Ak (t')dt, does not depend on the events before the i-th
event, with null player (A3), we have A; (Fkﬂ-, Xn,X,,) = 0 for any j < ¢, which further implies that

Vi =Y I(k; = k)
j=1

ZAj(kaXn,Xn)] :
i=1
With linearity (A1), we have
Yfk’k/ = Zﬂ(k] = k/)Aj (Z Fkﬂ-,xn,xn) 5
j=1 i=1

which establishes the formula.
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C. Additional Experimental Details
C.1. The Settings for Synthetic and Real-World Datasets.
We describe below the setup and preprocessing details for the five datasets that we consider in this paper.

e Excitation. This dataset was generated by a multivariate Hawkes process, whose CIFs are of the form:

AR(t) = e + Z kit Bie ke €Xp[— B i (t — 1i)]-

ity <t

We set S = 1000, K = 10, ny ~ Poisson(250), px ~ Uniform(0, 0.01), and B, 1, ~ Exp(0.05). To generate a sparse
excitation weight matrix A £ [y, 4] ki e[K]» We first selected all its diagonal entries and M = 16 random off-diagonal

entries, then generated the values for these entries from Uniform(0, 1), and finally scaled the matrix to have a spectral
radius of 0.8.

o Inhibition. This dataset was generated by a multivariate self-correcting point process, whose CIFs take the form:

A (t) = exp(agpt + Z W ey )-

it <t

We chose S = 1000, K = 10, ns ~ Poisson(250), and o, ~ Uniform(0, 0.05). To generated a sparse weight matrix
W = [w, k’]k,k’e[ K1» We first selected all its diagonal entries and M = 16 random off-diagonal entries and further
generated the values for these entries from Uniform(—0.5, 0).

e Synergy. This dataset was generated by a proximal graphical event model (PGEM) (Bhattacharjya et al., 2018). PGEM
assumes that the CIF of an event type depends only on whether or not its parent event types (specified by a dependency
graph) have occurred in the most recent history. We designed a local dependency structure that consists of five event
types labeled as A—E. Among these event types, type E is the outcome and can be excited by the occurrence of type
A, B, or C; type A and B, only when both occurred in the most recent history, would incur a large synergistic effect
on type E; type C has an isolated excitative effect on type E and does not interacts with other event types; and finally,
type D does not have any excitative effect and is introduced to complicate the learning task. The dependency graph,
together with the corresponding time windows and intensity tables, illustrated in Figure 5. To add more complexity to
this dataset, we further replicated this local structure for another copy, leading to a total of K = 10 event types. We
generated S = 1000 event sequences with a maximum time span of 7' = 1000.

e IPTV. We obtained the dataset from*. We further normalized the timestamps into the days and splitted long event
sequences so that the length of each sequence is smaller or equal to 1000.

e MT. We downloaded the raw MemeTracker phrase data from>. We filtered the phrase data that occurred from 2008-08-01
to 2008-09-30 and from the top-100 website domains. We further normalized the timestamps into hours and filtered out
those event sequences (i.e., phrase cascades) whose lengths are not in between 3 and 500.

Ay = A5 = 0.01
/1C = AD =0.1
= 0.01
100 100 10 AE 0.01 + AE(.XA, xB) + AE(X(;‘)
Ag(xa,xp) | %y XA —xc X
"B 0 0 Ae(xe) | 0 0.03
Xp 0 0.1

Figure 5: The dependency graph, time windows, and intensity tables for the PGEM used in generating the Synergy dataset.

C.2. Implementation Details and Hyperparameter Configurations for Various Methods

For CAUSE, the Enc(-) and the «(-) were implemented by a single-layer GRU and a two-layer fully connected network
with skip connections, respectively. The dimension of event type embeddings was fixed to 64, and the number of hidden

*nttps://github.com/HongtengxXu/Hawkes-Process-Toolkit/tree/master/Data
Shttps://www.memetracker.org/data.html#raw
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units for GRU was set to be 64 for synthetic datasets and 128 for real-world datasets. The number of basis functions R
and the maximum mean L were chosen by a rule of thumb such that ;12 and ;1 are of the same scale as the 50th and the
99th percentiles of the inter-event elapsed times, respectively. The optimization was conducted by Adam with an initial
learning rate of 0.001. A hold-out validation set consisting of 10% of the sequences of the training set was used for model
selection; the model snapshot that attains the smallest validation loss was chosen. As events sequence lengths vary greatly
on two real-world datasets, in constructing mini-batches for both training and inference, we adopted the bucketing technique
to reduce the amount of wasted computation caused by padding. Finally, the line integral of IG, defined in (13), was
approximated by 20 steps for MT and 50 steps for other datasets; a smaller number of steps, although may result in certain
lose of accuracy, allows for a larger batch size and thus shorter execution time for attribution.

For the Hawkes process-based baselines—HExp, HSG, and NHPC—their implementation was provided by the package
tick (Bacry et al., 2017). The most relevant hyperparameters for each method were tuned by cross-validation; that is, the
decay parameter for the kernel of HExp, the integration support for NPHC, and the maximum mean and the number of
Gaussian bases for NPHC, as well as the penalty coefficient for all three methods.

As there is no publicly available codes for RPPN, we implemented it with our best effort. Its overall settings for architecture
and optimization is similar to the ones for CAUSE.

C.3. Platform and Runtime

All experiments were conducted on a server with a 16-core CPU, 512G memory, and two Quadro P5000 GPUs. On the
largest dataset, MT, the total runtime for CAUSE was less than 3 hours, including both training and computing the Granger
causality statistic.

C.4. Qualitative Analysis on MT

Since there are too many event types in MT, instead of a heat map, we visualize the causality matrix as a graph and show in
Figure 6a and Figure 6b the top-two communities of that graph, where the directed edges denote the estimated Granger
causality between pairs of domains.® In Figure 6a, the domain news . google . com centers in the middle and is pointed
by many sites, which is unsurprising because Google News aggregates articles from other publishers and websites. Our
method also correctly identifies other major “information-consuming” domains such as bogleheads.org, an active
forum for investment-related Q&A. In Figure 6b, the then very popular social networking website blog.myspace.com
sits in the center of the community. Our method also identifies credible excitative relationships between the subdomains of
craigslist.org, a mega-website that hosts classified, local advertisements.

D. A Primer on Measure and Probability Theory

In this section, we review some of the basic definitions of in measure theory, which may help the understanding of the
definition of Granger causality for multivariate point processes. Most of the content in this section were adapted based on
primarily based on the Chapter 1 of (Durrett, 2019) and the Appendix 3 of (Daley & Vere-Jones, 2003),

Let Q2 be a set of “outcomes” and F a nonempty collection of subsets of €2. The set F is o-algebra of €2, if it is closed under
complement and countable unions; that is,

1. if Ae F,thenQ\ A € F, and
2. if A; € F is a countable sequence of sets, then U; A; € F.

With these two conditions, it’s easy to see that o-algebra is also closed under arbitrary (possibly uncountable) intersections.
From this, it follows that given a nonempty set €2 and a collection of A of subsets of €2, there is a smallest o-algebra
containing A; we denote such smallest o-algebra by (.A). One particular o-algebra is of particular interst—Borel o-
algebra; that is, the smallest o-algebra containing all open sets in R?, denoted by R¢. Specifically, let Sy be the empty set
plus all sets of the form (a1, b1] X - - - (ag, bg] C R, where —co < a; < b; < o0, then R? = 0(S%). The superscript d is
dropped when d = 1.

A pair (9, F), in which € is a set and F is a o-algebra of 2, is called a measurable space. A measure defined on (2, F)
is a nonnegative countably additive set function; that is a function p : F — R with

SThe graph visualization and community detection were performed using the software Gephi.
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Figure 6: The top-two communities of the estimated Granger causality statistic matrices on MT (Figure 6a & 6b). Better
viewed on screen.

1. u(A) > u(@) =0forall A € F,and
2. if A; € F is a countable sequence of disjoint sets, then

M(U Ai) = Z p(Ai)

If 4(2) = 1, we call such a y a probability measure. The triplet (2, F, 11) is called a measure space, and a probability
space if p is a probability measure.

Given a probability space (2, F, i), a real-valued function X defined on 2 is said to be a random variable if for every
Borel set B € R we have X ~!(B) £ {w : X(w) € B} € F; in another words, X is F-measuable. A stochastic process
is a collection of random variables { X; } ;<7 defined on a common probability space and indexed by a index set Z. In most
cases, the index set can be positive numbers N, or real line R . A filtration is a sequence of o-algebras, denoted by
{Fitier,if F; C F;if j <iandi,j € Z. Given a stochastic process { X, },cz defined on (€, F, 1t), the natural filtration
of F with respect to the process is given by

Hi2o({X;'(B)jeL,j<i,BER}). (17

It is in a sense that the simplest filtration filtration available for studying the given: all information concerning the
process, and only that information, is avaiable in the natural filtration. Thus, the natural filtration H; can be often be
viewed as the “history” of the subprocess {X};<; jer. Note that sometimes the definition in (17) is simply written as
Hi 2o ({X;lj €Z,j <i}).

A point process {T;},>1 is a real-valued stochastic process indexed on N, such that T; < T;; almost surely. Each
random variable is generally viewed as the arrival timestamp of an event. For each point process, one can define a
continuously indexed stochastic process associated with it called counting process, as N (t) = >"°° 1(T; < t). From this
definition, it is easily seen that every realization of a counting process is a cadlag (i.e. right continuous with left limits) step
function, and that a counting process N (t) equivalently defines a point process, as one can recover the event timestamp
by T; = inf{t > 0 : N(t) = ¢}. Due to this equivalence, the phrases point process and counting process, as well as their
notation, {7 };en, and N (t), are often used interchangably in the literature. A K-dimensional multivariate point process
(MPP) is a coupling of K point/counting process N(t) = [Ny (t), Na(t), ..., Nk(t)]. A realization of a multivariate point
process is a multi-type event sequence, {(t;, k;) }ien +» where ; indicates the event timestmap of the i-th event, and the k;
indicates which dimension the i-th event comes from (often interpreted as event type).

The most common way to define an MPP is through a set of conditional intensity functions (CIFs), one for each event type.
Specifically, let H(t) = o({N(s)|k € [K],s < t}) for any ¢ be the natural filtration of MPP and let H(t—) £ limgp; H(s)
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the CIF for event type k is defined as the expected instantaneous event occurrence rate conditioned on natural filtration, i.e.,

Ni(t) £ lim, N (¢ + A1) — Ne(t)/ ()

)

where the use of the asterisk is a notational convention to emphasize that intensity A} (¢) must be #(t)-measurable for every
t.

Finally, for any KC C [K], denote by Hy: () the natural filtration expanded by the sub-process { Ny, (t)} <, i-e., Hi(t) =
o({Ne(s)|k € K, s < t}), and further write H_x(t) = Hx]\(x}(t) for any k € [K]. For a K-dimensional MPP, event
type k is Granger non-causal for event type k" if A}, (t) is H _j(t)-measurable for all ¢. This definition amounts to saying
that a type k is Granger non-causal for another type &’ if, conditioned on the history of events other than type k, the future
A% (t) does not depend on the historical events of type k at any time. Otherwise, type k is said to be Granger causal for
type k.



