
Adaptive Reward-Poisoning Attacks against Reinforcement Learning

Appendices
A. Proof of Theorem 1
Proof. Consider two MDPs with reward functions defined as R+ ∆ and R−∆, denote the Q table corresponding to them
as Q+∆ and Q−∆, respectively. Let {(st, at)} be any instantiated trajectory of the learner corresponding to the attack policy
φ. By assumption, {(st, at)} visits all (s, a) pairs infinitely often and αt’s satisfy

∑
αt =∞ and

∑
α2
t <∞. Assuming

now that we apply Q-learning on this particular trajectory with reward given by rt + ∆, standard Q-learning convergence
applies and we have that Qt,+∆ → Q+∆ and similarly, Qt,−∆ → Q−∆ (Melo).

Next, we want to show that Qt(s, a) ≤ Qt,+∆(s, a) for all s ∈ S, a ∈ A and for all t. We prove by induction. First, we
know Q0(s, a) = Q0,+∆(s, a). Now, assume that Qk(s, a) ≤ Qk,+∆(s, a). We have

Qk+1,+∆(sk+1, ak+1) (14)

= (1− αk+1)Qk,+∆(sk+1, ak+1) + αk+1

(
rk+1 + ∆ + γmax

a′∈A
Qk,+∆(s′k+1, a

′)

)
(15)

≥ (1− αk+1)Qk(sk+1, ak+1) + αk+1

(
rk+1 + δk+1 + γmax

a′∈A
Qk(s′k+1, a

′)

)
(16)

= Qk+1(sk+1, ak+1), (17)

which established the induction. Similarly, we have Qt(s, a) ≥ Qt,−∆(s, a). Since Qt,+∆ → Q+∆, Qt,−∆ → Q−∆, we
have that for large enough t,

Q−∆(s, a) ≤ Qt(s, a) ≤ Q+∆,∀s ∈ S, a ∈ A. (18)

Finally, it’s not hard to see that Q+∆(s, a) = Q∗(s, a) + ∆
1−γ and Q−∆(s, a) = Q∗(s, a)− ∆

1−γ . This concludes the proof.

B. Proof of Theorem 4
Proof. We provide a constructive proof. We first design an attack policy φ, and then show that φ is a strong attack. For the
purpose of finding a strong attack, it suffices to restrict the constructed φ to depend only on (s, a) pairs, which is a special
case of our general attack setting. Specifically, for any ∆ > ∆3, we define the following Q′:

Q′(s, a) =


Q∗(s, a) +

∆

(1 + γ)
, ∀s ∈ S†, a ∈ π†(s),

Q∗(s, a)− ∆

(1 + γ)
, ∀s ∈ S†, a /∈ π†(s),

Q∗(s, a),∀s /∈ S†, a,

(19)

where Q∗(s, a) is the original optimal value function without attack. We will show Q′ ∈ Q†, i.e., the constructed Q′ induces
the target policy. For any s ∈ S†, let a† ∈ arg maxa∈π†(s)Q

∗(s, a), a best target action desired by the attacker under the
original value function Q∗. We next show that a† becomes the optimal action under Q′. Specifically, ∀a′ /∈ π†(s), we have

Q′(s, a†) = Q∗(s, a†) +
∆

(1 + γ)
(20)

= Q∗(s, a†)−Q∗(s, a′) +
2∆

(1 + γ)
+Q∗(s, a′)− ∆

(1 + γ)
(21)

= Q∗(s, a†)−Q∗(s, a′) +
2∆

(1 + γ)
+Q′(s, a′), (22)

Adaptive Reward-Poisoning Attacks against Reinforcement Learning

Next note that

∆ > ∆3 ≥ 1 + γ

2
[max
a/∈π†(s)

Q∗(s, a)− max
a∈π†(s)

Q∗(s, a)] (23)

=
1 + γ

2
[max
a/∈π†(s)

Q∗(s, a)−Q∗(s, a†)] (24)

≥ 1 + γ

2
[Q∗(s, a′)−Q∗(s, a†)], (25)

which is equivalent to

Q∗(s, a†)−Q∗(s, a′) > − 2∆

1 + γ
, (26)

thus we have

Q′(s, a†) = Q∗(s, a†)−Q∗(s, a′) +
2∆

(1 + γ)
+Q′(s, a′) (27)

> 0 +Q′(s, a′) = Q′(s, a′). (28)

This shows that under Q′, the original best target action a† becomes better than all non-target actions, thus a† is optimal
and Q′ ∈ Q†. According to Proposition 4 in (Ma et al., 2019), the Bellman optimality equation induces a unique reward
function R′(s, a) corresponding to Q′:

R′(s, a) = Q′(s, a)− γ
∑
s′

P (s′ | s, a) max
a′

Q′(s′, a′). (29)

We then construct our attack policy φsas∆3
as:

φsas∆3
(s, a) = R′(s, a)−R(s, a),∀s, a. (30)

The φsas∆3
(s, a) results in that the reward function after attack appears to be R′(s, a) from the learner’s perspective. This

in turn guarantees that the learner will eventually learn Q′, which achieves the target policy. Next we show that under
φsas∆3

(s, a), the objective value (5) is finite, thus the attack is feasible. To prove feasibility, we consider adapting Theorem 4
in (Even-Dar & Mansour, 2003), re-stated as below.

Lemma 7 (Even-Dar & Mansour). Assume the attack is φsas∆3
(s, a) and letQt be the value of the Q-learning algorithm using

polynomial learning rate αt = (1
1+t)

ω where ω ∈ (1
2 , 1]. Then with probability at least 1− δ, we have ‖QT −Q′‖∞ ≤ τ

with

T = Ω

(
L3+ 1

ω
1

τ2
(ln

1

δτ
)

1
ω + L

1
1−ω ln

1

τ

)
, (31)

Note that Q† is an open set and Q′ ∈ Q†. This implies that one can pick a small enough τ0 > 0 such that ‖QT −Q′‖∞ ≤ τ0
implies QT ∈ Q†. From now on we fix this τ0, thus the bound in the above theorem becomes

T = Ω

(
L3+ 1

ω (ln
1

δ
)

1
ω + L

1
1−ω

)
. (32)

As the authors pointed out in (Even-Dar & Mansour, 2003), the ω that leads to the tightest lower bound on T is around 0.77.
Here for our purpose of proving feasibility, it is simpler to let ω ≈ 1

2 to obtain a loose lower bound on T as below

T = Ω

(
L5(ln

1

δ
)2

)
. (33)

Now we represent δ as a function of T to obtain that ∀T > 0,

P [‖QT −Q′‖∞ > τ0] ≤ C exp(−L− 5
2T

1
2). (34)

Adaptive Reward-Poisoning Attacks against Reinforcement Learning

Let et = 1 [‖Qt −Q′‖∞ > τ0], then we have

Eφsas
∆3

[∞∑
t=1

1[Qt /∈ Q†]

]
≤ Eφsas

∆3

[∞∑
t=1

et

]
(35)

=

∞∑
t=1

P [‖QT −Q′‖∞ > τ0] ≤
∞∑
t=1

C exp(−L− 5
2 t

1
2) (36)

≤
∫ ∞
t=0

C exp(−L− 5
2 t

1
2)dt = 2CL5, (37)

which is finite. Therefore the attack is feasible.

It remains to validate that φsas∆3
is a legitimate attack, i.e., |δt| ≤ ∆ under attack policy φsas∆3

. By Lemma 7 in (Ma et al.,
2019), we have

|δt| = |R′(st, at)−R(st, at)| (38)
≤ max

s,a
[R′(s, a)−R(s, a)] = ‖R′ −R‖∞ (39)

≤ (1 + γ)‖Q′ −Q∗‖ = (1 + γ)
∆

(1 + γ)
= ∆. (40)

Therefore the attack policy φsas∆3
is valid.

Discussion on a number of non-adaptive attacks: Here, we discuss and contrast 3 non-adaptive attack polices developed
in this and prior work:

1. (Huang & Zhu, 2019) produces the non-adaptive attack that is feasible with the smallest ∆. In particular, it solves for the
following optimization problem:

min
δ,Q∈RS×A

‖δ‖∞ (41)

s.t. Q(s, a) = δ(s, a) + EP (s′|s,a)

[
R(s, a, s) + γmax

a′∈A
Q(s′, a′)

]
(42)

Q ∈ Q† (43)

where the optimal objective value implicitly defines a ∆′3 < ∆3. However, it’s a fixed policy independent of the actual ∆
. In other word, It’s either feasible if ∆ > ∆′3, or not.

2. φsas∆3
is a closed-form non-adaptive attack that depends on ∆. φsas∆3

is guaranteed to be feasible when ∆ > ∆3. However,
this is sufficient but not necessary. Implicitly, there exists a ∆′′3 which is the necessary condition for the feasibility of φsas∆3

.
Then, we know ∆′′3 > ∆′3, because ∆′3 is the sufficient and necessary condition for the feasibility of any non-adaptive
attacks, whereas ∆′′3 is the condition for the feasibility of non-adaptive attacks of the specific form constructed above.

3. φsasTD3 (assume perfect optimization) produces the most efficient non-adaptive attack that depends on ∆.

In terms of efficiency, φsasTD3 achieves smaller J∞(φ) than φsas∆3
and (Huang & Zhu, 2019). It’s not clear between φsas∆3

and
(Huang & Zhu, 2019) which one is better. We believe that in most cases, especially when ∆ is large and learning rate αt is
small, φsas∆3

will be faster, because it takes advantage of that large ∆, whereas (Huang & Zhu, 2019) does not. But there
probably exist counterexamples on which (Huang & Zhu, 2019) is faster than φsas∆3

.

C. The Covering Time L is O(exp(|S|)) for the chain MDP
Proof. While the ε-greedy exploration policy constantly change according to the agent’s current policy πt, since L is a
uniform upper bound over the whole sequence, and we know that πt will eventually converge to π†, it suffice to show that
the covering time under π†ε is O(exp(|S|)).

Recall that π† prefers going right in all but the left most grid. The covering time in this case is equivalent to the expected
number of steps taken for the agent to get from s0 to the left-most grid, because to get there, the agent necessarily visited all

Adaptive Reward-Poisoning Attacks against Reinforcement Learning

states along the way. Denote the non-absorbing states from right to left as s0, s1, ..., sn−1, with |S| = n. Denote Vk the
expected steps to get from state sk to sn−1. Then, we have the following recursive relation:

Vn−1 = 0 (44)

Vk = 1 + (1− ε

2
)Vk−1 +

ε

2
Vk+1, for k = 1, ..., n− 2 (45)

V0 = 1 + (1− ε

2
)V0 +

ε

2
V1 (46)

Solving the recursive gives

V0 =
p(1 + p(1− 2p))

(1− 2p)2

[
(
1− p
p

)n−1 − 1

]
(47)

where p = ε
2 <

1
2 and thus V0 = O(exp(n)).

D. Proof of Theorem 5
Lemma 8. For any state s ∈ S and target actions A(s) ⊂ A, it takes FAA at most |A|1−ε visits to s in expectation to enforce
the target actions A(s).

Proof. Denote Vt the expected number of visits s to teach A(s) given that under the current Qt, maxa∈A(s) is ranked t
among all actions, where t ∈ 1, ..., |A|. Then, we can write down the following recursion:

V1 = 0 (48)

Vt = 1 + (1− ε)Vt−1ε

[
t− 1

|A|
Vt−1 +

1

A
V1 +

|A| − t
|A|

Vt

]
(49)

Equation (49) can be simplified to

Vt =
1− ε+ ε t−1

|A|

1− ε |A|−t|A|

Vt−1 +
1

1− ε |A|−t|A|

(50)

≤ Vt−1 +
1

1− ε
(51)

Thus, we have

Vt ≤
t− 1

1− ε
≤ |A|

1− ε
(52)

as needed.

Now, we prove Theorem 5.

Proof. Let i ∈ [1, n] be given. First, consider the number of episodes, on which the agent was found in at least one state st
and is equipped with a policy πt, s.t. πt(st) /∈ νi(st). Since each of these episodes contains at least one state st on which νi
has not been successfully taught, and according to Lemma 2, it takes at most |A|1−ε visits to each state to successfully teach

any actions A(s), there will be at most |S||A|1−ε such episodes. These episodes take at most |S||A|H1−ε iterations for all target
states. Out of these episodes, we can safely assume that the agent has successfully picked up νi for all the states visited.

Next, we want to show that the expected number of iterations taken by π†i to get to si is upper bounded by
[
|A|
ε

]i−1

D,

where π†i is defined as
π†i = arg min

π∈Π,π(sj)∈π†(sj),∀j≤i−1

Es0∼µ0
[dπ(s0, si)] . (53)

First, we define another policy

π̂†i (s) =

{
π†(s) if s ∈ {s1, ..., si−1}
πsi(s) otherwise (54)

Adaptive Reward-Poisoning Attacks against Reinforcement Learning

Clearly Es0∼µ0

[
dπ†i

(s0, si)
]
≤ Es0∼µ0

[
dπ̂†i

(s0, si)
]

for all i.

We now prove by induction that dπ̂†i (s, si) ≤
[
|A|
ε

]i−1

D for all i and s ∈ S.

First, let i = 1, π̂†i = πs1 , and thus dπ̂†i (s, si) ≤ D.

Next, we assume that when i = k, dπ̂†i (s, si) ≤ Dk, and would like to show that when i = k + 1, dπ̂†i (s, si) ≤
[
|A|
ε

]
Dk.

Define another policy

π̃†i (s) =

{
π†(s) if s ∈ {s2, ..., si−1}
πsi(s) otherwise (55)

which respect the target policies on s2, ..., si−1, but ignore the target policy on s1. By the inductive hypothesis, we have that
dπ̃†i

(s, si) ≤ Dk. Consider the difference between dπ̂†i (s)(s1, sk) and dπ̃†i (s1, sk). Since π̂†i (s) and π̃†i only differs by their
first action at s1, we can derive Bellman’s equation on each policy, which yield

dπ̂†i
(s1, sk) = (1− ε)Q(s1, π

†(s1)) + εQ̄(s1, a) (56)

≤ max
a∈A

Q(s1, a) (57)

dπ̃†i
(s1, sk) = (1− ε)Q(s1, πs1(s1)) + εQ̄(s1, a) (58)

≥ ε

|A|
max
a∈A

Q(s1, a) (59)

(60)

where Q(s1, a) denotes the expected distance to sk from s1 by performing action a in the first step, and follow π̂†i thereafter,
and Q̄(s1, a) denote the expected distance by performing a uniformly random action in the first step. Thus,

dπ̂†i
(s, sk) ≤ |A|

ε
dπ̃†i

(s1, sk) (61)

With this, we can perform the following decomposition:

dπ̂†i
(s, sk) = P [visit s1 before reaching sk]

(
dπ̂†i

(s, s1) + dπ̂†i
(s1, sk)

)
+ P [not visit s1]

(
dπ̂†i

(s, s1)|not visit s1

)
≤ P [visit s1 before reaching sk]

(
dπ̃†i

(s, s1) +
|A|
ε
dπ̃†i

(s1, sk)

)
+ P [not visit s1]

(
dπ̃†i

(s, sk)|not visit s1

)
= dπ̃†i

(s, sk) +

(
|A|
ε
− 1

)
dπ̃†i

(s1, sk)

≤ Dk +

(
|A|
ε
− 1

)
Dk =

|A|
ε
Dk.

This completes the induction. Thus, we have

dπ̂†i
(s, si) ≤

(
|A|
ε

)i−1

D, (62)

and the total number of iterations taken to arrive at all target states sequentially sums up to

n∑
i=1

dπ̂†i
(s, si) ≤

(
|A|
ε

)n
D. (63)

Finally, each target states need to visited for |A|1−ε number of times to successfully enforce π†. Adding the numbers for
enforcing each π†i gives the correct result.

Adaptive Reward-Poisoning Attacks against Reinforcement Learning

E. Detailed Explanation of Fast Adaptive Attack Algorithm
In this section, we try to give a detailed walk-through of the Fast Adaptive Attack Algorithm (FAA) with the goal of
providing intuitive understanding of the design principles behind FAA. For the sake of simplisity, in this section we assume
that the Q-learning agent is ε = 0, such that the attacker is able to fully control the agent’s behavior. The proof of correctness
and sufficiency in the general case when ε ∈ [0, 1] is provided in section D.

The Greedy Attack: To begin with, let’s talk about the greedy attack, a fundamental subroutine that is called in every
step of FAA to generate the actual attack. Given a desired (partial) policy ν, the greedy attack aims to teach ν to the agent
in a greedy fashion. Specifically, at time step t, when the agent performs action at at state st, the greedy attack first look
at whether at is a desired action at s + t according to sν, i.e. whether at ∈ ν(st). If at is a desired action, the greedy
attack will produce a large enough δt, such that after the Q-learning update, at becomes strictly more preferred than all
undesired actions, i.e. Qt+1(st, at) > maxa/∈ν(st)Qt+1(st, a). On the other hand, if at is not a desired action, the greedy
attack will produce a negative enough δt, such that after the Q-learning update, at becomes strictly less preferred than all
desired actions, i.e. Qt+1(st, at) < maxa∈ν(st)Qt+1(st, a). It can be shown that with ε = 0, it takes the agent at most
|A| − 1 visit to a state s, to force the desired actions ν(s).

Given the greedy attack procedure, one could directly apply the greedy attack with respect to π† throughout the attack
procedure. The problem, however, is efficiency. The attack is not considered success without the attacker achieving the
target actions in ALL target states, not just the target states visited by the agent. If a target state is never visited by the agent,
the attack never succeed. π† itself may not efficiently lead the agent to all the target states. A good example is the chain
MDP used as the running example in the main paper. In section C, we have shown that if an agent follows π†, it will take
exponentially steps to reach the left-most state. In fact, if ε = 0, the agent will never reach the left-most state following π†,
which implies that the naive greedy attack w.r.t. π† is in fact infeasible. Therefore, explicit navigation is necessary. This
bring us to the second component of FAA, the navigation polices.

The navigation polices: Instead of trying to achieve all target actions at once by directly appling the greedy attack w.r.t.
π†, FAA aims at one target state at a time. Let s†(1), ..., s

†
(k) be an order of target states. We will discuss the choice of

ordering in the next paragraph, but for now, we will assume that an ordering is given. The agent starts off aiming at forcing
the target actions in a single target state s†(1). To do so, the attacer first calculate the corresponding navigation policy ν1,

where ν1(st) = πs†
(1)

(st) when st 6= s†(1), and ν1(st) = π†(st) when st = s†(1). That is, ν1 follows the shortest path policy

w.r.t. s†(1) when the agent has not arrived at s†(1), And when the agent is in s†(1), ν1 follows the desired target actions. Using

the greedy attack w.r.t. ν1 allows the attacker to effectively lure the agent into s†(1) and force the target actions π†(s†(1)). After

successfully forcing the target actions in s†(1), the attacker moves on to s†(2). This time, the attacker defines the navigation

policy ν2 similiar to ν1, except that we don’t want the already forced π†(s†(1)) to be untaught. As a result, in ν2, we define

ν2(s†(1)) = π†(s†(1)), but otherwise follows the corresponding shortest-path policy πs†
(2)

. Follow the greedy attack w.r.t. ν2,

the attacker is able to achieve π†(s†(2)) efficiently without affecting π†(s†(1)). This process is carried on throughout the whole
ordered list of target states, where the target actions for already achieved target states are always respected when defining the
next νi. If each target states s†(i) can be reachable with the corresponding νi, then the whole process will terminate at which
point all target actions are guaranteed to be achieved. However, the reachability is not always guaranteed with any ordering
of target states. Take the chain MDP as an example. if the 2nd left target state is ordered before the left-most state, then after
teaching the target action for the 2nd left state, which is moving right, it’s impossible to arrive at the left-most state when the
navigation policy resepct the moving-right action in the 2nd left state. Therefore, the ordering of target states matters.

The ordering of target states: FAA orders the target states descendingly by their shortest distance to the starting state
s0. Under such an ordering, the target states achieved first are those that are farther away from the starting state, and they
necessarily do not lie on the shortest path of the target states later in the sequence. In the chain MDP example, the target
states are ordered from left to right. This way, the agent is always able to get to the currently focused target state from the
starting state s0, without worrying about violating the already achieved target states to the left. However, note that the bound
provided in theorem 5 do not utilize this particular ordering choice and applies to any ordering of target states. As a result,
the bound diverges when ε→ 0, matching with the pathological case described at the end of the last paragraph.

Adaptive Reward-Poisoning Attacks against Reinforcement Learning

Parameters Values Description

exploration noise 0.5 Std of Gaussian exploration noise.
batch size 100 Batch size for both actor and critic
discount factor 0.99 Discounting factor for the attacker problem.
policy noise 0.2 Noise added to target policy during critic update.
noise clip [−0.5, 0.5] Range to clip target policy noise.
action L2 weight 50 Weight for L2 regularization added to the actor network optimization objective.
buffer size 107 Replay buffer size, larger than total number of iterations.
optimizer Adam Use the Adam optimizer.
learning rate critic 10−3 Learning rate for the critic network.
learning rate actor 5−4 Learning rate for the actor network.
τ 0.002 Target network update rate.
policy frequency 2 Frequency of delayed policy update.

Table 1. Hyperparameters for TD3.

F. Experiment Setting and Hyperparameters for TD3
Throughout the experiments, we use the following set of hyperparameters for TD3, described in Table 1. The hyperparameters
are selected via grid search on the Chain MDP of length 6. Each experiment is run for 5000 episodes, where each episode
is of 1000 iteration long. The learned policy is evaluated for every 10 episodes, and the policy with the best evaluation
performance is used for e evaluations in the experiment section.

G. Additional Experiments
G.1. Additional Plot for the rate comparison experiment

See Figure 8.

4 6 8 10 12
|S|

25

50

75

100

125

150

175

200

J 1
05

(
)

sas
TD3

FAA

FAA + TD3

Figure 8. Attack performances on the chain MDP of different length in the normal scale. As can be seen in the plot, both φξFAA +
φξTD3+FAA achieve linear rate.

G.2. Additional Experiments: Attacking DQN

Throughout the main paper, we have been focusing on attacking the tabular Q-learning agent. However, the attack MDP also
applies to arbitrary RL agents. We describe the general interaction protocol in Alg. 4. Importantly, we assume that the RL
agent can be fully characterized by an internal state, which determines the agent’s current behavior policy as well as the
learning update. For example, if the RL agent is a Deep Q-Network (DQN), the internal state will consist of the Q-network
parameters as well as the transitions stored in the replay buffer.

Adaptive Reward-Poisoning Attacks against Reinforcement Learning

Algorithm 4 Reward Poisoning against general RL agent

Parameters: MDP (S,A,R, P, µ0), RL agent hyperparameters.

1: for t = 0, 1, ... do
2: agent at state st, has internal state θ0.
3: agent acts according to a behavior policy:

at ← πθt(st)
4: environment transits st+1 ∼ P (· | st, at), produces reward rt = R(st, at, st+1) and an end-of-episode indicator

EOE.
5: attacker perturbs the reward to rt + δt
6: agent receives (st+1, rt + δt, EOE), performs one-step of internal state update:

θt+1 = f(θt, st, at, st+1, rt + δt, EOE) (64)

7: environment resets if EOE = 1: st+1 ∼ µ0.
8: end for

Figure 9. Result for attacking DQN on the Cartpole environment. The left figure plots the cumulative attack cost JT (φ) as a function of
T . The right figure plot the performance of the DQN agent J(θt) under the two attacks.

In the next example, we demonstrate an attack against DQN in the cartpole environment. In the cartpole environment, the
agent can perform 2 actions, moving left and moving right, and the goal is to keep the pole upright without moving the cart
out of the left and right boundary. The agent receives a constant +1 reward in every iteration, until the pole falls or the cart
moves out of the boundary, which terminates the current episode and the cart and pole positions are reset.

In this example, the attacker’s goal is to poison a well-trained DQN agent to perform as poorly as possible. The corresponding
attack cost ρ(ξt) is defined as J(θt), the expected total reward received by the current DQN policy in evaluation. The DQN
is first trained in the clean cartpole MDP and obtains the optimal policy that successfully maintains the pole upright for 200
iterations (set maximum length of an episode). The attacker is then introduced while the DQN agent continues to train in the
cartpole MDP. We freeze the Q-network except for the last layer to reduce the size of the attack state representation. We
compare TD3 with a naive attacker that perform δt = −1.1 constantly. The results are shown in Fig. 9.

One can see that under the TD3 found attack policy, the performance of the DQN agent degenerates much faster compared
to the naive baseline. While still being a relatively simple example, this experiment demonstrates the potential of applying
our adaptive attack framework to general RL agents.

