
Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions

A. Proof of Lemmas in Preliminaries
A.1. Proof of Lemma 3

Proof. Let g(t) = f(x+ t(y − x)) for t ∈ [0, 1], then g is L‖y − x‖-Lipschitz implying that g is absolutely continuous.
Thus from the fundamental theorem of calculus (Lebesgue), g has a derivative g′ almost everywhere, and the derivative is
Lebesgue integrable such that

g(t) = g(0) +

∫ t

0

g′(s)ds.

Moreover, if g is differentiable at t, then

g′(t) = lim
δt→0

g(t+ δt)− g(t)

δt
= lim
δt→0

f(x+ (t+ δt)(y − x))− f(x+ t(y − x))

δt
= f ′(x+ t(y − x), y − x).

Since this equality holds almost everywhere, we have

f(y)− f(x) = g(1)− g(0) =

∫ 1

0

g′(t)dt =

∫ 1

0

f ′(x+ t(y − x), y − x)dt.

A.2. Proof of Lemma 4

Proof. For any ϕ(t) = x+ td as given in Definition 3, let tk → 0. Denote xk = ϕ(tk), δk = ‖xk−x‖ → 0. By Proposition
1.6, we know that there exists gk,j ∈ ∪y∈x+δkB∂f(y) such that

f(xk)− f(x) = 〈gk,j , xk − x〉.

By the existence of directional derivative, we know that

lim
k→∞

〈gk,j , d〉 = lim
k→∞

〈gk,j , tkd〉
tk

= f ′(x, d)

gk,j is in a bounded set with norm less than L. The Lemma follows by the fact that any accumulation point of gk,j is in
∂f(x) due to upper-semicontinuity of ∂f(x).

B. Proof of Lemmas in Algorithm Complexity
B.1. Proof of Theorem 5

Our proof strategy is similar to Theorem 1.1.2 in (Nesterov, 2018), where we use the resisting strategy to prove lower bound.
Given a one dimensional function f , let xk, k ∈ [1,K] be the sequence of points queried in ascending order instead of query
order. We assume without loss of generality that the initial point is queried and is an element of {xk}Kk=0 (otherwise, query
the initial point first before proceeding with the algorithm).

Then we define the resisting strategy: always return

f(x) = 0, and ∇f(x) = L.

If we can prove that for any set of points xk, k ∈ [1,K], there exists two functions such that they satisfy the resisting strategy
f(xk) = 0, and ∇f(xk) = L, k ∈ [1,K], and that the two functions do not share any common stationary points, then
we know no randomized/deterministic can return an ε−stationary points with probability more than 1/2 for both functions
simultaneously. In other word, no algorithm that query K points can distinguish these two functions. Hence we proved the
theorem following the definition of complexity in (5) with δ = 0.

All we need to do is to show that such two functions exist in the Lemma below.
Lemma 12. Given a finite sequence of real numbers {xk}k∈[1,K] ∈ R, there is a family of functions fθ ∈ F(∆, L) such
that for any k ∈ [1,K],

fθ(xk) = 0 and ∇fθ(xk) = L

and for ε sufficiently small, the set of ε-stationary points of fθ are all disjoint, i.e {ε-stationary points of fθ1}∩ {ε-stationary
points of fθ2} = ∅ for any θ1 6= θ2.
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Proof. Up to a permutation of the indices, we could reorder the sequence in the increasing order. WLOG, we assume xk is
increasing. Let δ = min{minxi 6=xj{|xi − xj |}, ∆

L }. For any 0 < θ < 1/2, we define fθ by

fθ(x) = −L(x− x1 + 2θδ) for x ∈ (−∞, x1 − θδ]

fθ(x) = L(x− xk) for x ∈
[
xk − θδ,

xk + xk+1

2
− θδ

]
fθ(x) = −L(x− xk+1 + 2θδ) for x ∈

[
xk + xk+1

2
− θδ, xk+1 − θδ

]
fθ(x) = L(x− xK) x ∈ [xK + θδ,+∞).

It is clear that fθ is directional differentiable at all point and∇fθ(xk) = L. Moreover, the minimum f∗θ = −Lθδ ≥ −∆.
This implies that fθ ∈ F(∆, L). Note that ∇fθ = L or −L except at the local extremum. Therefore, for any ε < L the set
of ε-stationary points of fθ are exactly

{ε-stationary points of fθ} = {xk − θδ | k ∈ [1,K]} ∪
{
xk + xk+1

2
− θδ | k ∈ [1,K − 1]

}
,

which is clearly distinct for different choice of θ.

B.2. Proof of Proposition 6

Proof. When x is ( ε
3L ,

ε
3 ) stationary, we have d(0, ∂f(x + ε

3LB)) ≤ ε
3 . By definition, we could find g ∈

conv(∪y∈x+ ε
3LB
∇f(y)) such that ‖g‖ ≤ 2ε/3. This means, there exists x1, · · · , xk ∈ x+ ε

3LB, and α1, · · · , αk ∈ [0, 1]
such that α1 + · · ·+ αk = 1 and

g =

k∑
i=1

αi∇f(xi)

Therefore

‖∇f(x)‖ ≤ ‖g‖+ ‖∇f(x)− g‖

≤ 2ε

3
+

k∑
i=1

αi‖∇f(x)−∇f(xk)‖

≤ 2ε

3
+

k∑
i=1

αiL‖x− xk‖

≤ 2ε

3
+

k∑
i=1

αiL
ε

3L
= ε.

Therefore, x is an ε-stationary point in the standard sense.

B.3. Proof of Lemma 7

Proof. First, we show that the limit exists. By Lipschitzness and Jenson inequality, we know that ∂f(x + δk+1B) lies
in a bounded ball with radius L. For any sequence of {δk} with δk ↓ 0, we know that ∂f(x + δk+1B) ⊆ ∂f(x + δkB).
Therefore, the limit exists by the monotone convergence theorem.

Next, we show that limδ↓0 ∂f(x + δB) = ∂f(x). For one direction, we show that ∂f(x) ⊆ limδ↓0 ∂f(x + δB). This
follows by proposition 1.5 and the fact that

∪y∈x+δB∂f(y) ⊆ conv(∪y∈x+δB∂f(y)) = ∂f(x+ δB).

Next, we show the other direction limδ↓0 ∂f(x + δB) ⊆ ∂f(x). By upper semicontinuity, we know that for any ε > 0,
there exists δ > 0 such that

∪y∈x+δB∂f(y) ⊆ ∂f(x) + εB.
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Then by convexity of ∂f(x) and εB, we know that their Minkowski sum ∂f(x) + εB is convex. Therefore, we conclude
that for any ε > 0, there exists δ > 0 such that

∂f(x+ δB) = conv(∪y∈x+δB∂f(y)) ⊆ ∂f(x) + εB.

C. Proof of Theorem 8
Before we prove the theorem, we first analyze how many times the algorithm iterates in the while loop.

Lemma 13. Let K = 48L2

ε2 . Given t ∈ [1, T ],

E[‖mt,K‖2] ≤ ε2

16
.

where for convenience of analysis, we define mt,k = 0 for all k > k0 if the k-loop breaks at (t, k0). Consequently, for any
γ < 1, with probability 1− γ, there are at most log(1/γ) restarts of the while loop at the t-th iteration.

Proof. Let Ft,k = σ(yt,1, · · · , yt,k+1), then xt,k,mt,k ∈ Ft,k. We denote Dt,k as the event that k-loop does not break at
xt,k, i.e. ‖mt,k‖ > ε and f(xt,k)− f(xt) > − δ‖mt,k‖4 . It is clear that Dt,k ∈ Ft,k.

Let γ(λ) = (1− λ)xt + λxt,k, λ ∈ [0, 1]. Note that γ′(λ) = xt,k − xt = −δ mt,k
‖mt,k‖ . Since yt,k+1 is uniformly sampled

from line segment [xt, xt,k], we know

E[〈gt,k+1, xt,k − xt〉|Ft,k] =

∫ 1

0

f ′(γ(t), xt,k − xt)dt = f(xt,k)− f(xt)

where the second equality comes from directional differentiability. Since xk+1 − xk = −δ mt,k
‖mt,k‖ , we know that

E[〈gt,k+1,mt,k〉|Ft,k] = −‖mt,k‖
δ

(f(xt,k)− f(xt)). (7)

By construction mt,k+1 = βmt,k + (1− β)gt,k+1 under Dt,k ∩ · · · ∩Dt,1, and mt,k+1 = 0 otherwise. Therefore,

E[‖mt,k+1‖2|Ft,k]

=E[‖βmt,k + (1− β)gt,k+1‖21Dt,k∩···∩Dt,1 |Ft,k]

≤
(
β2‖mt,k‖2 + (1− β)2L2 + 2β(1− β)E[〈gt,k+1,mt,k〉|Ft,k]

)
1Dt,k∩···∩Dt,1

≤β2‖mt,k‖2 + (1− β)2L2 − 2β(1− β)
‖mt,k‖
δ

(f(xt,k)− f(xt))1Dt,k∩···∩Dt,1

≤β2‖mt,k‖2 + (1− β)2L2 + 2β(1− β)
‖mt,k‖2

4

where in the third line, we use the fact β,Dt,k ∩ · · · ∩ Dt,1 ∈ Ft,k; in the fourth line we use the fact under Dt,k,
f(xt,k)− f(xt) ≥ − δ‖mt,k‖4 . The last equation is a quadratic function with respect to β, which could be rewritten as

h(β) = β2(
‖mt,k‖2

2
+ L2)− 2β(L2 − ‖mt,k‖2

4
) + L2.

It achieves the minimum at β =
4L2−‖mt,k‖2
4L2+2‖mt,k‖2 , which belongs to Ft,k. Since ‖mt,k‖ ≤ L, we have

h∗ =
L2

L2 +
‖mt,k‖2

2

‖mt,k‖2 ≤
(

1− ‖mt,k‖2

3L2

)
‖mt,k‖2
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Therefore,

E[‖mt,k+1‖2]

=E[E[‖mt,k+1‖2|Ft,k]]

≤E
[(

1− ‖mt,k‖2

3L2

)
‖mt,k‖2

]
≤
(

1− E[‖mt,k‖2]

3L2

)
E[‖mt,k‖2]

where the last inequality follows from Jensen’s inequality under the fact that the function x→ (1− x/3L2)x is concave.
Now consider the sequence vk = E[‖mt,k‖2]/L2 ∈ [0, 1], we get

vk+1 ≤ vk − v2
k/3 =⇒ 1

vk+1
≥ 1

vk − v2
k/3
≥ 1

vk
+

1

3
.

Knowing that v1 ≤ 1, we therefore have

vk ≤
3

k + 2
.

When K > 48L2

ε2 , we have E[‖mt,K‖2] ≤ ε2

16 . Therefore, by Markov inequality, P{‖mt,K‖ ≥ ε} ≤ 1/4. In other word, the
while-loop restart with probability at most 1/4. Therefore, with probability 1− γ, there are at most log(1/γ) restarts.

Now we are ready to prove the main theorem.

Proof of Theorem 8. We notice that mt,k is always a convex combinations of generalized gradients within the δ ball of xk,
i.e.

mt,k ∈ ∂f(xt + δB) = conv(∪y∈xt+δB∂f(y))

Therefore, if at any t, k, ‖mt,k‖ ≤ ε, then the corresponding xt is a (δ, ε) approximate stationary point. To show that our
algorithm always find a ‖mt,k‖ ≤ ε, we need to control the number of times the descent condition is satisfied, which breaks
the while-loop without satisfying ‖mt,k‖ ≤ ε. Indeed, when the descent condition holds, we have

f(xt,k)− f(xt) ≤ −
δ‖mt,k‖

4
< −δε

4
,

where we use the fact ‖mt,k‖ > ε, otherwise, the algorithm already terminates. Consequently, there are at most 4∆
δε − 1 =

T − 1 iterations that the descent condition holds. As a result, for at least one t , the while-loop ends providing a (δ, ε)
approximate stationary point.

By Lemma 13, we know that with probability 1− γδε
4∆ , the t-th iteration terminates in log( 4∆

γδε ) restarts. Consequently, with
probability 1− γ, the algorithm returns a (δ, ε) approximate stationary point using

192∆L2

ε3δ
log

(
4∆

γδε

)
oracle calls.

D. Proof of Theorem 10
Stochastic INGD has convergence guarantee as stated in the next theorem.

Theorem 14. Under the stochastic Assumption 1, the Stochastic INGD algorithm in Algorithm 2 with parameters β =

1 − ε2

64G2 , p = 64G2 ln(16G/ε)
δε2 , q = 4Gp, T = 216G3∆ ln(16G/ε)

ε4δ max{1, Gδ8∆}, K = pδ has algorithm complexity upper
bounded by

216G3∆ ln(16G/ε)

ε4δ
max{1, Gδ

8∆
} = Õ

(
G3∆

ε4δ

)
.
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Proof. First, we are going to show that
1

T

T∑
t=1

E[‖mt‖] ≤ ε/4. (8)

From construction of the descent direction, we have

‖mt+1‖2 = (1− β)2‖g(yt+1)‖2 + 2β(1− β)〈g(yt+1),mt〉+ β2‖mt‖2. (9)

Multiply both side by ηt and sum over t, we get

0 = (1− β)2
T∑
t=1

ηt‖g(yt+1)‖2︸ ︷︷ ︸
i

+2β(1− β)

T∑
t=1

〈g(yt+1), ηtmt〉︸ ︷︷ ︸
ii

+

T∑
t=1

ηt(−‖mt+1‖2 + β2‖mt‖2)︸ ︷︷ ︸
iii

. (10)

We remark that at each iteration, we have two randomized/stochastic procedure: first we draw yt+1 randomly between
the segment [xt, xt+1], second we draw a stochastic gradient at yt+1. For convenience of analysis, we denote Gt as the
sigma field generated by g(yt), and Yt as the sigma field generated by yt. Clearly, Gt ⊂ Yt+1 ⊂ Gt+1. By definition ηt is
determined by mt, which is further determined by gt. Hence, the vectors mt, ηt and xt+1 are Gt-measurable.

Now we analyze each term one by one.

Term i: This term could be easily bound by

E[ηt‖g(yt+1)‖2] ≤ 1

q
E[‖g(yt+1)‖2] =

1

q
E[E[‖g(yt+1)‖2|Yt+1]] ≤ G2

q
(11)

Term ii: Note that ηtmt = xt − xt+1, we have

E[〈g(yt+1), ηtmt〉 | Gt] = E[E[〈g(yt+1), xt − xt+1〉 | Yt+1]| Gt]
= E[f ′(yt+1;xt − xt+1)| Gt]

=

∫
[0,1]

f ′(xt+1 + λ(xt − xt+1);xt − xt+1)dλ

= f(xt)− f(xt+1),

where the second line we use the property of the oracle given in Assumption 1(b). Thus by taking the expectation, we have

T∑
t=1

E[〈g(yt+1), ηtmt〉] = E[f(x1)− f(xT+1)] ≤ ∆

Term iii: we would like to develop a telescopic sum for the third term, however this is non-trivial since the stepsize ηt is
adaptive. Extensive algebraic manipulation is involved.

T∑
t=1

ηt(−‖mt+1‖2 + β2‖mt‖2)

=

T∑
t=1

−‖mt+1‖2

p‖mt‖+ q
+ β2

T∑
t=1

‖mt‖2

p‖mt‖+ q

=

T∑
t=1

(
−‖mt+1‖2

p‖mt‖+ q
+
‖mt+1‖2

p‖mt+1‖+ q

)
−

T∑
t=1

‖mt+1‖2

p‖mt+1‖+ q
+ β2

T∑
t=1

‖mt‖2

p‖mt‖+ q

=

T∑
t=1

p‖mt+1‖2(‖mt‖ − ‖mt+1‖)
(p‖mt‖+ q)(p‖mt+1‖+ q)

+ β2 ‖m1‖2

p‖m1‖+ q
+ (β2 − 1)

T+1∑
t=2

‖mt‖2

p‖mt‖+ q
(12)
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The first equality follows by ηt = 1
p‖mt‖+q . The second equality subtract and add the same terms ‖mt+1‖2

p‖mt+1‖+q . The last
equality regroups the terms.

We now prove the first term in (12) admits the following upper bound:

p‖mt+1‖2(‖mt‖ − ‖mt+1‖)
(p‖mt‖+ q)(p‖mt+1‖+ q)

≤ (1− β)
‖mt+1‖2

p‖mt+1‖+ q
+

(1− β)p‖g(yt+1)‖
q

‖mt‖2

p‖mt‖+ q
(13)

Note that if ‖mt+1‖ ≥ ‖mt‖ then the inequality trivially holds. Thus, we only need to consider the case when ‖mt+1‖ ≤
‖mt‖. By triangle inequality,

‖mt‖ − ‖mt+1‖ ≤ ‖mt −mt+1‖ = (1− β)‖mt − g(yt+1)‖
≤ (1− β)(‖mt‖+ ‖g(yt+1)‖).

Therefore, substitue the above inequality into lefthand side of (13) and regroup the fractions,

p‖mt+1‖2(‖mt‖ − ‖mt+1‖)
(p‖mt‖+ q)(p‖mt+1‖+ q)

≤ p‖mt+1‖2(1− β)(‖mt‖+ ‖g(yt+1)‖)
(p‖mt‖+ q)(p‖mt+1‖+ q)

= (1− β)
‖mt+1‖2

p‖mt+1‖+ q

p‖mt‖
p‖mt‖+ q

+
(1− β)p‖g(yt+1)‖

p‖mt‖+ q

‖mt+1‖2

p‖mt+1‖+ q

≤ (1− β)
‖mt+1‖2

p‖mt+1‖+ q
+

(1− β)p‖g(yt+1)‖
q

‖mt‖2

p‖mt‖+ q
,

where the last step we use the fact that ‖mt+1‖ ≤ ‖mt‖ and the function x → x2/(px + q) is increasing on R+. Now,
taking expectation on both sides of (13) yields

E
[
p‖mt+1‖2(‖mt‖ − ‖mt+1‖)
(p‖mt‖+ q)(p‖mt+1‖+ q)

]
≤ (1− β)E

[
‖mt+1‖2

p‖mt+1‖+ q

]
+
p(1− β)

q
E
[
‖g(yt+1)‖ ‖mt‖2

p‖mt‖+ q

]
= (1− β)E

[
‖mt+1‖2

p‖mt+1‖+ q

]
+
p(1− β)

q
E
[
E [‖g(yt+1)‖|Gt]

‖mt‖2

p‖mt‖+ q

]
≤ (1− β)E

[
‖mt+1‖2

p‖mt+1‖+ q

]
+
p(1− β)G

q
E
[
‖mt‖2

p‖mt‖+ q

]
≤ (1− β)E

[
‖mt+1‖2

p‖mt+1‖+ q

]
+
β(1− β)

2
E
[
‖mt‖2

p‖mt‖+ q

]
where the third inequality follows by the fact that E[‖g(yt+1‖|Gt] ≤

√
L2 + σ2 and the last inequality follows from our

choice of parameters ensuring pG/q ≤ β/2.

Now we are ready to proceed the telescopic summing. Summing up over t and yields

T∑
t=1

E
[
ηt(−‖mt+1‖2 + β2‖mt‖2)

]
≤ (1− β)

T∑
t=1

E
[
‖mt+1‖2

p‖mt+1‖+ q

]
+
β − β2

2

T∑
t=1

E
[
‖mt‖2

p‖mt‖+ q

]
+ β2E

[
‖m1‖2

p‖m1‖+ q

]
+ (β2 − 1)

T+1∑
t=2

E
[
‖mt‖2

p‖mt‖+ q

]

=
β2 + β

2
E
[
‖m1‖2

p‖m1‖+ q

]
+
β2 − β

2

T+1∑
t=2

E
[
‖mt‖2

p‖mt‖+ q

]

= β2E
[
‖m1‖2

p‖m1‖+ q

]
+
β2 − β

2

T+1∑
t=1

E
[
‖mt‖2

p‖mt‖+ q

]

≤ β2G2

q
+
β2 − β

2

T+1∑
t=1

E
[
‖mt‖2

p‖mt‖+ q

]
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The first inequality uses (13). The third line and the foruth line regroup the terms. The last line follows by p‖m1‖+ q ≥ q
and E[‖m1‖2] ≤ G2.

Combine all term i, ii and iii in (10) yields

β − β2

2

T+1∑
t=1

E
[
‖mt‖2

p‖mt‖+ q

]
≤ 2β(1− β)E[f(x1)− f(xT+1)] +

β2G2

q
+ T (1− β)2G

2

q
.

Multiply both side by 2q
T (β−β2) we get

1

T

T∑
t=1

E
[
q‖mt‖2

p‖mt‖+ q

]
≤ 4q∆

T
+

2βG2

T (1− β)
+

2(1− β)G2

β
(14)

We may assume ε ≤ G, otherwise any xt is a (δ, ε)-stationary point. Then by choosing β = 1− ε2

64G2 , p = 64G2 ln(16G/ε)
δε2 ,

q = 256G3 ln(16G/ε)
δε2 , T = 216G3∆ ln(16G/ε)

ε4δ max{1, Gδ8∆}, have

1

T

T∑
t=1

E
[

4G‖mt‖2

‖mt‖+ 4G

]
≤ ε2

17
(15)

Note that the function x→ x2/(x+ 4G) is convex, thus by Jensen’s inequality, for any t, we have

4GE [‖mt‖]2

E[‖mt‖] + 4G
≤ E

[
4G‖mt‖2

‖mt‖+ 4G

]
(16)

Let’s denote

mavg =
1

T

T∑
t=1

E [‖mt‖] ,

then again by Jensen’s inequality,
4Gm2

avg

mavg + 4G
≤ 1

T

T∑
t=1

4GE [‖mt‖]2

E[‖mt‖] + 4G
≤ ε2

17

Solving the quadratic inequality with respect to mavg and using ε ≤ G, we have

1

T

T∑
t=1

E [‖mt‖] ≤
ε

4
.

In contrast to the smooth case, we cannot directly conclude from this inequality since mt is not the gradient at xt. Indeed, it
is the convex combination of all previous stochastic gradients. Therefore, we still need to find a reference point such that mt

is approximately in the δ-subdifferential of the reference point. Note that

mt =

t∑
i=t−K+1

αig(yi) + βKmt−K

Intuitively, when K is sufficiently large, the contribution of the last term in mt is negligible. In which case, we could deduce
mt is approximately in ∂f(xt−K + δB). More precisely, with β = 1− ε2

64G2 , as long as K ≥ 64G2

ε2 ln( 16G
ε ), we have

βK ≤ ε

16G
.

This is a simple analysis result using the fact that ln(1 − x) ≤ −x. Then by Assumption on the oracle, we know that
E[g(yi)|Yi] ∈ ∂f(yi) and ‖yi − xt−K‖ ≤ K

p ≤ δ for any i ∈ [t−K + 1, t]. Thus,

E[g(yi)|xt−K ] ∈ ∂f(xt−K + δB).
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Figure 2.

Consequently, the convex combination

1∑
αi

t∑
i=t−K+1

αiE[g(yi)|xt−K ] ∈ ∂f(xt−K + δB).

Note that
∑
αi = 1− βK , the above inclusion could be rewritten as

1

1− βK
(E[mt|xt−K ]− βKmt−K) ∈ ∂f(xt−K + δB).

This implies that conditioned on xt−K

d(0, ∂f(xt−K + δB)) ≤ 1

1− βK
(
‖E[mt | xt−K ]‖+ βK‖mt−K‖

)
≤ 1

1− βK
(
E[‖mt‖|xt−K ] + βK‖mt−K‖

)
.

Therefore, by taking the expectation,

E[d(0, ∂f(xt−K + δB))] ≤ 1

1− βK
(
E[‖mt‖] + βKG

)
≤ 1

1− 1
16

(E[‖mt‖] +
ε

16
) =

16

15
E[‖mt‖] +

ε

15
.

Finally, averaging over t = 1 to T yields,

1

T

T∑
t=1

E[d(0, ∂f(xt−K + δB))] ≤ 16

15T

T∑
t=1

E[‖mt‖] +
ε

15
≤ ε

3

When t < K, ∂f(xt−K + δB) simply means ∂f(x1 + δB). As a result, if we randomly out put xmax{1,t−K} among
t ∈ [1, T ], then with at least probability 2/3, the δ-subdifferential set contains an element with norm smaller than ε. To
achieve 1− γ probability result for arbitrary γ, it suffices to repeat the algorithm log(1/γ) times.

E. Proof of Theorem 11
Proof. The proof idea is similar to Proof of Theorem 5. Since the algorithm does not have access to function value, our
resisting strategy now always returns

∇f(x) = 1.

If we can prove that for any set of points xk, k ∈ [1,K],K ≤ ∆
8δ , there exists two one dimensional functions such that they

satisfy the resisting strategy∇f(xk) = 1, k ∈ [1,K], and that the two functions do not have two stationary points that are
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δ close to each other, then we know no randomized/deterministic can return an (δ, ε)−stationary points with probability
more than 1/2 for both functions simultaneously. In other word, no algorithm that query K points can distinguish these two
functions. Hence we proved the theorem following the definition of complexity in (5).

From now on, let xk, k ∈ [1,K] be the sequence of points queried after sorting in ascending order. Below, we construct two
functions such that ∇f(xk) = 1, k ∈ [1,K], and that the two functions do not have two stationary points that are δ close to
each other. Assume WLOG that xk are ascending. First, we define f : R→ R as follows:

f(x0) = 0,

f ′(x) = −1 if x ≤ x1 − 2δ,

f ′(x) = 1 if exists i ∈ [K] such that |x− xi| ≤ 2δ,

f ′(x) = −1 if exists i ∈ [K] such that x ∈ [xi + 2δ,
xi + xi+1

2
],

f ′(x) = 1 if exists i ∈ [K] such that x ∈ [
xi + xi+1

2
, xi+1 − 2δ],

f ′(x) = 1 if x ≥ xK + 2δ

A schematic picture is shown in Figure 2. It is clear that this function satisfies the resisting strategy. It also has stationary
points that are at least 4δ apart. Therefore, simply by shifting the function by 1.5δ, we get the second function.

The only thing left to check is that supk f(xk)− infx f(x) ≤ ∆. By construction, we note that the value from xi to xi+1 is
non decreasing and increase by at most 4δ

sup
k
f(xk)− f(x0) ≤ 4δK ≤ ∆/2. (17)

We further notice that the global minimum of the function is achieved at x0 − 2δ, and f(x0 − 2δ) = −2δ ≤ 4δK ≤ ∆/2.
Combined with (17), we get,

sup
k
f(xk)− inf

x
f(x) ≤ ∆. (18)


