
Invariant Causal Prediction for Block MDPs

A. Notation
We provide a summary of key notation used throughout the paper here.

PAG(X) : the parents of node X in the causal graph G. When G is clear from the setting, abbreviate this notation to PA(X).
ANG(X) : the ancestors of node X in G (again, G omitted when unambiguous).

[x]S : [xi1 , . . . , xik |ij 2 S]

⇡M : the stationary distribution given by some fixed policy in an MDP M .
q : the emission function of a block MDP.
E : a set of environments.

B. Proofs
Technical notes and assumptions. In order for the block MDP assumption to be satisfied, we will require that the
interventions defining each environment only occur outside of the causal ancestors of the reward. Otherwise, the different
environments will have different latent state dynamics, which violates our assumption that the environments are obtained
by a noisy emission function from the latent state space S . Although ICP will still find the correct causal variables in this
setting, this state abstraction will no longer be a model irrelevance state abstraction over the union of the environments.

Theorem 1. Consider a family of MDPs ME = {(X , A,R, Pe, �)|e 2 E}, with X = Rk
. Let ME satisfy Assumptions

1-3. Let SR ✓ {1, . . . , k} be the set of variables such that the reward R(x, a) is a function only of [x]SR (x restricted to

the indices in SR). Then let S = AN(R) denote the ancestors of SR in the (fully observable) causal graph corresponding

to the transition dynamics of ME . Then the state abstraction �S(x) = [x]S is a model-irrelevance abstraction for every

e 2 E .

Proof. To prove that �S is a model-irrelevance abstraction, we must first show that r(x) = r(x0) for any x, x
0 : �S(x) =

�S(x0). For this, we note that E[R(x)] =
R
r2R rdp(r|x) =

R
r2R rdp(r|[x]S , [x]SC ) and, because by definition S

C
⇢

PA(R)C , we have that R ? [x]SC . Therefore,

E[R(x)] =

Z

r2R
rdp(r|[x]S) =

Z

r2R
rdp(r|[x0]S) = E[R(x0)]. (7)

To show that [x]S is a MISA, we must also show that for any x1, x2 such that �(x1) = �(x2), and for any e 2 E , the
distribution over next state equivalence classes will be equal for x1 and x2.

X

x02��1(X̄)

P
e
x1x0 =

X

x02��1(X̄)

P
e
x2x0 .

For this, it suffices to observe that S is closed under taking parents in the causal graph, and that by construction environ-
ments only contain interventions on variables outside of the causal set. Specifically, we observe that the probability of
seeing any particular equivalence class [x0]S after state x is only a function of [x]S .

P ([x0]S |x) = f([x]S , [x
0]S)

This allows us to define a natural decomposition of the transition function as follows.

P (x0
|x) = P

✓
[x]S � [x]SC

����[x
0]S � [x0]SC

◆
which by the independent noise assumption gives

P (x0
|x) = f([x0]S , [x]S)P ([x0]Sc |x)

We further observe that since the components of x are independent,
P

[x0]SC
P ([x0]SC |x) = 1. We now return to the
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property we want to show:
X

x02��1(x̄)

P
e
x1x0 =

X

x02��1(x̄)

f([x1]S , [x
0]S)P (x0

|x1)

= f(�(x1), x̄)
X

[x0]SC

P

✓
[x0]SC

����x1

◆

= f(�(x1), x̄)

and because �(x1) = �(x2), we have

= f(�(x2), x̄)

for which we can apply the previous chain of equalities backward to obtain

=
X

x02��1(x̄)

P
e
x2x0

Proposition 1 (Identifiability and Uniqueness of Causal State Abstraction). In the setting of the previous theorem, assume

the transition dynamics and reward are linear functions of the current state. If the training environment set Etrain satisfies

any of the conditions of Theorem 2 (Peters et al., 2016) with respect to each variable in AN(R), then the causal feature set

�S is identifiable. Conversely, if the training environments don’t contain sufficient interventions, then it may be that there

exists a � such that � is a model irrelevance abstraction over Etrain, but not over E globally.

Proof. The proof of the first statement follows immediately from the iterative application of the identifiability result of
Peters et al. (2016) to each variable in the causal variables set.

For the converse, we consider a simple counterexample in which one variable xm is constant in every training environment,
with value vm. Then letting S = AN(R), we observe that S [ {m} is also a model-irrelevance state abstraction.

First, we show r(x1) = r(x2) for any x1, x2 : �S[{m}(x1) = �S[{m}(x2).

p(R|x1, a) = p(R|x1|S , a)

= p(R|x1|S[{m}, a,m = vm)

= p(R|(x2|S[{m}, a,m = vm)

= p(R|x2, a)

Finally, we must show that X

x02��1
S[{m}(X̄)

Px1x0 =
X

x02��1
S[{m}(X̄)

Px2x0 .

Again starting from the result of Theorem 1 we have:
X

x02��1
S[{m}(x̄)

Px1x0 =
X

x02��1
S[{m}(x̄)

f(x1|S[{m}, x
0
|S[{m})p(x

0
|x1|(S[{m})C ,m = vm)

= f(�S[{m}(x1), x̄)
X

x02��1
S[{m}(x̄)

p(x0
|x1,m = vm)

= f(�S[{m}(x1), x̄)
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and because �S[{m}(x1) = �S[{m}(x2), we have

= f(�S[{m}(x2), x̄)

for which we can apply the previous chain of equalities backward to obtain

=
X

x02��1
S[{m}(x̄)

Px2x0

However, if one of the test environments contains the intervention xm  vm + N (0,�2), then the distribution over
next-states in the new environment will violate the conditions for a model-irrelevance abstraction.

Theorem 2. Consider an MDP M , with M
0
denoting a coarser bisimulation of M . Let � denote the mapping from states of

M to states of M
0
. Suppose that the dynamics of M are L-Lipschitz w.r.t. �(X) and that T is some approximate transition

model satisfying maxs EkT (�(s))� �(TM (s))k < �, for some � > 0. Let W1(⇡1,⇡2) denote the 1-Wasserstein distance.

Then

Ex⇠M 0 [kT (�(x))� �(TM 0(x))k]  � + 2LW1(⇡�(M),⇡�(M 0)). (8)

We will use the shorthand ⇡ for ⇡�(M), the distribution of state embeddings �(M) corresponding to the behaviour policy,
and ⇡

0 for ⇡�(M 0) for the distribution of state embeddings �(M 0) given by the behaviour policy.

Proof.

Ex⇠M 0 [kT (�(x))� �(TM 0(x))k] = Ex⇠M 0 [ min
y2XM

kT (�(x))� T (�(y)) + T (�(y))� �(TM (x))k]

 Ex⇠M 0 [ min
y2XM

kT (�(x))� T (�(y))k

+ kT (�(y))� �(TM (y))k+ k�(TM (y))� �(TM (x))k]

Let � be a coupling over the distributions of �(M 0) and �(M) such that E�(�(x),�(y))k�(x)� �(y)k = W1(⇡,⇡0)

 Ex⇠M 0 [E�(�(y)|�(x))kT (�(x))� T (�(y))k] + � + Lkx� yk]

 Ex⇠M 0 [E�(�(y)|�(x))Lk�(x)� �(y)k+ � + Lk�(x)� �(y)k]

= E�(�(x),�(y))[Lk�(x)� �(y)k+ � + Lk�(x)� �(y)k]

= 2LW1(⇡,⇡
0) + �

Theorem 4 (Existence of model-irrelevance state abstractions). Let E denote some family of bisimilar MDPs with joint

state space XE = [e2EXe. Let the mapping from states in Me to the underlying abstract MDP M̄ be denoted by fe. Then

if the states in XE satisfy x 2 Xe0 \Xe =) fe(x) = fe0(x), then � = [fe is a model-irrelevance state abstraction for

E .

Proof. First, note that [fe is well-defined (because each f agrees with the rest on the value of all states appearing in
multiple tasks). Then � will be a model-irrelevance abstraction for every MDP Me because it agrees with fe (a model-
irrelevance abstraction).

Theorem 3. Let M be our block MDP and M̄ the learned invariant MDP with a mapping � : X 7! Z . For any L-Lipschitz

valued policy ⇡ the value difference is bounded by

|Q
⇡(x, a)� Q̄

⇡(�(x), a)| 
J
1
R + �LJ

1
D

1� �
. (9)
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Proof.

sup
xt2X ,at2A

|Q
⇡(xt, at)� Q̄

⇡(�(xt), at)|

 sup
xt2X ,at2A

|R(�(xt), a,�(xt+1))� r(x, a)|+ � sup
xt2X ,at2A

|Ext+1⇠P (·|xt,at)V
⇡(xt+1)� Ezt+1⇠f(·|�(xt),at)V̄

⇡(zt+1)|

= J
1
R + � sup

xt2X ,at2A

��Ext+1⇠P (·|xt,at)[V
⇡(xt+1)� V̄

⇡(�(xt+1))] + E xt+1⇠P (·|xt,at)
zt+1⇠f(·|�(xt),at)

[V̄ ⇡(�(xt+1))� V̄
⇡(zt+1)]

��

 J
1
R + � sup

xt2X ,at2A

��Ext+1⇠P (·|xt,at)[V
⇡(xt+1)� V̄

⇡(�(xt+1))]
��

+ � sup
xt2X ,at2A

��E xt+1⇠P (·|xt,at)
zt+1⇠f(·|�(xt),at)

[V̄ ⇡(�(xt+1))� V̄
⇡(zt+1)]

��

 J
1
R + � sup

xt2X ,at2A

��Ext+1⇠P (·|xt,at)[V
⇡(xt+1)� V̄

⇡(�(xt+1))]
��+ �L sup

xt2X ,at2A
W (�(P (·|xt, at)), f(·|�(xt), at))

= J
1
R + � sup

xt2X ,at2A

��Ext+1⇠P (·|xt,at)[V
⇡(xt+1)� V̄

⇡(�(xt+1))]
��+ �LJ

1
D

 J
1
R + � sup

xt2X ,at2A
Ext+1⇠P (·|xt,at)

��[V ⇡(xt+1)� V̄
⇡(�(xt+1))]

��+ �LJ
1
D

 J
1
R + � sup

xt2X ,at2A

��[V ⇡(xt)� V̄
⇡(�(xt))]

��+ �LJ
1
D

 J
1
R + � sup

xt2X ,at2A

��[Q⇡(xt�1, at�1)� Q̄
⇡(�(xt�1), at�1)]

��+ �LJ
1
D

=
J
1
R + �LJ

1
D

1� �

Proposition 2 (Lower bound on abstraction error). Let fe be a mapping from S ! X . Fix some arbitrary policy ⇢ and

let v(s) denote the value of state s under ⇢, with ⇡ its stationary distribution. If 9 e, e
0
, s, s

0
such that fe(s) = fe0(s0) (i.e.

different states induce the same observation), then the following bound is a lower bound on the error obtained by a joint

state abstraction over all environments.

min
v̂

1

|E|

X

e2E
err(�(Xe), v̂) � min

s,s0:v(s) 6=v(s0)

✓
|v(s)� v(s0)|

◆
PE

✓
(�(x) 6= f

�1
e (x)

◆
� �

H(V (S)|X)� 1

log |V (S)|
(10)

Where

err(�(Xe), v̂) := E⇡(Xe)|v̂(�(x))� v(f�1
e (x))|

and

� = min
s,s0:v(s) 6=v(s0)

✓
|v(s)� v(s0)|

◆

Proof. (Sketch) The error obtained by state abstraction will be at least the decoding error of values from abstract states
scaled by �. This in turn depends on how effectively it is possible to decode a potentially lossy mapping from observations
back to states. This leads to the second inequality, due to Fano, where the entropy H(V (S)|X) is given by marginalizatiion
with respect to v(s) of the following probability distributions.

p(x) =
1

|E|

X

s,e

[fe(s) = x]⇡(s)

p(s|x) =
1

p(x)

1

|E|

X

e

⇡(s)
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C. Implementation Details
C.1. Model Learning: Rich Observations

For the model learning experiments we use an almost identical encoder architecture as in Tassa et al. (2018), with two
more convolutional layers to the convnet trunk. Secondly, we use ReLU activations after each convolutional layer, instead
of ELU. We use kernels of size 3 ⇥ 3 with 32 channels for all the convolutional layers and set stride to 1 everywhere,
except of the first convolutional layer, which has stride 2. We then take the output of the convolutional net and feed it into
a single fully-connected layer normalized by LayerNorm (Ba et al., 2016). Finally, we add tanh nonlinearity to the 50
dimensional output of the fully-connected layer.

The decoder consists of one fully-connected layer that is then followed by four deconvolutional layers. We use ReLU
activations after each layer, except the final deconvolutional layer that produces pixels representation. Each deconvolutional
layer has kernels of size 3⇥ 3 with 32 channels and stride 1, except of the last layer, where stride is 2.

The dynamics and reward models are all MLPs with two hidden layers with 200 neurons each and ReLU activations.

C.2. Reinforcement Learning

For the reinforcement learning experiments we modify the Soft Actor-Critic PyTorch implementation by Yarats and
Kostrikov (2020) and augment with a shared encoder between the actor and critic, the general model fs and task-specific
models fe

⌘ . The forward models are multi-layer perceptions with ReLU non-linearities and two hidden layers of 200 neu-
rons each. The encoder is a linear layer that maps to a 50-dim hidden representation. We also use L1 regularization on
the S latent representation. We add two additional dimensions to the state space, a spurious correlation dimension that is a
multiplicative factor of the last dimension of the ground truth state, as well as an environment id. We add Gaussian noise
N (0, 0.01) to the original state dimension, similar to how Arjovsky et al. (2019) incorporate noise in the label to make the
task harder for the baseline.

Soft Actor Critic (SAC) (Haarnoja et al., 2018) is an off-policy actor-critic method that uses the maximum entropy frame-
work to derive soft policy iteration. At each iteration, SAC performs soft policy evaluation and improvement steps. The
policy evaluation step fits a parametric soft Q-function Q(xt, at) using transitions sampled from the replay buffer D by
minimizing the soft Bellman residual,

J(Q) = E(xt,xt,rt,xt+1)⇠D

✓
Q(xt, at)� rt � �V̄ (xt+1)

◆2�
.

The target value function V̄ is approximated via a Monte-Carlo estimate of the following expectation,

V̄ (xt+1) = Eat+1⇠⇡

⇥
Q̄(xt+1, at+1)� ↵ log ⇡(at+1|xt+1)

⇤
,

where Q̄ is the target soft Q-function parameterized by a weight vector obtained from an exponentially moving average
of the Q-function weights to stabilize training. The policy improvement step then attempts to project a parametric pol-
icy ⇡(at|xt) by minimizing KL divergence between the policy and a Boltzmann distribution induced by the Q-function,
producing the following objective,

J(⇡) = Ext⇠D


Eat⇠⇡[↵ log(⇡(at|xt))�Q(xt, at)]

�
.

We provide the hyperparameters used for the RL experiments in Table 1.

C.3. IRM Hyperparameter Sweep

We found IRM to be very brittle, even on the original colored MNIST task they presented. We implement the same penalty
and learning rate schedule proposed in their paper (Arjovsky et al., 2019), but found that we required a much smaller
penalty weight to work. In Figure 8 we show the hyperparameter sweep we performed on cartpole swingup to find
one where it started to learn. Note that in the colored MNIST task, they used a penalty weight of 1000, whereas we found
no learning to occur until we reduced the penalty weight to 0.01.



Invariant Causal Prediction for Block MDPs

Parameter name Value
Replay buffer capacity 1000000
Batch size 1024
Discount � 0.99
Optimizer Adam
Critic learning rate 10�5

Critic target update frequency 2
Critic Q-function soft-update rate ⌧Q 0.005
Critic encoder soft-update rate ⌧enc 0.005
Actor learning rate 10�5

Actor update frequency 2
Actor log stddev bounds [�5, 2]
Encoder learning rate 10�5

Decoder learning rate 10�5

Decoder weight decay 10�7

L1 regularization weight 10�5

Temperature learning rate 10�4

Temperature Adam’s �1 0.9
Init temperature 0.1

Table 1. A complete overview of used hyper parameters.

Figure 8. Hyperparameter sweep for IRM on cartpole swingup. All penalty weights fail to learn, even on the training environments,
until the penalty weight is very small.

D. Additional Results: Reinforcement Learning
We find that even without noise on the ground truth states, with only two environments, baseline SAC fails as seen in
Figure 9.

Figure 9. Generalization gap in SAC performance with 2 training environments on Cartpole Swingup from DMC. Evaluated with 10
seeds, standard error shaded.


