Optimal Estimator for Unlabeled Linear Regression

A. Notations

We begin the appendix with a restatement of the notations. Denote c, ¢, ¢; as some universal positive constants. Notice
that their values may not necessarily the same even for those with same notations. We denote a < b if there exists some
positive constant cg > 0 such that a < cgb. Similarly we define a 2 b provided a > cb for some positive constant c¢y. We
write ¢ < b when a < band a 2 b hold simultaneously.

For an arbitrary matrix X, we denote X; . as the i-th row, X. ; as its i-th column, and X;; as the (4, j)-th element. The
Frobenius norm of X is defined as || X|| while the operator norm is denoted as || X||,p, whose definition can be found
in Section 2.3 of Golub and Loan (2013) (P71). Its stable rank p(X) is defined as the ratio |||X|||12: / |||XH|?)P (Section 2.1.15
in Tropp (2015)). The inner product (A, C) is defined as ), ; AijCij.

Associate with each permutation matrix IT, we define the operator 7(-) that transforms index i to 7(¢). The Hamming
distance dy(II;,II5) between permutation matrix ITy and IIy is defined as dy (IT1,TI,) = Y7 | 1 (w1 (i) # m2(4)).

Additionally, we denote € as the complement of the event £ and the signal-to-noise-ratio (SNR) as SNR = || B* |H12: /(ma?).

B. Problem Restatement
To begin with, we recall the problem formulation, which reads as
Y = II°XBf + W,

where Y € R"™*™ represents the observation, IT € R™*" denotes the unknown permutation matrix, X € R™*? is the
sensing matrix (design matrix) with X = N(0,1) being a standard normal random variable (RV), B! € RPX™ ig the

matrix of regression coefficients, and W € R"*"" is the additive Gaussian noise matrix such that W;; A N(0,02).

Our goal is to reconstruct the pair (ﬁ, ]§) from the observation Y and sensing matrix (design matrix) X. The proposed
one-step estimator can be written as

~T

= argmaxyrep <1'[, YYTXXT> ,
B=X)'II v,

where X' = (XTX)~'X T denotes the pseudo-inverse of X. In the following, we will separately investigate its properties
under the single observation model (m = 1) and multiple observations model (m > 1). The formal statement is packaged
in Theorem 1 and Theorem 2.

C. Appendix for Section 3

This section focuses on the special case where p = 1, m = 1. Consider X € R” to be a Gaussian distributed RV such that
X ~ N (0,1,,,,,), and permutation matrix TT* which satisfies dy(I, II") = h < n/4.

C.1. Notations

First we define the following events &;, (1 < ¢ < 5), which reads

& & {<X, HhX> > con} ,
& = {IX], < 2vn}
(1) 2 {WTXXT (Hh - H) W < o2n?log n} ,
£4(IT) £ {’(W,X) <H”X, (Hh - H)T X> + <W, (Hh - H)T X> <H”X,X>‘ < (mQ\/@}

R , 120
a0 2 {Ix - 1| > 2 aum = o}

where I is an arbitrary permutation matrix, and ¢y > 0 is some positive constant.
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C.2. Outline of proof

We will prove that ground truth permutation matrix I1° will be returned with high probability under the assumptions in
Theorem 1. The formal statement is shown in Theorem 1. Before we delve into the proof details, we give a roadmap of the
proof, which is

e Step I: Under the events & (" (E3(IT) () E4(II) (N E5(IT; £)), we have

2
<Hu,nyXXT> — <H,nyXXT> pe Coi — c18on?\/logn — cao’n? logn.
n

Notice that under assumptions in Theorem 1, we conclude that <Hh,nyXXT> > (ILyy "XXT"), V IL, which
suggests that I1° will always be returned by our estimator in Eq. (3).

e Step II: We upper-bound the probability P(IT # IT%) by P (£, Uy (€3(IT) | E4(IT) U E5(IT; £)) ) and complete the

proof by showing it is at most cn~*.

Having illustrated the proof strategy, we turn to the proof details. The main proof is attached in Section C.3 while the
supporting lemmas bounding P(&;), (1 < i < 5), are put in Section C.4.

C.3. Proof of Theorem 1

Proof 1 For an arbitrary permutation matrix IL, we can expand the term <H, nyXXT> as
(M,yy"XX") = Ti(II) + BT2(I1) + 5*T3(10),
where T;(IT), (1 < i < 3), are defined as
Ti(I) = (W, ITTX ) (X, W);
To(I) = (W, X) <HhX,HTX> n <W,HTX> <H“X,X> :

T3(I) = <H”X,HX> <H“X,X>.

Step 1: We rewrite the difference <Hh, nyXXT> — <1'L nyXXT> as

<1‘I“,nyXXT> — (I yy XX )
= T~ () + 5 (T (1) - 7o) + 6 (75 (1) - To(1m) )

o %2 (%, X)) [ x - nﬂanz +5 (7 (1) = To(1) ) + T2 (11%) — 73 (1)

@ B2 24

> TCOnW - ﬂ‘Tz (Hu) —7-2(1_[)‘ - ‘7—1(Hh) _7—1(1_[)‘
B 2

> 072169 —6160'77/2\/@—620'2”2 logn @0,

where in (D we rewrite ||XH§ - <HhX, HX> as

1 2 1 9
|X§—<H“x,nx>=2(||X|§+Hn”nx(\ —2<H“X,HX>) - x-mox||
2 2

in @ we condition on event &1, E5(I1; () and have || X — HXHg > 52%0 > =245, in @ we condition on E3(IT), E4(IT),
and in @ we use the assumption log(SNR) 2 logn in Theorem 1.
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Step 1I: The error probability P (ﬁ =+ Hh) is hence be upper-bounded as

P(IAIE) < P <51 U (&sm & U&(H;@))
P (U (@(H)U@(H)U@(H)) ﬂaﬂ&) + P (E)) +P (&)

IN@

2 > P(EmOaNe)+ > P(EmNaNe)
5 AT1 5 ATT
+ 3P (S Na &) + 80! + 2070
£>2
(SD 2n~" + 32 (Z) Mn=2 4 8n~1 + 2¢Com
>2
con " +nt £ 3271@71*2[ Seon 4 _3 < nt,

= n(n—1)

where in 3 we use the union bound, in ® we complete the proof with Lemma [ and the fact P (52) < e 08 in @ we
invoke Lemma 2, Lemma 3, Lemma 4, and in ® we use n!/(n — ()! < nt and complete the proof.

C.4. Supporting Lemmas for Theorem 1
This subsection collects the supporting lemmas for the proof of Theorem 1.

Lemma 1 We have P (El) < 8n~t 4 702387 ywhen n is sufficiently large.

Proof 2 Different from the proof in Lemma 9, we consider the case where X € R" is a vector and would lower-bound
<X7 HhX>. W.l.o.g, we assume the first h entries are permuted and expand the inner product <X, HhX> as

h n
<X,1‘I“X> =S XiXem+ Y X2
i=1 i=h+1
With union bound, we can upper bound P (<X, HhX> < con) as

n

h
P(<X,Hhx> < con) %3 IP’( Y xi< i(nh)) +P (inxﬁ(i) < W«/ﬂbgn),

i=h+1 i=1

C1 C2

where co > 0 is some positive constant, in D we use the fact

— nlogn > — —

1 NG = 16

when n is large. We finish the proof by separately upper-bounding ¢; < e~ %2387 and (, < 8n~1. The detailed computa-
tion comes as follows.

—h 4v2++/35 (h<3) 3 42 35
n \/>+ 1) an Jg/»‘/nlogn>con7

Phase I: For ;, we can view Z?:hﬂ X2 as a x>-RV with (n — h) freedom and have

Q@ —h 11 Q@ .
(1 < exp (ng (log4 -3 n 1)) < (—0.2386n
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where in @ we use Lemma 11, and Q) is because h < n /4.

Phase II: To bound (5, we divide the index set {j : j # w(j)} into 3 disjoint sets T;, 1 < i < 3, as in Lemma 8
in Pananjady et al. (2017a) (restated as Lemma 13). This division has two properties: (i) indices j and w(j) lies in
different sets; (ii) the cardinality h; of each Z; satisfies |h/5| < h; < h/3. Then we obtain

i=1

h
(<P (ZXin(i) < —W\/nlogn, 1X;| < 2¢/log n, Vi) + P (|Xi\ > 2\/logn, 3 z)

3
Z P ZXjXﬂ(j) < - 4\[+\F\/ logn, |X;| < 2+/logn, Vi +nIP(|X | >2\/1ogn>

<2n—2

C2,i

where in @ we use the union bound for Z?:1 X X3y and the tail bounds for Gaussian distributed X;.

Then we define Z; = ZjeL, X; Xr(5) and bound (3 ; via the Bernstein inequality (Theorem 2.8.4 in Vershynin (2018)).

First, we verify that E (X;X.(j)) = (EX;) (EX.(j)) = 0. Meanwhile we compute c*> =Y., E (XjX,,(j))Q = h;.
According to the Bernstein inequality, we have

JEL;

S

16
Z XiXrih| > 3 (logn)® + \/9 (logn)* + 2(log n)hs,
JEL;

holds with probability 2n~'. Meanwhile, we can upper bound as

W W~

@
(logn)? + \/196 (logn)* + 2(log n)h; < §<logn>2+\/1§ (logn)* + "o8" 2 M*r\/ logn,

where ) is because n > 1og3(n) forn > 95. Hence, we conclude that (2; < 2n~' and complete the proof by combining
the bound for (1 and (5.

Lemma 2 We have P (E5(IT) (&) <n 2

Proof 3 For the conciseness of notation, we define 2 as 2 = XX T (Hh — H). Due to the independence of the X and
W, we can condition on X and bound P(€3(IT) N &) as

P (Es(m (&) Op (WTEW > EWTEW + co?n? logn)

2
C%) exp ( <Con4ioi; n A ClnilogTL)) C%DTL*QH,
= 1Ell2

where in D we condition on £y and use the fact

EW 'EW + co’n?logn < JQHXHg + co*n*logn < o?n?logn,

in @ we use Hanson-Wright inequality (Theorem 6.2.1 in Vershynin (2018)), and in Q) we condition on £, and use
2
=], < IX[lz S n

Lemma 3 We have P (E4(I1) (N &) < n™2

Proof 4 Due to the independence between W and X, we would like to condition on X and bound P(E ,(II) ) &2) as

. 2 41
P (54(1_[) ﬂgz) < exp <_4w;fﬁogn> )
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2 .
where oy is defined as

T 2
0% = o <Hhx, (Hh - H) X> X + <1‘[”X,X> (Hh f H) x|
F
Notice under E, we have o3 < (4||X|| ) = co?n?, and complete the proof by showing
exp _Aco Zntlogn < exp Aco Zntlogn _
208 2co?n?

Lemma 4 We have P (E5(IT); () < 3n=2".

Proof 5 Adopting a similar approach as in proving Lemma 1, we can decompose the index sets {j : j # w(j)} into 3
disjoint sets T; (1 < i < 3) such that: (1) j and 7(j) do not lie within the same index set I;; and (2) the cardinality {; of
T, satisfies [£/5] < £; < /3. Then we can bound P (E5(I1; £)) as

12¢ 2 40
i L ,
<HX I XH - 5€n20> ZP j; X = Xai)” < 5en?20

QS 2 9 o °
< ;eXp (2 (IOg 5en20¢; - 5en207; + 1)) < 3n

where D is due to the decomposition T;, 1 < i < 3, @ is because (X - X, 7)) /2 is a x* RV with freedom {; and
Lemma 11, and @ is due to (/5| < {; < £/3 and hence

4 o 20 2

2 & 5en20¢;  5en?0¢;

2
+ 1) b (1 og 5; 2010gn> < —104;logn < —2/logn.

D. Appendix for Section 4
This section provides theoretical analysis for the multiple observations model, i.e., m > 1. We will show that our estimator
in Eq. (3) gives correct permutation matrix I1° once

logn
p(B?)

log(SNR) = + loglog n.

The formal statement is packaged in Theorem 2.

D.1. Notations
Before our discussion, first we define B and B* respectively as
B=(n—h) ' XII'XB’,
B*=(n—h) 'X'Y=B+ (n—h) 'X'W,

where h is denoted as the Hamming distance between identity matrix I and the ground truth permutation matrix I, ie.,
h = du(I, Hh). Similar as in Section C, we define events &;, (6 < ¢ < 9) as

& 2 {||XZ||2 < 2y/plogn, Vi};
g & {||Xi,: (BB, < Cop(logn)3/2(10gp) IB#|.. + e1v/m(log n)o (1 n B) 7 W} :
vn F n
& = {<Wi,:,(xj,:—xﬁh(i) JB*)Y > A, 34,5}
{”( wiiye = X5 B[ + 2 (X, — X)) B X, (BT = BY)) — [ Xy, (B = BY)|[; < A, Hi’j}’

where A is defined as

/2
A — 161200 1% ”2/5 ) B8], + 1661 v/Zm(log n)o 2(1+ %) +4v2e5(log n)o || BF| ..
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D.2. Outline of proof

In front of the rigorous proof in Section D.3, we first illustrate our proof strategy as
o Step I: We relax the wrong recovery {ﬁ # Hu} to event &, i.e. {fI # Hh} C &, which reads as
%12 * (12 .
&2 {Yi: = Xoen B[y 2 IYi: = X5 B3, 33} (14)

The physical meaning of € is that we may reduce the residual |Y — IT"XB* | by changing (i) to j. Same
relaxation has been previously used in Collier and Dalalyan (2016); Slawski et al. (2019a); Zhang et al. (2019a;b).

e Step II: The core in this step lies in how to lower bound P(€7). First we decompose & into &g | J £y with some simple
algebraic manipulations. Under the SNR assumption in Eq. (7), we show both P(€s) and P(€9) are approximately
P(E7), as in Lemma 5 and Lemma 6, respectively.

To show P(€7) is with low probability, in another words, P(€7) is highly likely, we prove the following relations hold
with high probability under &,

~ p(logn)/%(log p)
HXi,: (B - Bh) H2 s Jn |”Bh|HF;

1X:, XTW||, S Vm(logn)o(n + p),
whose proof are in Lemma 9 and Lemma 10, respectively, and hence finish the proof by

1
n—nh

X0 (B = BY)||, < X0 (B-B2) |+ =X XTW,
In particular, we would like to mention the technique used in bounding ||X7; ,:XTW||2. First we review the widely-
used bounding procedure, which proceeds as

©)
LIXIIWl, < Vplogn (Vi + vB) o (Vi + vim) 2 Viogn(n®/2)o + \/mnlogno,

where in @ we use the fact || X; .|, < plogn, [|X]|, < vn+ b W, S o(v/n+ /m) hold with high
probability, and in @ we use p < n. Comparing with our results in Lemma 10, this bound experience inflations when
m < n and will lift the SNR requirement to log(SNR) > logn, which hides the role of p(B%) compared with our
current result in Theorem 2. To handle such problem, we adopt the leave-one-out trick as in El Karoui (2013; 2018);
Chen et al. (2019); Sur et al. (2019) and refer to Lemma 10 for the technical details.

X X TW, < X,

Having illustrated our proof strategies, we leave the detailed calculation to Section D.3.

D.3. Proof of Theorem 2

Proof 6 We restate the definition of event £ as
* 2 * 2 . -
&2 {|[Yi = Xpo, B[y > Y5, - X, B3, 305}
Step I: First we verify that
i — argming |'Y — TIXB",

returns the same permutation matrix Il as that by Eq. (3). Hence, correct recovery of the ground truth permutation matrix
I1° suggests that

‘HY _ II'*XB*

< Y —IXB|, VIT#IT
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Then we finish the proof by showing that £ C {ﬁ =II’ } Assuming the claim is not true, which means we have matrix
IT such that

2
|y -mxs|| >y - mxs|;,

conditional on event E. Meanwhile we have

‘HY _II'XB*

2 n @ n
= STV = X, B2 <Y | Yi — X BYs = 1Y — IXB|,
i=1 i=1
which leads to contradiction, where in (D we use the definition of E.
Step II: We verify that ||Y1 — Xni(i),. B ||§ > Y, — ijzB*Hg is equivalent to
* 2 % 2
2(Wis, (Xjio = Xae(o),) BY) 2 [|(Xsy,: — X5) BY[, + [ X5 (B = BY),
* \ 12
+ 2((Xps(0),: — Xj,) BE X5 (BT = BY)) = [ Xy, (BF = BY) |,
which suggests that P (£) < P (Es) + P (Ey) and completes the proof with Lemma 5 and Lemma 6.
Lemma 5 We have P (£g) < coe_((log n)"Alogn)?p(B*)) +enTt 4 cane B 4 cyne O™ 4 2P 4 6p 2.

Proof 7 For the conciseness of notation, we define Ay and A5 as

p(logn)*’*(log p) P
Ay = ey NG |HBh|||F +4epy/m(logn)o (1 + ﬁ) ;

Ay = ca(logn) !”Bh |HF

Then we can bound P (Eg) as

) . o A2
P (&) <P (| (%~ Xre:) B'lly 2 A1+ A2, 305) + 0w <_202(A1+A2)2)
o) e e - e e N
S P (H(Xj,: X'n’h(l),:) (B B )HQ Z Al? 3 7’7]) + P (H(X]ﬁ Xﬂ'h(i)v:) B HZ 2 A2’ 3 Z7J> +n ’ (15)

C1 G2
where in D we use the independence between W and X and condition on X, in @ we use the relation A =
4320 (A1 + A). Then we will prove that (; < P(E7) and (3 = ¢~ ((ogn)*A(logn)?p(B7)),

Phase I: bounding (, Conditional on E;, we have

(X, = Xnzgiy.) (B =B, < [[X (B* = BY)|, + || Xpe(s).. (B =B,
AN

2 )

I

©)
< 2c¢p

p(logn)*/2(log p) ”
o

and obtain ¢; = 0, where Q) is due to the definition of ;. Then we conclude that (; < P(E7).

B||. + 2c1v/m(log n)o (1 + %) <

Phase II: bounding (> For (2, we upper-bound it as

@ ©)
G< 3 P(Z2aloenf[Bi) < n°P(12-E2] > cllogn)*|[Bl;)
G ON,

© (logn)*[|BE[|; ~ (logn)” ||B?|; T .
<n'exp (- E A E ) — p2e-(Gogn)*Adogm)?p(89))
‘"e@< (lmmﬂﬁ BB, ))="°

- e—((log71)4/\(108")%(13“))7 (16)
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where in @ we define Z = H (Xj7; — Xﬂu(i)7;) 2 in ® we have EZ = 4H|Bh H|§ and use

c2(logn)? |HBh |||]2: > (4 + c3(log n)z) H‘Bh |||§ when n is sufficiently large, and in ® we use the Hanson-Wright inequality
(Theorem 6.2.1 in Vershynin (2018)). Combining Eq. (15), Eq. (16) and Lemma 8 together, we complete the proof.

Lemma 6 Consider the same setting of Theorem 2. Provided the SNR satisfies

lo
log(SNR) = 0 (th> + loglogn,

we have P (Eg) < 2e™P + ne” 1™ + cop~2 4 cgne= ", when n is sufficiently large, where ¢; > 0, 0 < i < 4 are some
positive constants.

Proof 8 We upper bound P (&) as

T (T e AL | HC S
2 ’ 2

2
‘ - Hxﬂ'h(i),i (Bh _B*) ‘2 < Av 37’7])

N S )

[X a3y, (BF —B")
52 5 T2

Py
=Q A

= (2

B

3 _
Setting § as |||Bh H|Fn rB5) we would like to show (1 < n~t and (o < P(E7) under the assumptions in Lemma 6.

Phase I: bounding ¢, We set 6 as ‘HBh }H n (B , and can upper bound (; as

a<yY Y P ([|(Xnsco. Xj,:)B“HQSé) > Y wtsa, (17)

i=1 jmi(i) i=1 jmi(i)

where D comes from the small ball probability as in Lemma 2.6 in Latala et al. (2007), which is also stated as Lemma 12.

Phase II: bounding (> Then we prove that (s can be arbitrarily small under the SNR requirement in Eq. (7). Conditional
on event £, we have

| Xre3). (B® —B”)

’2 _ ZC%MWB”% + 2¢2m(logn)20? (14 p/n)?

= ___6
¥ B fen” =#0=
__ 6
@ 2¢2p (logn>3(10gp)2+80f (log”)2”69<3h)7 (18)
nl—6/(cp(B%)) SNR
m 2

in @ we use the fact p < n. Since we have n > p*(logn)®(log p)* and p(B?) > 18/c, we conclude n; — 0 as n goes to
infinity. Meanwhile, because of the assumptions in Eq. (7), we have 1 to be a small positive constants.

Additionally, we can expand A /52 as

6
A - n¢ﬁ<3“>a< p(logn)>/?(
=< — (o
CR | : 5 v
6 6 _6
p(logn)3/?(logp) n CP<B“> log n CP(B”> log n  neer®H

S Co X . (19)
N VSNR Tym CUBNR T m  SNR

Following similar procedures as above, we can prove A /62 to be a small positive constant given Eq. (7). Combing Eq. (18)
and Eq. (19) together, we conclude

1
0gp) B . + c1vm(log n)o (1 + %) + c2(logn) || B" H’F>

A
771+772+2v771+772+ﬁ<1

which suggests that (5 equals zero conditional on events E;. Therefore, we obtain

c @ — —2 —com —1 —can @ — —com —2 —caon
CQSIP’(57) < 2P 4+ 6p 4+ ne O 4 cgn” T +ene” " < 2e7P 4 ne” O 4 copT° + cyne”

and completes the proof together with Eq. (17), where Q) is due to Lemma 8, and @) is because of n. 2 p>.
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D.4. Supporting Lemmas for Theorem 2

Lemma 7 For arbitrary row X, ., we have
[Xi:ll, < 2v/plogn,
with probability exceeding 1 — n=P.

Proof 9 Notice that ||X; . ||§ is a x2-RV with freedom p, we have

@
P (IIXz',: I5 > 4plog n) < exp (g (log(4plogn) — 4logn + 1)) < exp(—plogn) =n""?,
where in D we use 2logn > log (4logn) + 1, whenn > 4.
Lemma 8 We have P (E7) > 1 —2e™ P — 6p~2 —ne= ™ — con~! — ¢yne~ 2",

Proof 10 Invoking Lemma 10, we have

P (||X;: X W], < cov/m(logn)o (n + p), Vi)
=1-P(||X; . X "W/, > cov/m(logn)o (n+p),3i)
>1- Y P (X0 XTW], > covimliogn)o (n+p)

>1—n'"P —ne m — =l —¢ine ", (20)

Then we conclude

* ~ 1
I (5 =B, =[x (BB |+ g x XTI,

= 1
X, _ Bt xT
< 2,;||2H’B B H‘F +— hHXwX W,

% Cop(log nigf:(log p)
3/2
2, g

c1v/m(logn)o (n + p)

I, + 0

82) e, + Loy vimtogn)e (1+2)

where in D we condition on Lemma 9 and Eq. (20), and in @ we use the fact h < n/4.

Lemma 9 Provided that n 2, p2, h < n/4, we have

[B -8, <\ 2Bl (46 + togmttons).

2

with probability at least 1 — 2e™P — 6p~—~< when n, p are sufficiently large.

Proof 11 We assume that the first h rows of X are permuted w.l.0.g. First, we expand XTIIX as

h n
XTHhX = ZXI(T)vXI’ + Z XI;XZ',H
=1 i=h+1
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and obtain

P <HB“ - 1§H2 > \/mehmF (4V6 + (108 n)(logp)))

n

Z (XiT,:Xiai -

i=h+1

h
1 . . 1
h ‘ > X X B 4
=1 F

| >\ [2gBe Y (46 + Gogn)og )

©) 1 ||~
E . B
< P < Xﬂ'(i),:XL?B

> (o) B,

i=1 F
¢1
L et Z (XX, —1) B >4,/ BY|
n—nhi|. R = n F >
i=h+1 F

C2

where D is because of the union bound. Then we separately bound (, and (.

Phase I: Bounding (; According to Lemma 8 in Pananjady et al. (2017a) (restated as Lemma 13), we can decompose
the set {j : w(j) # j} into three disjoint sets T;, 1 < i < 3, such that j and 7(j) does not lie in the same set. And the
cardinality of set T; is h; satisfies |h/5| < h; < h/3. Adopting the union bound, we can upper-bound ¢y as

3
logn)(log p)\/p
St xr, x| > Ry
w(g),: 4Nt =
i=1 JETL; ! ’ F 3\/ﬁ ’
3

| A

ZXT' x. || Gogn)(ogp)/p
7 (), || = 3vn

F

IN

JEL;
Defining Z; as Z; =, JETi XI(;‘) X, we would bound the above probability by invoking the matrix Bernstein inequality
(cf. Thm 7.3.1 in Tropp (2015)). First, we have

;
E (X0 X5.) = (BXxi,) | (EX;,) =0,

),: and X .. Then we upper bound HXI(j)’:ij: H as

due to the independence between X . ;
2

@ ® @
HXI(J'),:XJ‘,:‘ = H’XI(]'),:XJ‘,: ‘ = || X)X, < 4plogn,

where @ is because X . X; . is rank-1, ® is due to the fact |[uv " |HF =Tr(uv'va') = ||uH§||vH§for arbitrary
vector u,v € RP, and @ is because of Lemma 7.

In the end, we compute E (Z,-Z?) and E (ZiTZi) as

T T T ® T T
E(ZZ)=E| > XXX, Xega: | = B D X0, XX Xa).
J1,J2€Z; JEL;

B (30X B 00 X]) X | = [ SEXT) Xo | = hid — B (227).
JEL; JEL;

where Q) and ® is because of the fact such that j and 7(j) are not within the set T; simultaneously. To sum up, we invoke
the matrix Bernstein inequality (cf. Thm 7.3.1 in Tropp (2015)) and have

1 [ 4p(logn)(log p) p\/16(10g n)2(logp)? + 6h;logp/p
ZX 0 Xis| <3 +
T3 3 n—nh n—nh

Jj€ET 9
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holds with probability 1 — 2p~2.
Exploiting the fact such that h < n/4, h; < h/3, and p < \/n, we obtain

p\/16(logn)2(logp)2 + 6h;logp/p - 4p
n—nh — 3n

16008 )2 + 1oz ) o) 2 272 (g ) 105 ),

in @ wen > p? > 32p and hence

! T 16p 4P »
n—h jeZIXW(J’),:Xj-,: < (logn)(logp) <9n + 9 < E(logn)(logp)7

2

holds with probability exceeding 1 — 6p~2, where in ® we use n > 256p/25.

Phase II: Bounding (> We upper bound (5 as

1 ~ 6
(<P > (XX - B >4/ 2B,
n- 1=h+1 F n
<p| 1 S (T : 6 ygy | 2 ger
<P — |l D0 (XX =) [IB¥[l > 4/ (Bl | <277
i=h+1 OoP

where © is because of (n — h) ™" ||Z;L:h+1 (XL:X;':: ~1) ||2 < 64/2p/(n — h) with probability 2e~? in Example 6.1
in Wainwright (2019) (also listed as Lemma 14) and h < n/4.

The proof is completed via combing the results in Phase I and Phase I1.
Lemma 10 For an arbitrary index i, we have
P (HXi);XTWH2 > cov/m(logn)o (n +p)) <P e M 4 T2 4 ge 2,

Proof 12 For the conciseness of notation, we define 6 as cor/m(logn)o (n + p). In addition, we assume thati = 1 w.L.o.g
and prove this lemma with the leave-one-out trick, which is previously used in El Karoui (2013); El Karoui et al. (2013);
El Karoui (2018); Chen et al. (2019); Sur et al. (2019). First we define a perturbed matrix X such that X;. = X,

2 < j < n, while )~(17: € RY P is a independent identically distributed Gaussian vector as Xi,., namely, N (0,1I).

)
2

> 4p (logn) \/Ear) +P (HXZ-7:)~(TWH2 > § — 4p (logn) \/Ecr) )

Then we can upper-bound the probability as

P (X, X TW|, >4) <P (HXL:XTWH2 + HXL; (x- X)TW

<P (HX1 (x f X)TW

2
G G2

Phase I: bounding (, To bound (1, easily we can verify the following relation

T T @ - ©)
HXL: (X-X) W (X—X) wi| ¥ HXL:HQHXL:—X1,2H2||W17:||2§4p(logn)\/ﬁa.

< ”XL:HQ
2

F

with probability exceeding 1 —n=? — e~ "™ where D is because only the first row of X — X is nonzero, and Q) conditions
on &g and ||W 1 .||, < 2v/mo holds with probability at least 1 — e~ ™,

Phase II: bounding (> Since § — 4p(logn)y/mo 2 n(logn)/mo, we can upper-bound (o as

GLP (HX,»7;)~(TWH2 > cln(logn)ﬁa) .
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Due to the construction of X, we have X . to be independent of X. Hence, we condition on X TW and obtain

<P (HXMXTWHQ > ern(log n)v/mo,

W], <) 2 ([7w], 2n)

< et (], 2 o[ K W] ) 2 ([RTw], >

(2,1 (2,2

~ 2
For (2,1, we define 7 = HXL:XTWH and have
2

- 2
(21 < Egrwl (Z —EZ| > c3(log n)2‘HXTW‘HF>

~ 4 ~ 2
E o [XTW]l, - ogm” [X7w]
S F

~ ~ 112 ~ =~ .
[xrwwrx| - [Frwwx]
F op

Egxrwexp | —

where 3 is because of the Hanson-Wright inequality (Theorem 6.2.1 in Vershynin (2018)), and @ is due to the stable rank
p(XTW) > 1. Meanwhile we upper-bound (s as

#(JRw], = snvi) < (%], 11, > o)

8n+/mo
2(vn+yp)’

%"( X|| =2+ D)+ B(IWI 2 Vanmo) D meon 4 gmosm

2o (5], > 2 vm) - # (1w, > [, <2545

less than e~ “°™ (Chandrasekaran et al., 2012) and the fact |HW|H§/02 is a x*-RV with nm freedom, and Lemma 11.

where (3 is because of the union bound, in © we use p < n, and in @ we use |X|lop > 2 (\/n + /p) with probability

E. Useful Facts

This section lists some useful facts for the sake of self-containing.

Lemma 11 For a x?-RV Z with { freedom, we have
P(Z<t)<e ¢ 1015 t+1 t</?
<o [ = Lot )
—_ —_ p 2 g [ [ ) 3
P(Z >t) <ex ¢ 10E—E—|—1 t>/
Zt)=exp |y g 777 ) :
Lemma 12 (Small ball probability, Lemma 2.6 in Latala et al. (2007)) Given an arbitrary fixed vector y € R", we
have

P(ly — Agll, < aAllp) < exp (rlog(a)e(A)), V a € (0,a0),

where g is a Gaussian RV following N (0,1,,x,,), A € R™*" s a non-zero matrix, and oy € (0,1) and r > 0 are some
universal constants.

Lemma 13 (Lemma 8 in Pananjady et al. (2017a)) Consider an arbitrary permutation map 7 with Hamming distance k
from the identity map, i.e., dy (7,1) = k. We define the index set {i : i # (i)} and can decompose it into 3 independent
sets T; (1 < j < 3), i.e, i and m(i) are in different sets I; for arbitrary i € {i: i # w(i)}, such that the cardinality of
each set satisfies |Z;| > |k/3] > k/5.

Lemma 14 (Example 6.1 in Wainwright (2019)) Let G € R"1*"2 pe generated with iid standard normal random vari-
ables, we have |G| op < 4v/n2/n1, hold with probability exceeding 1 — 2¢~"2/2.



