
Optimal Estimator for Unlabeled Linear Regression

A. Notations

We begin the appendix with a restatement of the notations. Denote c, c
′

, ci as some universal positive constants. Notice
that their values may not necessarily the same even for those with same notations. We denote a ! b if there exists some
positive constant c0 > 0 such that a ≤ c0b. Similarly we define a " b provided a ≥ c0b for some positive constant c0. We
write a # b when a ! b and a " b hold simultaneously.

For an arbitrary matrix X, we denote Xi,: as the i-th row, X:,i as its i-th column, and Xij as the (i, j)-th element. The
Frobenius norm of X is defined as |||X|||F while the operator norm is denoted as |||X|||OP, whose definition can be found

in Section 2.3 of Golub and Loan (2013) (P71). Its stable rank ρ(X) is defined as the ratio |||X|||2F/|||X|||2OP (Section 2.1.15
in Tropp (2015)). The inner product 〈A,C〉 is defined as

∑
ij AijCij .

Associate with each permutation matrix Π, we define the operator π(·) that transforms index i to π(i). The Hamming
distance dH(Π1,Π2) between permutation matrix Π1 and Π2 is defined as dH (Π1,Π2) =

∑n
i=1 (π1(i) &= π2(i)).

Additionally, we denote E as the complement of the event E and the signal-to-noise-ratio (SNR) as SNR =
∣∣∣∣∣∣B!

∣∣∣∣∣∣2
F
/(mσ2).

B. Problem Restatement

To begin with, we recall the problem formulation, which reads as

Y = Π!XB! +W,

where Y ∈ Rn×m represents the observation, Π ∈ Rn×n denotes the unknown permutation matrix, X ∈ Rn×p is the

sensing matrix (design matrix) with Xij
i.i.d∼ N (0, 1) being a standard normal random variable (RV), B! ∈ Rp×m is the

matrix of regression coefficients, and W ∈ Rn×m is the additive Gaussian noise matrix such that Wij
i.i.d∼ N (0,σ2).

Our goal is to reconstruct the pair (Π̂, B̂) from the observation Y and sensing matrix (design matrix) X. The proposed
one-step estimator can be written as

Π̂ = argmax
Π∈Pn

〈
Π,YY#XX#

〉
,

B̂ = (X)† Π̂
#
Y,

where X† = (X#X)−1X# denotes the pseudo-inverse of X. In the following, we will separately investigate its properties
under the single observation model (m = 1) and multiple observations model (m > 1). The formal statement is packaged
in Theorem 1 and Theorem 2.

C. Appendix for Section 3

This section focuses on the special case where p = 1,m = 1. Consider X ∈ Rn to be a Gaussian distributed RV such that
X ∼ N (0, In×n), and permutation matrix Π! which satisfies dH(I,Π

!) = h ≤ n/4.

C.1. Notations

First we define the following events Ei, (1 ≤ i ≤ 5), which reads

E1 #
{〈

X,Π!X
〉
≥ c0n

}
,

E2 #
{
‖X‖2 ≤ 2

√
n
}

E3(Π) #
{
W#XX#

(
Π! −Π

)
W ! σ2n2 log n

}
,

E4(Π) #
{∣∣∣∣〈W,X〉

〈
Π!X,

(
Π! −Π

)#
X

〉
+

〈
W,

(
Π! −Π

)#
X

〉〈
Π!X,X

〉∣∣∣∣ ! σn2
√

log n

}

E5(Π; $) #
{
‖X−ΠX‖22 ≥ 12$

5en20
, dH (I,Π) = $

}
,

where Π is an arbitrary permutation matrix, and c0 > 0 is some positive constant.
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C.2. Outline of proof

We will prove that ground truth permutation matrix Π! will be returned with high probability under the assumptions in
Theorem 1. The formal statement is shown in Theorem 1. Before we delve into the proof details, we give a roadmap of the
proof, which is

• Step I: Under the events E1
⋂

Π
(E3(Π)

⋂
E4(Π)

⋂
E5(Π; $)), we have

〈
Π!,yy#XX#

〉
−
〈
Π,yy#XX#

〉
"

c0β2

n19
− c1βσn

2
√

log n− c2σ
2n2 log n.

Notice that under assumptions in Theorem 1, we conclude that
〈
Π!,yy#XX#

〉
>
〈
Π,yy#XX#

〉
, ∀ Π, which

suggests that Π! will always be returned by our estimator in Eq. (3).

• Step II: We upper-bound the probability P(Π̂ &= Π!) by P
(
E1
⋃

Π

(
E3(Π)

⋃
E4(Π)

⋃
E5(Π; $)

))
and complete the

proof by showing it is at most cn−1.

Having illustrated the proof strategy, we turn to the proof details. The main proof is attached in Section C.3 while the
supporting lemmas bounding P(Ei), (1 ≤ i ≤ 5), are put in Section C.4.

C.3. Proof of Theorem 1

Proof 1 For an arbitrary permutation matrix Π, we can expand the term
〈
Π,yy#XX#

〉
as

〈
Π,yy#XX#

〉
= T1(Π) + βT2(Π) + β2T3(Π),

where Ti(Π), (1 ≤ i ≤ 3), are defined as

T1(Π) =
〈
W,Π#X

〉
〈X,W〉 ;

T2(Π) = 〈W,X〉
〈
Π!X,Π#X

〉
+
〈
W,Π#X

〉〈
Π!X,X

〉
;

T3(Π) =
〈
Π!X,ΠX

〉〈
Π!X,X

〉
.

Step I: We rewrite the difference
〈
Π!,yy#XX#

〉
−
〈
Π,yy#XX#

〉
as

〈
Π!,yy#XX#

〉
−
〈
Π,yy#XX#

〉

= T1(Π!)− T1(Π) + β
(
T2
(
Π!
)
− T2(Π)

)
+ β2

(
T3
(
Π!
)
− T3(Π)

)

1©
=

β2

2

〈
Π!X,X

〉∥∥∥X−Π!#ΠX
∥∥∥
2

2
+ β

(
T2
(
Π!
)
− T2(Π)

)
+ T1(Π!)− T1(Π)

2©
≥ β2

2
c0n

24

5en20
− β

∣∣∣T2
(
Π!
)
− T2(Π)

∣∣∣−
∣∣∣T1(Π!)− T1(Π)

∣∣∣

3©
"

c0β2

n19
− c1βσn

2
√

log n− c2σ
2n2 log n

4©
> 0,

where in 1© we rewrite ‖X‖22 −
〈
Π!X,ΠX

〉
as

‖X‖22 −
〈
Π!X,ΠX

〉
=

1

2

(
‖X‖22 +

∥∥∥Π!#ΠX
∥∥∥
2

2
− 2

〈
Π!X,ΠX

〉)
=

1

2

∥∥∥X−Π!#ΠX
∥∥∥
2

2
,

in 2© we condition on event E1, E5(Π; $) and have ‖X−ΠX‖22 ≥ 12"
5en20 ≥ 24

5en20 , in 3© we condition on E3(Π), E4(Π),
and in 4© we use the assumption log(SNR) " log n in Theorem 1.
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Step II: The error probability P

(
Π̂ &= Π!

)
is hence be upper-bounded as

P

(
Π̂ &= Π!

)
≤ P

(

E1

⋃

Π

(
E3(Π)

⋃
E4(Π)

⋃
E5(Π; $)

))

5©
≤ P

(
⋃

Π

(
E3(Π)

⋃
E4(Π)

⋃
E5(Π)

)⋂
E1
⋂

E2

)

+ P
(
E1

)
+ P

(
E2

)

6©
≤

∑

Π! %=Π

P

(
E3(Π)

⋂
E1
⋂

E2
)
+
∑

Π! %=Π

P

(
E4(Π)

⋂
E1
⋂

E2
)

+
∑

"≥2

P

(
E5(Π; $)

⋂
E1
⋂

E2
)
+ 8n−1 + 2e−c0n

7©
≤ 2n−n + 3

∑

"≥2

(
n

$

)
$!n−2" + 8n−1 + 2e−c0n

8©
! c0n

−n + n−1 + 3
∑

"≥2

n"n−2" ! c0n
−1 +

3

n(n− 1)
! n−1,

where in 5© we use the union bound, in 6© we complete the proof with Lemma 1 and the fact P
(
E2

)
≤ e−0.8n, in 7© we

invoke Lemma 2, Lemma 3, Lemma 4, and in 8© we use n!/(n− $)! ≤ n" and complete the proof.

C.4. Supporting Lemmas for Theorem 1

This subsection collects the supporting lemmas for the proof of Theorem 1.

Lemma 1 We have P
(
E1

)
≤ 8n−1 + e−0.238n when n is sufficiently large.

Proof 2 Different from the proof in Lemma 9, we consider the case where X ∈ Rn is a vector and would lower-bound〈
X,Π!X

〉
. W.l.o.g, we assume the first h entries are permuted and expand the inner product

〈
X,Π!X

〉
as

〈
X,Π!X

〉
=

h∑

i=1

XiXπ(i) +
n∑

i=h+1

X2
i .

With union bound, we can upper bound P

(〈
X,Π!X

〉
≤ c0n

)
as

P

(〈
X,Π!X

〉
≤ c0n

) 1©
≤ P

(
n∑

i=h+1

X2
i ≤ 1

4
(n− h)

)

︸ ︷︷ ︸
ζ1

+P

(
h∑

i=1

XiXπ(i) ≤ −4
√
2 +

√
35√

2

√
n log n

)

︸ ︷︷ ︸
ζ2

,

where c0 > 0 is some positive constant, in 1© we use the fact

n− h

4
− 4

√
2 +

√
35√

2

√
n log n

(h≤n
4 )

≥ 3n

16
− 4

√
2 +

√
35√

2

√
n log n ≥ c0n,

when n is large. We finish the proof by separately upper-bounding ζ1 ≤ e−0.2386n and ζ2 ≤ 8n−1. The detailed computa-

tion comes as follows.

Phase I: For ζ1, we can view
∑n

i=h+1 X
2
i as a χ2-RV with (n− h) freedom and have

ζ1
2©
≤ exp

(
n− h

2

(
log

1

4
− 1

4
+ 1

))
3©
≤ e−0.2386n,
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where in 2© we use Lemma 11, and 3© is because h ≤ n/4.

Phase II: To bound ζ2, we divide the index set {j : j &= π(j)} into 3 disjoint sets Ii, 1 ≤ i ≤ 3, as in Lemma 8

in Pananjady et al. (2017a) (restated as Lemma 13). This division has two properties: (i) indices j and π(j) lies in

different sets; (ii) the cardinality hi of each Ii satisfies -h/5. ≤ hi ≤ h/3. Then we obtain

ζ2 ≤ P

(
h∑

i=1

XiXπ(i) ≤ −4
√
2 +

√
35√

2

√
n log n, |Xi| ≤ 2

√
log n, ∀ i

)

+ P

(
|Xi| ≥ 2

√
log n, ∃ i

)

4©
≤

3∑

i=1

P




∑

j∈Ii

XjXπ(j) ≤ −4
√
2 +

√
35

3
√
2

√
n log n, |Xi| ≤ 2

√
log n, ∀ i





︸ ︷︷ ︸
ζ2,i

+nP

(
|Xi| ≥ 2

√
log n

)

︸ ︷︷ ︸
≤2n−2

,

where in 4© we use the union bound for
∑h

i=1 XiXπ(i) and the tail bounds for Gaussian distributed Xi.

Then we define Zi =
∑

j∈Ii
XjXπ(j) and bound ζ2,i via the Bernstein inequality (Theorem 2.8.4 in Vershynin (2018)).

First, we verify that E
(
XjXπ(j)

)
= (EXj)

(
EXπ(j)

)
= 0. Meanwhile we compute σ2 =

∑
j∈Ii

E
(
XjXπ(j)

)2
= hi.

According to the Bernstein inequality, we have

∣∣∣∣∣∣

∑

j∈Ii

XjXπ(j)

∣∣∣∣∣∣
≥ 4

3
(log n)2 +

√
16

9
(log n)4 + 2(log n)hi,

holds with probability 2n−1. Meanwhile, we can upper bound as

4

3
(log n)2 +

√
16

9
(log n)4 + 2(log n)hi ≤

4

3
(log n)2 +

√
16

9
(log n)4 +

n log n

6

5©
≤ 4

√
2 +

√
35

3
√
2

√
n log n,

where 5© is because n ≥ log3(n) for n ≥ 95. Hence, we conclude that ζ2,i ≤ 2n−1 and complete the proof by combining

the bound for ζ1 and ζ2.

Lemma 2 We have P
(
E3(Π)

⋂
E2
)
≤ n−2n.

Proof 3 For the conciseness of notation, we define Ξ as Ξ # XX#
(
Π! −Π

)
. Due to the independence of the X and

W, we can condition on X and bound P(E3(Π)
⋂

E2) as

P

(
E3(Π)

⋂
E2
) 1©

≤ P
(
W#ΞW ≥ EW#ΞW + cσ2n2 log n

)

2©
≤ exp

(

−
(
c0n4 log2 n

|||Ξ|||2F
∧ c1n2 log n

‖Ξ‖2

))
3©
≤ n−2n,

where in 1© we condition on E2 and use the fact

EW#ΞW + cσ2n2 log n ! σ2‖X‖22 + cσ2n2 log n ! σ2n2 log n,

in 2© we use Hanson-Wright inequality (Theorem 6.2.1 in Vershynin (2018)), and in 3© we condition on E2 and use

‖Ξ‖2 ! ‖X‖22 ! n.

Lemma 3 We have P
(
E4(Π)

⋂
E2
)
≤ n−2n.

Proof 4 Due to the independence between W and X, we would like to condition on X and bound P(E4(Π)
⋂

E2) as

P

(
E4(Π)

⋂
E2
)

≤ exp

(
−4cσ2n4 log n

2σ2
Π

)
,
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where σ2
Π

is defined as

σ2
Π = σ2

∣∣∣∣

∣∣∣∣

∣∣∣∣

〈
Π!X,

(
Π! −Π

)#
X

〉
X+

〈
Π!X,X

〉(
Π! −Π

)
X

∣∣∣∣

∣∣∣∣

∣∣∣∣
2

F

,

Notice under E2, we have σ2
Π

! σ2
(
4‖X‖32

)2
= cσ2n3, and complete the proof by showing

exp

(
−4cσ2n4 log n

2σ2
Π

)
≤ exp

(
−4cσ2n4 log n

2cσ2n3

)
= n−2n.

Lemma 4 We have P
(
E5(Π); $

)
≤ 3n−2".

Proof 5 Adopting a similar approach as in proving Lemma 1, we can decompose the index sets {j : j &= π(j)} into 3
disjoint sets Ii (1 ≤ i ≤ 3) such that: (1) j and π(j) do not lie within the same index set Ii; and (2) the cardinality $i of

Ii satisfies -$/5. ≤ $i ≤ $/3. Then we can bound P (E5(Π; $)) as

P

(∥∥∥X−Π!X
∥∥∥
2

2
≤ 12$

5en20

)
1©
=

3∑

i=1

P




∑

j∈Ii

(
Xj −Xπ(j)

)2 ≤ 4$

5en20





2©
≤

3∑

i=1

exp

(
$i
2

(
log

2l

5en20$i
− 2l

5en20$i
+ 1

))
3©
≤ 3n−2".

where 1© is due to the decomposition Ii, 1 ≤ i ≤ 3, 2© is because
∑(

Xj −Xπ(j)

)2
/2 is a χ2 RV with freedom $i and

Lemma 11, and 3© is due to -$/5. ≤ $i ≤ $/3 and hence

$i
2

(
log

2l

5en20$i
− 2l

5en20$i
+ 1

)
≤ $i

2

(
log

2l

5$i
− 20 log n

)
≤ −10$i log n ≤ −2$ log n.

D. Appendix for Section 4

This section provides theoretical analysis for the multiple observations model, i.e., m > 1. We will show that our estimator
in Eq. (3) gives correct permutation matrix Π! once

log(SNR) "
log n

ρ(B!)
+ log log n.

The formal statement is packaged in Theorem 2.

D.1. Notations

Before our discussion, first we define B̃ and B∗ respectively as

B̃ = (n− h)−1
X#Π!XB!,

B∗ = (n− h)−1
X#Y = B̃+ (n− h)−1

X#W,

where h is denoted as the Hamming distance between identity matrix I and the ground truth permutation matrix Π!, i.e.,
h = dH(I,Π

!). Similar as in Section C, we define events Ei, (6 ≤ i ≤ 9) as

E6 #
{
‖Xi,:‖2 ≤ 2

√
p log n, ∀i

}
;

E7 #
{∥∥Xi,:

(
B∗ −B!

)∥∥
2
! c0

p(log n)3/2(log p)√
n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
+ c1

√
m(log n)σ

(
1 +

p

n

)
, ∀ i

}
;

E8 #
{〈

Wi,:,
(
Xj,: −Xπ!(i),:

)
B∗
〉

≥ ∆, ∃ i, j
}
;

E9 #
{∥∥(Xπ!(i),: −Xj,:

)
B!
∥∥2
2
+ 2

〈(
Xπ!(i),: −Xj,:

)
B!,Xj,:

(
B! −B∗

)〉
−
∥∥Xπ!(i),:

(
B! −B∗

)∥∥2
2
≤ ∆, ∃ i, j

}
,

where ∆ is defined as

∆ = 16
√
2c0σ

p(log n)3/2(log p)√
n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
+ 16c1

√
2m(log n)σ2

(
1 +

p

n

)
+ 4

√
2c2(log n)σ

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
.



Optimal Estimator for Unlabeled Linear Regression

D.2. Outline of proof

In front of the rigorous proof in Section D.3, we first illustrate our proof strategy as

• Step I: We relax the wrong recovery
{
Π̂ &= Π!

}
to event E , i.e.

{
Π̂ &= Π!

}
⊆ E , which reads as

E #
{∥∥Yi,: −Xπ!(i),:B

∗
∥∥2
2
≥ ‖Yi,: −Xj,:B

∗‖22, ∃ i, j
}
. (14)

The physical meaning of E is that we may reduce the residual |||Y −Π!XB∗|||F by changing π!(i) to j. Same
relaxation has been previously used in Collier and Dalalyan (2016); Slawski et al. (2019a); Zhang et al. (2019a;b).

• Step II: The core in this step lies in how to lower bound P(E7). First we decompose E into E8
⋃
E9 with some simple

algebraic manipulations. Under the SNR assumption in Eq. (7), we show both P(E8) and P(E9) are approximately
P(E7), as in Lemma 5 and Lemma 6, respectively.

To show P(E7) is with low probability, in another words, P(E7) is highly likely, we prove the following relations hold
with high probability under E6,

∥∥∥Xi,:

(
B̃−B!

)∥∥∥
2
!

p(log n)3/2(log p)√
n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
;

∥∥Xi,:X
#W

∥∥
2
!

√
m(log n)σ(n+ p),

whose proof are in Lemma 9 and Lemma 10, respectively, and hence finish the proof by

∥∥Xi,:

(
B∗ −B!

)∥∥
2
≤
∥∥∥Xi,:

(
B̃−B!

)∥∥∥
2
+

1

n− h

∥∥Xi,:X
#W

∥∥
2
.

In particular, we would like to mention the technique used in bounding
∥∥Xi,:X

#W
∥∥
2
. First we review the widely-

used bounding procedure, which proceeds as

∥∥Xi,:X
#W

∥∥
2
≤ ‖Xi,:‖2‖X‖2‖W‖2

1©
!
√

p log n
(√

n+
√
p
)
σ
(√

n+
√
m
) 2©
#
√

log n(n3/2)σ +
√
mn log nσ,

where in 1© we use the fact ‖Xi,:‖2 !
√
p log n, ‖X‖2 !

√
n +

√
p, ‖W‖2 ! σ(

√
n +

√
m) hold with high

probability, and in 2© we use p # n. Comparing with our results in Lemma 10, this bound experience inflations when
m 2 n and will lift the SNR requirement to log(SNR) " log n, which hides the role of ρ(B!) compared with our
current result in Theorem 2. To handle such problem, we adopt the leave-one-out trick as in El Karoui (2013; 2018);
Chen et al. (2019); Sur et al. (2019) and refer to Lemma 10 for the technical details.

Having illustrated our proof strategies, we leave the detailed calculation to Section D.3.

D.3. Proof of Theorem 2

Proof 6 We restate the definition of event E as

E #
{∥∥Yi,: −Xπ!(i),:B

∗
∥∥2
2
≥ ‖Yi,: −Xj,:B

∗‖22, ∃ i, j
}
.

Step I: First we verify that

Π̂ = argmin
Π

|||Y −ΠXB∗|||F

returns the same permutation matrix Π̂ as that by Eq. (3). Hence, correct recovery of the ground truth permutation matrix

Π! suggests that

∣∣∣
∣∣∣
∣∣∣Y −Π!XB∗

∣∣∣
∣∣∣
∣∣∣
F
< |||Y −ΠXB∗|||F, ∀ Π &= Π!.
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Then we finish the proof by showing that E ⊆
{
Π̂ = Π!

}
. Assuming the claim is not true, which means we have matrix

Π such that
∣∣∣
∣∣∣
∣∣∣Y −Π!XB∗

∣∣∣
∣∣∣
∣∣∣
2

F
≥ |||Y −ΠXB∗|||2F,

conditional on event E . Meanwhile we have

∣∣∣
∣∣∣
∣∣∣Y −Π!XB∗

∣∣∣
∣∣∣
∣∣∣
2

F
=

n∑

i=1

∥∥Yi,: −Xπ!(i),:B
∗
∥∥2
2

1©
<

n∑

i=1

∥∥Yi,: −Xπ(i),:B
∗
∥∥2
2
= |||Y −ΠXB∗|||2F,

which leads to contradiction, where in 1© we use the definition of E .

Step II: We verify that
∥∥Yi,: −Xπ!(i),:B

∗
∥∥2
2
≥ ‖Yi,: −Xj,:B

∗‖22 is equivalent to

2
〈
Wi,:,

(
Xj,: −Xπ!(i),:

)
B∗
〉
≥
∥∥(Xπ!(i),: −Xj,:

)
B!
∥∥2
2
+
∥∥Xj,:

(
B! −B∗

)∥∥2
2

+ 2
〈(
Xπ!(i),: −Xj,:

)
B!,Xj,:

(
B! −B∗

)〉
−
∥∥Xπ!(i),:

(
B! −B∗

)∥∥2
2
,

which suggests that P (E) ≤ P (E8) + P (E9) and completes the proof with Lemma 5 and Lemma 6.

Lemma 5 We have P (E8) ≤ c0e
−((log n)4∧(logn)2ρ(B!)) + c1n−1 + c2ne−c3n + c4ne−c0m + 2e−p + 6p−2.

Proof 7 For the conciseness of notation, we define ∆1 and ∆2 as

∆1 = 4c0
p(log n)3/2(log p)√

n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
+ 4c1

√
m(log n)σ

(
1 +

p

n

)
;

∆2 = c2(log n)
∣∣∣∣∣∣B!

∣∣∣∣∣∣
F
.

Then we can bound P (E8) as

P (E8)
1©
≤ P

(∥∥(Xj,: −Xπ!(i),:

)
B∗
∥∥
2
≥ ∆1 +∆2, ∃ i, j

)
+ exp

(

− ∆2

2σ2 (∆1 +∆2)
2

)

2©
≤ P

(∥∥(Xj,: −Xπ!(i),:

) (
B∗ −B!

)∥∥
2
≥ ∆1, ∃ i, j

)

︸ ︷︷ ︸
ζ1

+ P

(∥∥(Xj,: −Xπ!(i),:

)
B!
∥∥
2
≥ ∆2, ∃ i, j

)

︸ ︷︷ ︸
ζ2

+n−8, (15)

where in 1© we use the independence between W and X and condition on X, in 2© we use the relation ∆ =

4
√
2σ (∆1 +∆2). Then we will prove that ζ1 ≤ P(E7) and ζ2 # e−((logn)4∧(logn)2ρ(B!)).

Phase I: bounding ζ1 Conditional on E7, we have
∥∥(Xj,: −Xπ!(i),:

) (
B∗ −B!

)∥∥
2
≤
∥∥Xj,:

(
B∗ −B!

)∥∥
2
+
∥∥Xπ!(i),:

(
B∗ −B!

)∥∥
2

3©
≤ 2c0

p(log n)3/2(log p)√
n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
+ 2c1

√
m(log n)σ

(
1 +

p

n

)
<

∆1

2
,

and obtain ζ1 = 0, where 3© is due to the definition of E7. Then we conclude that ζ1 ≤ P(E7).

Phase II: bounding ζ2 For ζ2, we upper-bound it as

ζ2
4©
≤

∑

π!(i),j

P

(
Z ≥ c2(log n)

2
∣∣∣∣∣∣B!

∣∣∣∣∣∣2
F

) 5©
≤ n2

P

(
|Z − EZ| ≥ c3(log n)

2
∣∣∣∣∣∣B!

∣∣∣∣∣∣2
F

)

6©
≤ n2 exp

(

−
(
(log n)4

∣∣∣∣∣∣B!
∣∣∣∣∣∣4

F

|||B!B!#|||2F
∧

(log n)2
∣∣∣∣∣∣B!

∣∣∣∣∣∣2
F

|||B!B!#|||OP

))

= n2e−((logn)4∧(logn)2ρ(B!))

# e−((log n)4∧(logn)2ρ(B!)), (16)
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where in 4© we define Z #
∥∥(Xj,: −Xπ!(i),:

)
B!
∥∥2
2
, in 5© we have EZ = 4

∣∣∣∣∣∣B!
∣∣∣∣∣∣2

F
and use

c2(log n)2
∣∣∣∣∣∣B!

∣∣∣∣∣∣2
F
≥
(
4 + c3(log n)2

) ∣∣∣∣∣∣B!
∣∣∣∣∣∣2

F
when n is sufficiently large, and in 6© we use the Hanson-Wright inequality

(Theorem 6.2.1 in Vershynin (2018)). Combining Eq. (15), Eq. (16) and Lemma 8 together, we complete the proof.

Lemma 6 Consider the same setting of Theorem 2. Provided the SNR satisfies

log(SNR) "
6 log n

ρ (B!)
+ log log n,

we have P (E9) ≤ 2e−p + ne−c1m + c2p−2 + c3ne−c4n, when n is sufficiently large, where ci > 0, 0 ≤ i ≤ 4 are some

positive constants.

Proof 8 We upper bound P (E9) as

P (E9) ≤ P

(∥∥∥
(
Xπ!(i),: −Xj,:

)
B

"
∥∥∥
2

2
− 2
∥∥∥
(
Xπ!(i),: −Xj,:

)
B

"
∥∥∥
2

∥∥∥Xj,:

(
B

" −B
∗
)∥∥∥

2
−
∥∥∥Xπ!(i),:

(
B

" −B
∗
)∥∥∥

2

2
≤ ∆, ∃ i, j

)

≤ P

(∥∥∥
(
Xπ!(i),: −Xj,:

)
B

"
∥∥∥
2
≤ δ, ∃ i, j

)

︸ ︷︷ ︸
! ζ1

+P

(∥∥Xπ!(i),:

(
B

" −B
∗
)∥∥2

2

δ2
+

2
∥∥Xπ!(i),:

(
B

" −B
∗
)∥∥

2

δ
+

∆
δ2

≥ 1, ∃ i, j

)

︸ ︷︷ ︸
! ζ2

.

Setting δ as
∣∣∣∣∣∣B!

∣∣∣∣∣∣
F
n
− 3

cρ(B!) , we would like to show ζ1 ! n−1 and ζ2 ≤ P(E7) under the assumptions in Lemma 6.

Phase I: bounding ζ1 We set δ as
∣∣∣∣∣∣B!

∣∣∣∣∣∣
F
n
− 3

cρ(B!) , and can upper bound ζ1 as

ζ1 ≤
n∑

i=1

∑

j %=π!(i)

P

(∥∥(Xπ!(i),: −Xj,:

)
B!
∥∥
2
≤ δ
) 1©
≤

n∑

i=1

∑

j %=π!(i)

n−3 ! n−1, (17)

where 1© comes from the small ball probability as in Lemma 2.6 in Latala et al. (2007), which is also stated as Lemma 12.

Phase II: bounding ζ2 Then we prove that ζ2 can be arbitrarily small under the SNR requirement in Eq. (7). Conditional

on event E7, we have
∥∥Xπ!(i),:

(
B! −B∗

)∥∥2
2

δ2
≤

2c20
p2(logn)3(log p)2

n

∣∣∣∣∣∣B!
∣∣∣∣∣∣2

F
+ 2c21m(log n)2σ2 (1 + p/n)2

|||B!|||2Fn
− 6

cρ(B!)

2©
≤ 2c20p

2(log n)3(log p)2

n1−6/(cρ(B!))
︸ ︷︷ ︸

η1

+8c21
(log n)2n

6
cρ(B!)

SNR︸ ︷︷ ︸
η2

, (18)

in 2© we use the fact p ≤ n. Since we have n ≥ p4(log n)6(log p)4 and ρ(B!) ≥ 18/c, we conclude η1 → 0 as n goes to

infinity. Meanwhile, because of the assumptions in Eq. (7), we have η2 to be a small positive constants.

Additionally, we can expand ∆/δ2 as

∆

δ2
!

n
6

cρ(B!)σ

|||B!|||2F

(
c0

p(log n)3/2(log p)√
n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
+ c1

√
m(log n)σ

(
1 +

p

n

)
+ c2(log n)

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F

)

! c0
p(log n)3/2(log p)√

mn
× n

6
cρ(B!)

√
SNR

+ c1
log n√

m
× n

6
cρ(B!)

√
SNR

+ c2
log n√

m
× n

6
cρ(B!)

SNR
. (19)

Following similar procedures as above, we can prove ∆/δ2 to be a small positive constant given Eq. (7). Combing Eq. (18)

and Eq. (19) together, we conclude

η1 + η2 + 2
√
η1 + η2 +

∆

δ2
< 1,

which suggests that ζ2 equals zero conditional on events E7. Therefore, we obtain

ζ2 ≤ P
(
E7

) 3©
≤ 2e−p + 6p−2 + ne−c0m + c0n

−1 + c1ne
−c2n

4©
! 2e−p + ne−c0m + c0p

−2 + c1ne
−c2n

and completes the proof together with Eq. (17), where 3© is due to Lemma 8, and 4© is because of n " p2.
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D.4. Supporting Lemmas for Theorem 2

Lemma 7 For arbitrary row Xi,:, we have

‖Xi,:‖2 ≤ 2
√

p log n,

with probability exceeding 1− n−p.

Proof 9 Notice that ‖Xi,:‖22 is a χ2-RV with freedom p, we have

P

(
‖Xi,:‖22 ≥ 4p log n

)
≤ exp

(p
2
(log(4p log n)− 4 log n+ 1)

) 1©
≤ exp (−p log n) = n−p,

where in 1© we use 2 log n ≥ log (4 log n) + 1, when n ≥ 4.

Lemma 8 We have P (E7) ≥ 1− 2e−p − 6p−2 − ne−c0m − c0n−1 − c1ne−c2n.

Proof 10 Invoking Lemma 10, we have

P
(∥∥Xi,:X

#W
∥∥
2
≤ c0

√
m(log n)σ (n+ p) , ∀ i

)

= 1− P
(∥∥Xi,:X

#W
∥∥
2
> c0

√
m(log n)σ (n+ p) , ∃ i

)

≥ 1−
∑

i

P
(∥∥Xi,:X

#W
∥∥
2
> c0

√
m(log n)σ (n+ p)

)

≥ 1− n1−p − ne−c0m − n−1 − c1ne
−c2n. (20)

Then we conclude

∥∥Xi,:

(
B∗ −B!

)∥∥
2
≤
∥∥∥Xi,:

(
B̃−B!

)∥∥∥
2
+

1

n− h

∥∥Xi,:X
#W

∥∥
2

≤ ‖Xi,:‖2
∣∣∣
∣∣∣
∣∣∣B̃−B!

∣∣∣
∣∣∣
∣∣∣
F
+

1

n− h

∥∥Xi,:X
#W

∥∥
2

1©
≤ c0

p(log n)3/2(log p)√
n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
+

c1
√
m(log n)σ (n+ p)

n− h

2©
≤ c0

p(log n)3/2(log p)√
n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
+

4

3
c1
√
m(log n)σ

(
1 +

p

n

)
,

where in 1© we condition on Lemma 9 and Eq. (20), and in 2© we use the fact h ≤ n/4.

Lemma 9 Provided that n " p2, h ≤ n/4, we have

∣∣∣
∣∣∣
∣∣∣B̃−B!

∣∣∣
∣∣∣
∣∣∣
F
≤
√

p

n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F

(
4
√
6 + (log n)(log p)

)
,

with probability at least 1− 2e−p − 6p−2 when n, p are sufficiently large.

Proof 11 We assume that the first h rows of X are permuted w.l.o.g. First, we expand X#Π!X as

X#Π!X =
h∑

i=1

X#
π(i),:Xi,: +

n∑

i=h+1

X#
i,:Xi,:,
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and obtain

P

(∥∥∥B! − B̃
∥∥∥
2
≥
√

p

n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F

(
4
√
6 + (log n)(log p)

))

≤ P



 1

n− h

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

h∑

i=1

X#
π(i),:Xi,:B

!

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
F

+
1

n− h

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

n∑

i=h+1

(
X#

i,:Xi,: − I
)
B!

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
F

≥
√

p

n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F

(
4
√
6 + (log n)(log p)

)




1©
≤ P

(
1

n− h

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

h∑

i=1

X#
π(i),:Xi,:B

!

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
F

≥
(log n)(log p)

√
p

√
n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F

)

︸ ︷︷ ︸
ζ1

+ P



 1

n− h

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

n∑

i=h+1

(
X#

i,:Xi,: − I
)
B!

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
F

≥ 4

√
6p

n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F





︸ ︷︷ ︸
ζ2

,

where 1© is because of the union bound. Then we separately bound ζ1 and ζ2.

Phase I: Bounding ζ1 According to Lemma 8 in Pananjady et al. (2017a) (restated as Lemma 13), we can decompose

the set {j : π(j) &= j} into three disjoint sets Ii, 1 ≤ i ≤ 3, such that j and π(j) does not lie in the same set. And the

cardinality of set Ii is hi satisfies -h/5. ≤ hi ≤ h/3. Adopting the union bound, we can upper-bound ζ1 as

ζ1 ≤
3∑

i=1

P



 1

n− h

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

j∈Ii

X#
π(j),:Xj,:B

!

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
F

≥
(log n)(log p)

√
p

3
√
n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F





≤
3∑

i=1

P



 1

n− h

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

j∈Ii

X#
π(j),:Xj,:

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
F

≥
(log n)(log p)

√
p

3
√
n



 .

Defining Zi as Zi =
∑

j∈Ii
X#

π(j),:Xj,:, we would bound the above probability by invoking the matrix Bernstein inequality

(cf. Thm 7.3.1 in Tropp (2015)). First, we have

E

(
X#

π(j),:Xj,:

)
=
(
EXπ(j),:

)#
(EXj,:) = 0,

due to the independence between Xπ(j),: and Xj,:. Then we upper bound
∥∥∥X#

π(j),:Xj,:

∥∥∥
2

as

∥∥∥X#
π(j),:Xj,:

∥∥∥
2

2©
=
∣∣∣
∣∣∣
∣∣∣X#

π(j),:Xj,:

∣∣∣
∣∣∣
∣∣∣
F

3©
=
∥∥Xπ(j),:

∥∥
2
‖Xj,:‖2

4©
≤ 4p log n,

where 2© is because X#
π(j),:Xj,: is rank-1, 3© is due to the fact

∣∣∣∣∣∣uv#
∣∣∣∣∣∣2

F
= Tr

(
uv#vu#

)
= ‖u‖22‖v‖

2
2 for arbitrary

vector u,v ∈ Rp, and 4© is because of Lemma 7.

In the end, we compute E
(
ZiZ

#
i

)
and E

(
Z#

i Zi

)
as

E
(
Z#

i Zi

)
= E




∑

j1,j2∈Ii

X#
π(j1),:

Xj1,:X
#
j2,:Xπ(j2),:



 5©
= E




∑

j∈Ii

X#
π(j),:Xj,:X

#
j,:Xπ(j),:





6©
= E




∑

j∈Ii

X#
π(j),:E

(
Xj,:X

#
j,:

)
Xπ(j),:



 = p




∑

j∈Ii

EX#
π(j),:Xπ(j),:



 = phiIp×p = E
(
ZZ#

)
,

where 5© and 6© is because of the fact such that j and π(j) are not within the set Ii simultaneously. To sum up, we invoke

the matrix Bernstein inequality (cf. Thm 7.3.1 in Tropp (2015)) and have

1

n− h

∥∥∥∥∥∥

∑

j∈I

X#
π(j),:Xj,:

∥∥∥∥∥∥
2

≤ 1

3

(
4p(log n)(log p)

n− h
+

p
√
16(log n)2(log p)2 + 6hi log p/p

n− h

)
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holds with probability 1− 2p−2.

Exploiting the fact such that h ≤ n/4, hi ≤ h/3, and p !
√
n, we obtain

p
√
16(log n)2(log p)2 + 6hi log p/p

n− h
≤ 4p

3n

√
16(log n)2(log p)2 +

n

2p
(log n)(log p)

7©
≤

4
√
p

3
√
n
× (log n)(log p),

in 7© we n " p2 ≥ 32p and hence

1

n− h

∥∥∥∥∥∥

∑

j∈I

X#
π(j),:Xj,:

∥∥∥∥∥∥
2

≤ (log n)(log p)

(
16p

9n
+

4
√
p

9
√
n

)
8©
≤
√

p

n
(log n)(log p),

holds with probability exceeding 1− 6p−2, where in 8© we use n ≥ 256p/25.

Phase II: Bounding ζ2 We upper bound ζ2 as

ζ2 ≤ P



 1

n− h

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

n∑

i=h+1

(
X#

i,:Xi,: − I
)
B!

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
F

≥ 4

√
6p

n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F





≤ P



 1

n− h

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

n∑

i=h+1

(
X#

i,:Xi,: − I
)
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
OP

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
≥ 4

√
6p

n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F



 9©
≤ 2e−p.

where 9© is because of (n− h)−1 ∥∥∑n
i=h+1

(
Xi,:X

#
i,: − I

)∥∥
2
≤ 6

√
2p/(n− h) with probability 2e−p in Example 6.1

in Wainwright (2019) (also listed as Lemma 14) and h ≤ n/4.

The proof is completed via combing the results in Phase I and Phase II.

Lemma 10 For an arbitrary index i, we have

P
(∥∥Xi,:X

#W
∥∥
2
≥ c0

√
m(log n)σ (n+ p)

)
≤ n−p + e−c0m + n−2 + c1e

−c2n.

Proof 12 For the conciseness of notation, we define δ as c0
√
m(log n)σ (n+ p). In addition, we assume that i = 1 w.l.o.g

and prove this lemma with the leave-one-out trick, which is previously used in El Karoui (2013); El Karoui et al. (2013);

El Karoui (2018); Chen et al. (2019); Sur et al. (2019). First we define a perturbed matrix X̃ such that X̃j,: = Xj,:,

2 ≤ j ≤ n, while X̃1,: ∈ R1×p is a independent identically distributed Gaussian vector as X1,:, namely, N (0, I).

Then we can upper-bound the probability as

P
(∥∥X1,:X

#W
∥∥
2
≥ δ
)
≤ P

(∥∥∥X1,:X̃
#W

∥∥∥
2
+

∥∥∥∥X1,:

(
X− X̃

)#
W

∥∥∥∥
2

≥ δ

)

≤ P

(∥∥∥∥X1,:

(
X− X̃

)#
W

∥∥∥∥
2

≥ 4p (log n)
√
mσ

)

︸ ︷︷ ︸
ζ1

+P

(∥∥∥Xi,:X̃
#W

∥∥∥
2
≥ δ − 4p (log n)

√
mσ
)

︸ ︷︷ ︸
ζ2

.

Phase I: bounding ζ1 To bound ζ1, easily we can verify the following relation

∥∥∥∥X1,:

(
X− X̃

)#
W

∥∥∥∥
2

≤ ‖X1,:‖2

∣∣∣∣

∣∣∣∣

∣∣∣∣
(
X− X̃

)#
W

∣∣∣∣

∣∣∣∣

∣∣∣∣
F

1©
= ‖X1,:‖2

∥∥∥X1,: − X̃1,:

∥∥∥
2
‖W1,:‖2

2©
≤ 4p (log n)

√
mσ.

with probability exceeding 1−n−p−e−c0m, where 1© is because only the first row of X− X̃ is nonzero, and 2© conditions

on E6 and ‖W1,:‖2 ≤ 2
√
mσ holds with probability at least 1− e−c0m.

Phase II: bounding ζ2 Since δ − 4p(log n)
√
mσ " n(log n)

√
mσ, we can upper-bound ζ2 as

ζ2 ≤ P

(∥∥∥Xi,:X̃
#W

∥∥∥
2
≥ c1n(log n)

√
mσ
)
.
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Due to the construction of X̃, we have X1,: to be independent of X̃. Hence, we condition on X̃#W and obtain

ζ2 ≤ P

(∥∥∥Xi,:X̃
#W

∥∥∥
2
≥ c1n(log n)

√
mσ,

∣∣∣
∣∣∣
∣∣∣X̃#W

∣∣∣
∣∣∣
∣∣∣
F
< 8n

√
mσ
)
+ P

(∣∣∣
∣∣∣
∣∣∣X̃#W

∣∣∣
∣∣∣
∣∣∣
F
≥ 8n

√
mσ
)

≤ E
X̃#W

(∥∥∥Xi,:X̃
#W

∥∥∥
2
≥ c2(log n)

∣∣∣
∣∣∣
∣∣∣X̃#W
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∣∣∣
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F
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+ P
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∣∣∣
∣∣∣
∣∣∣
F
≥ 8n

√
mσ
)

︸ ︷︷ ︸
ζ2,2

.

For ζ2,1, we define Z =
∥∥∥Xi,:X̃

#W
∥∥∥
2

2
and have

ζ2,1 ≤ E
X̃#W

(
|Z − EZ| ≥ c3(log n)

2
∣∣∣
∣∣∣
∣∣∣X̃#W

∣∣∣
∣∣∣
∣∣∣
2

F

)

3©
≤ E

X̃#W
exp



−




(log n)4
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F
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∣∣∣
∣∣∣
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∣∣∣
2

F∣∣∣
∣∣∣
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∣∣∣
∣∣∣
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






4©
≤ n−2,

where 3© is because of the Hanson-Wright inequality (Theorem 6.2.1 in Vershynin (2018)), and 4© is due to the stable rank

ρ(X̃#W) ≥ 1. Meanwhile we upper-bound ζ2,2 as

P

(∥∥∥X̃#W
∥∥∥
2
≥ 8n

√
mσ
)
≤ P

(∣∣∣
∣∣∣
∣∣∣X̃
∣∣∣
∣∣∣
∣∣∣
OP
|||W|||F ≥ 8n

√
mσ
)
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≤ P

(∣∣∣
∣∣∣
∣∣∣X̃
∣∣∣
∣∣∣
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OP

≥ 2
(√
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√
p
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+ P

(

|||W|||F ≥ 8n
√
mσ

2
(√

n+
√
p
) ,
∣∣∣
∣∣∣
∣∣∣X̃
∣∣∣
∣∣∣
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OP

≤ 2
(√

n+
√
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6©
≤ P

(∣∣∣
∣∣∣
∣∣∣X̃
∣∣∣
∣∣∣
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OP

≥ 2
(√

n+
√
p
))

+ P

(
|||W|||F ≥

√
2nmσ

) 7©
≤ e−c0n + e−0.8nm,

where 5© is because of the union bound, in 6© we use p ≤ n, and in 7© we use |||X|||OP ≥ 2
(√

n+
√
p
)

with probability

less than e−c0n (Chandrasekaran et al., 2012) and the fact |||W|||2F/σ2 is a χ2-RV with nm freedom, and Lemma 11.

E. Useful Facts

This section lists some useful facts for the sake of self-containing.

Lemma 11 For a χ2-RV Z with $ freedom, we have

P (Z ≤ t) ≤ exp

(
$

2

(
log

t

$
− t

$
+ 1

))
, t < $;

P (Z ≥ t) ≤ exp

(
$

2

(
log

t

$
− t

$
+ 1

))
, t > $.

Lemma 12 (Small ball probability, Lemma 2.6 in Latala et al. (2007)) Given an arbitrary fixed vector y ∈ Rn, we

have

P (‖y −Ag‖2 ≤ α|||A|||F) ≤ exp (κ log(α),(A)) , ∀ α ∈ (0,α0) ,

where g is a Gaussian RV following N (0, In×n), A ∈ Rn×n is a non-zero matrix, and α0 ∈ (0, 1) and κ > 0 are some

universal constants.

Lemma 13 (Lemma 8 in Pananjady et al. (2017a)) Consider an arbitrary permutation map π with Hamming distance k
from the identity map, i.e., dH (π, I) = k. We define the index set {i : i &= π(i)} and can decompose it into 3 independent

sets Ij (1 ≤ j ≤ 3), i.e., i and π(i) are in different sets Ij for arbitrary i ∈ {i : i &= π(i)}, such that the cardinality of

each set satisfies |Ij | ≥ -k/3. ≥ k/5.

Lemma 14 (Example 6.1 in Wainwright (2019)) Let G ∈ Rn1×n2 be generated with iid standard normal random vari-

ables, we have |||G|||OP ≤ 4
√
n2/n1, hold with probability exceeding 1− 2e−n2/2.


