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Abstract
We consider the problem of learning Markov Ran-
dom Fields (including the prototypical example,
the Ising model) under the constraint of differen-
tial privacy. Our learning goals include both struc-
ture learning, where we try to estimate the under-
lying graph structure of the model, as well as the
harder goal of parameter learning, in which we
additionally estimate the parameter on each edge.
We provide algorithms and lower bounds for both
problems under a variety of privacy constraints –
namely pure, concentrated, and approximate dif-
ferential privacy. While non-privately, both learn-
ing goals enjoy roughly the same complexity, we
show that this is not the case under differential
privacy. In particular, only structure learning un-
der approximate differential privacy maintains the
non-private logarithmic dependence on the dimen-
sionality of the data, while a change in either the
learning goal or the privacy notion would neces-
sitate a polynomial dependence. As a result, we
show that the privacy constraint imposes a strong
separation between these two learning problems
in the high-dimensional data regime.

1. Introduction
Graphical models are a common structure used to model
high-dimensional data, which find a myriad of applications
in diverse research disciplines, including probability theory,
Markov Chain Monte Carlo, computer vision, theoretical
computer science, social network analysis, game theory,
and computational biology (Levin et al., 2009; Chatterjee,
2005; Felsenstein, 2004; Daskalakis et al., 2011; Geman &
Graffigne, 1986; Ellison, 1993; Montanari & Saberi, 2010).
While statistical tasks involving general distributions over
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p variables often run into the curse of dimensionality (i.e.,
an exponential sample complexity in p), Markov Random
Fields (MRFs) are a particular family of undirected graphi-
cal models which are parameterized by the “order” t of their
interactions. Restricting the order of interactions allows us
to capture most distributions which may naturally arise, and
also avoids this severe dependence on the dimension (i.e.,
we often pay an exponential dependence on t instead of
p). An MRF is defined as follows, see Section 2 for more
precise definitions and notations we will use in this paper.

Definition 1.1. Let k, t, p ∈ N, G = (V,E) be a graph on
p nodes, and Ct(G) be the set of cliques of size at most t
in G. A Markov Random Field with alphabet size k and
t-order interactions is a distribution D over [k]p such that

Pr
Z∼D

[Z = z] ∝ exp

 ∑
I∈Ct(G)

ψI(z)

 ,

where ψI : [k]p → R depends only on variables in I .
We note that each node corresponds to one coordinate of
Z. Furthermore, the case when k = t = 2 corresponds to
the prototypical example of an MRF, the Ising model (Ising,
1925) (Definition 2.1). More generally, if t = 2, we call the
model pairwise (Definition 2.2), and if k = 2 but t is unre-
stricted, we call the model a binary MRF (Definition 2.4).
In this paper, we mainly look at these two special cases of
MRFs.

Given the wide applicability of these graphical models, there
has been a great deal of work on the problem of graphi-
cal model estimation (Ravikumar et al., 2010; Santhanam
& Wainwright, 2012; Bresler, 2015; Vuffray et al., 2016;
Klivans & Meka, 2017; Hamilton et al., 2017; Rigollet &
Hütter, 2017; Lokhov et al., 2018; Wu et al., 2018). That is,
given a dataset generated from a graphical model, can we
infer properties of the underlying distribution? Most of the
attention has focused on two related learning goals.

1. Structure learning (Definition 2.5): Recover the set of
non-zero edges in G.

2. Parameter learning (Definition 2.6): Recover the set
of non-zero edges in G, as well as ψI for all cliques I
of size at most t.

It is clear that structure learning is no harder than parame-
ter learning. Nonetheless, the sample complexity of both
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learning goals is known to be roughly equivalent. That is,
both can be performed using a number of samples which
is only logarithmic in the dimension p (assuming a model
of bounded “width” λ1), thus facilitating estimation in very
high-dimensional settings.

However, in modern settings of data analysis, we may be
running our algorithms on datasets which are sensitive in na-
ture. For instance, graphical models are often used to model
medical and genetic data (Friedman et al., 2000; Lagor et al.,
2001) – if our learning algorithm reveals too much informa-
tion about individual datapoints used to train the model, this
is tantamount to releasing medical records of individuals
providing their data, thus violating their privacy. In order to
assuage these concerns, we consider the problem of learning
graphical models under the constraint of differential privacy
(DP) (Dwork et al., 2006), considered by many to be the
gold standard of data privacy. Informally, an algorithm is
said to be differentially private if its distribution over outputs
is insensitive to the addition or removal of a single datapoint
from the dataset (a more formal definition is provided in
Section 2). Differential privacy has enjoyed widespread
adoption, including deployment in Apple (Differential Pri-
vacy Team, Apple, 2017), Google (Erlingsson et al., 2014),
Microsoft (Ding et al., 2017), and the US Census Bureau
for the 2020 Census (Dajani et al., 2017).

Our goal is to design algorithms which guarantee both:
• Accuracy: With high probability, the algorithm learns

the underlying graphical model;
• Privacy: For every dataset, the algorithm guarantees

differential privacy.
Thematically, we investigate the following question: how
much additional data is needed to learn Markov Random
Fields under the constraint of differential privacy? As men-
tioned before, absent privacy constraints, the sample com-
plexity is logarithmic in p. Can we guarantee privacy with
comparable amounts of data? Or if more data is needed,
how much more?

1.1. Results and Techniques

We proceed to describe our results on privately learning
Markov Random Fields. In this section, we will assume fa-
miliarity with some of the most common notions of differen-
tial privacy: pure ε-differential privacy, ρ-zero-concentrated
differential privacy, and approximate (ε, δ)-differential pri-
vacy. In particular, one should know that these are in
(strictly) decreasing order of strength (i.e., an algorithm
which satisfies pure DP gives more privacy to the dataset
than concentrated DP), formal definitions appear in Sec-
tion 2. Furthermore, in order to be precise, some of our

1This is a common parameterization of the problem, which
roughly corresponds to the graph having bounded-degree, see
Section 2 for more details.

theorem statements will use notation which is defined later
(Section 2) – these may be skipped on a first reading, as our
prose will not require this knowledge.

Upper Bounds. Our first upper bounds are for parameter
learning. First, we have the following theorem, which gives
an upper bound for parameter learning pairwise graphical
models under concentrated differential privacy, showing that
this learning goal can be achieved with O(

√
p) samples. In

particular, this includes the special case of the Ising model,
which corresponds to an alphabet size k = 2. Note that
this implies the same result if one relaxes the learning goal
to structure learning, or the privacy notion to approximate
DP, as these modifications only make the problem easier.
Further details are given in Section 3.3.

Theorem 1.2. There exists an efficient ρ-zCDP algorithm
which learns the parameters of a pairwise graphical model
to accuracy α with probability at least 2/3, which takes

n = O

(
λ2k5 log(pk)eO(λ)

α4
+

√
pλ2k5.5 log2(pk)eO(λ)

√
ρα3

)

samples.

This result can be seen as a private adaptation of the elegant
work of (Wu et al., 2018) (which in turn builds on the struc-
tural results of (Klivans & Meka, 2017)). Wu, Sanghavi,
and Dimakis (Wu et al., 2018) show that `1-constrained
logistic regression suffices to learn the parameters of all
pairwise graphical models. We first develop a private analog
of this method, based on the private Franke-Wolfe method
of Talwar, Thakurta, and Zhang (Talwar et al., 2014; 2015),
which is of independent interest. This method is studied in
Section 3.1.

Theorem 1.3. If we consider the problem of private sparse
logistic regression, there exists an efficient ρ-zCDP algo-
rithm that produces a parameter vector wpriv, such that
with probability at least 1− β, the empirical risk satisfies

L(wpriv;D)− L(werm;D) = O

(
λ

4
3 log(npβ )

(n
√
ρ)

2
3

)
.

We note that Theorem 1.3 avoids a polynomial dependence
on the dimension p in favor of a polynomial dependence on
the “sparsity” parameter λ. The greater dependence on p
which arises in Theorem 1.2 is from applying Theorem 1.3
and then using composition properties of concentrated DP.

We go on to generalize the results of (Wu et al., 2018),
showing that `1-constrained logistic regression can also
learn the parameters of binary t-wise MRFs. This result is
novel even in the non-private setting. Due to the page limit,
we defer coverage of binary MRFs to the supplement.

The following theorem shows that we can learn the parame-
ters of binary t-wise MRFs with Õ(

√
p) samples.
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Theorem 1.4. Let D be an unknown binary t-wise MRF
with associated polynomial h. Then there exists an ρ-zCDP
algorithm which learns the maximal monomials of h to
accuracy α, given n i.i.d. samples Z1, · · · , Zn ∼ D, where

n = O

(
e5λt
√
p log2(p)
√
ρα

9
2

+
tλ2
√
p log p

ρα2
+
e6λt log(p)

α6

)
.

To obtain the rate above, our algorithm uses the Private Mul-
tiplicative Weights (PMW) method by (Hardt & Rothblum,
2010) to estimate all parity queries of all orders no more than
t. The PMW method runs in time exponential in p, since it
maintains a distribution over the data domain. We can also
obtain an oracle-efficient algorithm that runs in polynomial
time when given access to an empirical risk minimization or-
acle over the class of parities. By replacing PMW with such
an oracle-efficient algorithm FEM in (Vietri et al., 2019),
we obtain a slightly worse sample complexity

n = O

(
e5λt
√
p log2(p)
√
ρα

9
2

+
tλ2
√
p3 log p

ρα2
+
e6λt log(p)

α6

)
.

For the special case of structure learning under approximate
differential privacy, we provide a significantly better algo-
rithm. In particular, we can achieve an O(log p) sample
complexity, which improves exponentially on the above
algorithm’s sample complexity of O(

√
p). The following

is a representative theorem statement for pairwise graphi-
cal models, though we derive similar statements for binary
MRFs of higher order.

Theorem 1.5. There exists an efficient (ε, δ)-differentially
private algorithm which, with probability at least 2/3,
learns the structure of a pairwise graphical model, which
requires a sample complexity of

n = O

(
λ2k4 exp(14λ) log(pk) log(1/δ)

εη4

)
,

where η is the minimum parameter weight in absolute value.
The detailed definition is in Section 2.

This result can be derived using stability properties of non-
private algorithms. In particular, in the non-private set-
ting, the guarantees of algorithms for this problem recover
the entire graph exactly with high probability. This al-
lows us to derive private algorithms at a multiplicative cost
of O(log(1/δ)/ε) samples, using either the propose-test-
release framework (Dwork & Lei, 2009) or stability-based
histograms (Korolova et al., 2009; Bun et al., 2015). Further
details are given in Section 5.

Lower Bounds. We note the significant gap between the
aforementioned upper bounds: in particular, our more gen-
erally applicable upper bound (Theorem 1.2) has a O(

√
p)

dependence on the dimension, whereas the best known lower
bound is Ω(log p) (Santhanam & Wainwright, 2012). How-
ever, we show that our upper bound is tight. That is, even
if we relax the privacy notion to approximate differential
privacy, or relax the learning goal to structure learning, the
sample complexity is still Ω(

√
p). Perhaps surprisingly, if

we perform both relaxations simultaneously, this falls into
the purview of Theorem 1.5, and the sample complexity
drops to O(log p).

First, we show that even under approximate differential pri-
vacy, learning the parameters of a graphical model requires
Ω(
√
p) samples. The formal statement is given in Section 4.

Theorem 1.6 (Informal). Any algorithm which satisfies ap-
proximate differential privacy and learns the parameters
of a pairwise graphical model with probability at least 2/3
requires poly(p) samples.

This result is proved by constructing a family of instances of
binary pairwise graphical models (i.e., Ising models) which
encode product distributions. Specifically, we consider the
set of graphs formed by a perfect matching with edges
(2i, 2i+ 1) for i ∈ [p/2]. In order to estimate the parameter
on every edge, one must estimate the correlation between
each such pair of nodes, which can be shown to correspond
to learning the mean of a particular product distribution in
`∞-distance. This problem is well-known to have a gap
between the non-private and private sample complexities,
due to methods derived from fingerprinting codes (Bun
et al., 2014; Dwork et al., 2015; Steinke & Ullman, 2017),
or differentially private Fano’s inequality (Acharya et al.,
2020).

Second, we show that learning the structure of a graphical
model, under either pure or concentrated differential privacy,
requires poly(p) samples. The formal theorem appears in
Section 6.

Theorem 1.7 (Informal). Any algorithm which satisfies
pure or concentrated differential privacy and learns the
structure of a pairwise graphical model with probability at
least 2/3 requires poly(p) samples.

We derive this result via packing arguments (Hardt & Tal-
war, 2010; Beimel et al., 2014; Acharya et al., 2020), by
showing that there exists a large number (exponential in p)
of different binary pairwise graphical models which must
be distinguished. The construction of a packing of size
m implies lower bounds of Ω(logm) and Ω(

√
logm) for

learning under pure and concentrated differential privacy,
respectively.

1.1.1. SUMMARY AND DISCUSSION

We summarize our findings on privately learning Markov
Random Fields in Table 1, focusing on the specific case of
the Ising model. We note that qualitatively similar relation-
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ships between problems also hold for general pairwise mod-
els as well as higher-order binary Markov Random Fields.
Each cell denotes the sample complexity of a learning task,
which is a combination of an objective and a privacy con-
straint. Problems become harder as we go down (as the
privacy requirement is tightened) and to the right (structure
learning is easier than parameter learning).

The top row shows that both learning goals require only
Θ(log p) samples to perform absent privacy constraints, and
are thus tractable even in very high-dimensional settings
or when data is limited. However, if we additionally wish
to guarantee privacy, our results show that this logarithmic
sample complexity is only achievable when one considers
structure learning under approximate differential privacy. If
one changes the learning goal to parameter learning, or tight-
ens the privacy notion to concentrated differential privacy,
then the sample complexity jumps to become polynomial
in the dimension, in particular Ω(

√
p). Nonetheless, we

provide algorithms which match this dependence, giving a
tight Θ(

√
p) bound on the sample complexity.

Due to space restrictions, details of our results on t-wise
MRFs and several proofs appear in the supplement.

1.2. Related Work

As mentioned before, there has been significant work in
learning the structure and parameters of graphical mod-
els, see, e.g., (Chow & Liu, 1968; Csiszár & Talata, 2006;
Abbeel et al., 2006; Ravikumar et al., 2010; Jalali et al.,
2011a;b; Santhanam & Wainwright, 2012; Bresler et al.,
2014; Bresler, 2015; Vuffray et al., 2016; Klivans & Meka,
2017; Hamilton et al., 2017; Rigollet & Hütter, 2017;
Lokhov et al., 2018; Wu et al., 2018). Perhaps a turning
point in this literature is the work of Bresler (Bresler, 2015),
who showed for the first time that general Ising models of
bounded degree can be learned in polynomial time. Since
this result, following works have focused on both gener-
alizing these results to broader settings (including MRFs
with higher-order interactions and non-binary alphabets)
as well as simplifying existing arguments. There has also
been work on learning, testing, and inferring other statistical
properties of graphical models (Bhattacharya & Mukherjee,
2016; Martı́n del Campo et al., 2016; Daskalakis et al., 2017;
Mukherjee et al., 2018; Bhattacharya, 2019). In particular,
learning and testing Ising models in statistical distance have
also been explored (Daskalakis et al., 2018; Gheissari et al.,
2018; Devroye et al., 2018; Daskalakis et al., 2019; Beza-
kova et al., 2019), and are interesting questions under the
constraint of privacy.

Recent investigations at the intersection of graphical mod-
els and differential privacy include (Bernstein et al., 2017;
Chowdhury et al., 2019; McKenna et al., 2019). Bern-
stein et al. (Bernstein et al., 2017) privately learn graph-

ical models by adding noise to the sufficient statistics and
use an expectation-maximization based approach to recover
the parameters. However, the focus is somewhat differ-
ent, as they do not provide finite sample guarantees for the
accuracy when performing parameter recovery, nor con-
sider structure learning at all. Chowdhury, Rekatsinas, and
Jha (Chowdhury et al., 2019) study differentially private
learning of Bayesian Networks, another popular type of
graphical model which is incomparable with Markov Ran-
dom Fields. McKenna, Sheldon, and Miklau (McKenna
et al., 2019) apply graphical models in place of full contin-
gency tables to privately perform inference.

Graphical models can be seen as a natural extension of
product distributions, which correspond to the case when
the order of the MRF t is 1. There has been significant
work in differentially private estimation of product distri-
butions (Blum et al., 2005; Bun et al., 2014; Dwork et al.,
2006; Steinke & Ullman, 2017; Kamath et al., 2019; Cai
et al., 2019; Bun et al., 2019). Recently, this investigation
has been broadened into differentially private distribution
estimation, including sample-based estimation of properties
and parameters, see, e.g., (Nissim et al., 2007; Smith, 2011;
Bun et al., 2015; Diakonikolas et al., 2015; Karwa & Vad-
han, 2018; Acharya et al., 2018; Kamath et al., 2019; Bun
et al., 2019). For further coverage of differentially private
statistics, see (Kamath & Ullman, 2020).

2. Preliminaries
Given a set of points Z1, · · · , Zn, we use superscripts, i.e.,
Zi to denote the i-th datapoint. Given a vector Z ∈ Rp,
we use subscripts, i.e., Zi to denote its i-th coordinate. We
also use Z−i to denote the vector after deleting the i-th
coordinate, i.e. Z−i = [Z1, · · · , Zi−1, Zi+1, · · · , Zp].

2.1. Markov Random Field Preliminaries

We first introduce the definition of the Ising model, which
is a special case of general MRFs when k = t = 2.
Definition 2.1. The p-variable Ising model is a distribution
D(A, θ) on {−1, 1}p that satisfies

Pr (Z = z) ∝ exp

 ∑
1≤i≤j≤p

Ai,jzizj +
∑
i∈[p]

θizi

,
where A ∈ Rp×p is a symmetric weight matrix with Aii =
0,∀i ∈ [p] and θ ∈ Rp is a mean-field vector. The depen-
dency graph of D(A, θ) is an undirected graph G = (V,E),
with vertices V = [p] and edges E = {(i, j) : Ai,j 6= 0}.
The width of D(A, θ) is defined as

λ(A, θ) = max
i∈[p]

∑
j∈[p]

|Ai,j |+ |θi|

.
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Structure Learning Parameter Learning
Non-private Θ(log p) (folklore) Θ(log p) (folklore)

Approximate DP Θ(log p) (Theorems 5.3) Θ(
√
p) (Theorems 3.3 and 4.1)

Zero-concentrated DP Θ(
√
p) (Theorems 3.3 and 6.1) Θ(

√
p) (Theorems 3.3 and 4.1)

Pure DP Ω(p) (Theorem 6.1) Ω(p) (Theorem 6.1)

Table 1. Sample complexity (dependence on p) of privately learning an Ising model.

Let η(A, θ) be the minimum edge weight in absolute value,
i.e., η(A, θ) = mini,j∈[p]:Ai,j 6=0 |Ai,j | .

We note that the Ising model is supported on {−1, 1}p. A
natural generalization is to generalize its support to [k]p,
and maintain pairwise correlations.

Definition 2.2. The p-variable pairwise graphical model is
a distribution D(W,Θ) on [k]p that satisfies

Pr (Z = z) ∝ exp

 ∑
1≤i≤j≤p

Wi,j(zi, zj) +
∑
i∈[p]

θi(zi)

,
whereW = {Wi,j ∈ Rk×k : i 6= j ∈ [p]} is a set of weight
matrices satisfying Wi,j = WT

j,i, and Θ = {θi ∈ Rk : i ∈
[p]} is a set of mean-field vectors. The dependency graph of
D(W,Θ) is an undirected graph G = (V,E), with vertices
V = [p] and edges E = {(i, j) : Wi,j 6= 0}. The width of
D(W,Θ) is defined as

λ(W,Θ) = max
i∈[p],a∈[k]

 ∑
j∈[p]\i

max
b∈[k]
|Wi,j(a, b)|+ |θi(a)|

.
Define η(W,Θ) = min(i,j)∈E maxa,b |Wi,j(a, b)|.

Both the above models only consider pairwise interactions
between nodes. In order to capture higher-order interactions,
we examine the more-general model of Markov Random
Fields (MRFs). In this paper, we will restrict our attention
to MRFs over a binary alphabet (i.e., distributions over
{±1}p). In order to define binary t-wise MRFs, we first
need the following definition of multilinear polynomials,
partial derivatives and maximal monomials.

Definition 2.3. Multilinear polynomial is defined as h :
Rp → R such that h(x) =

∑
I h̄(I)

∏
i∈I xi where h̄(I)

denotes the coefficient of the monomial
∏
i∈I xi with respect

to the variables (xi : i ∈ I). Let ∂ih(x) =
∑
J:i6∈J h̄(J ∪

{i})
∏
j∈J xj denote the partial derivative of h with respect

to xi. We say I ⊆ [p] is a maximal monomial of h if h̄(J) =
0 for all J ⊃ I .

Now we are able to formally define binary t-wise MRFs.

Definition 2.4. For a graph G = (V,E) on p vertices, let
Ct(G) denotes all cliques of size at most t in G. A binary

t-wise Markov random field on G is a distribution D on
{−1, 1}p which satisfies

Pr
Z∼D

(Z = z) ∝ exp

 ∑
I∈Ct(G)

ϕI(z)

,
and each ϕI : Rp → R is a multilinear polynomial that de-
pends only on the variables in I . We call G the dependency
graph of the MRF and h(x) =

∑
I∈Ct(G) ϕI(x) the factor-

ization polynomial of the MRF. The width of D is defined as
λ = maxi∈[p] ‖∂ih‖1, where ‖h‖1 :=

∑
I

∣∣h̄(I)
∣∣.

Finally, we define two possible goals for learning graphical
models. First, the easier goal is structure learning, which
involves recovering the set of non-zero edges.

Definition 2.5. An algorithm learns the structure of a graph-
ical model if, given samples Z1, . . . , Zn ∼ D, it outputs a
graph Ĝ = (V, Ê) over V = [p] such that Ê = E, the set
of edges in the dependency graph of D.

The more difficult goal is parameter learning, which re-
quires the algorithm to learn not only the location of the
edges, but also their parameter values.

Definition 2.6. An algorithm learns the parameters of an
Ising model (resp. pairwise graphical model) if, given sam-
ples Z1, . . . , Zn ∼ D, it outputs a matrix Â (resp. set of
matrices Ŵ) such that maxi,j∈[p] |Ai,j − Âi,j | ≤ α (resp.
|Wi,j(a, b)− Ŵi,j(a, b)| ≤ α, ∀i 6= j ∈ [p],∀a, b ∈ [k]).

Definition 2.7. An algorithm learns the parameters of a
binary t-wise MRF with associated polynomial h if, given
samples X1, . . . , Xn ∼ D, it outputs another multilinear
polynomial u such that that for all maximal monomial I ⊆
[p],
∣∣h̄(I)− ū(I)

∣∣ ≤ α.

2.2. Privacy Preliminaries

A dataset X = (X1, . . . , Xn) ∈ Xn is a collection of
points from some universe X . We say that two datasets
X and X ′ are neighboring, which are denoted as X ∼ X ′
if they differ in exactly one single point. In our work we
consider a few different variants of differential privacy. The
first is the standard notion of differential privacy.

Definition 2.8 (Differential Privacy (DP) (Dwork et al.,
2006)). A randomized algorithm A : Xn → S satisfies
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(ε, δ)-differential privacy ((ε, δ)-DP) if for every pair of
neighboring datasets X,X ′ ∈ Xn, and any event S ⊆ S,

Pr (A(X) ∈ S) ≤ eε Pr (A(X ′) ∈ S) + δ.

The second is concentrated differential privacy (Dwork
& Rothblum, 2016). In this work, we specifically con-
sider its refinement zero-mean concentrated differential pri-
vacy (Bun & Steinke, 2016).

Definition 2.9 (Concentrated Differential Privacy
(zCDP) (Bun & Steinke, 2016)). A randomized algorithm
A : Xn → S satisfies ρ-zCDP if for every pair of
neighboring datasets X,X ′ ∈ Xn,

∀α ∈ (1,∞) Dα (M(X)||M(X ′)) ≤ ρα,

where Dα (M(X)||M(X ′)) is the α-Rényi divergence be-
tween M(X) and M(X ′).

The following lemma quantifies the relationships between
(ε, 0)-DP, ρ-zCDP and (ε, δ)-DP.

Lemma 2.10 (Relationships Between Variants of DP (Bun
& Steinke, 2016)). For every ε ≥ 0,

1. If A satisfies (ε, 0)-DP, then A is ε2

2 -zCDP.

2. If A satisfies ε2

2 -zCDP, then A satisfies ( ε
2

2 +

ε
√

2 log(1
δ ), δ)-DP for every δ > 0.

Roughly speaking, (ε, 0)-DP is stronger than zCDP, which
is stronger than (ε, δ)-DP with δ > 0.

A crucial property of all the variants of differential pri-
vacy is that they can be composed adaptively. By
adaptive composition, we mean a sequence of algo-
rithms A1(X), . . . ,AT (X) where the algorithm At(X)
may also depend on the outcomes of the algorithms
A1(X), . . . ,At−1(X).

Lemma 2.11 (Composition of DP (Dwork et al., 2010; Bun
& Steinke, 2016)). IfA is an adaptive composition of differ-
entially private algorithms A1, . . . ,AT , then the following
two properties hold:

1. If A1, . . . ,AT are (ε0, δ1), . . . , (ε0, δT )-DP for some
ε0 ≤ 1, then for every δ0 > 0, A is (ε, δ)-DP for
ε = ε0

√
6T log(1/δ0) and δ = δ0 +

∑
t δt.

2. IfA1, . . . ,AT are ρ1, . . . , ρT -zCDP thenA is ρ-zCDP
for ρ =

∑
t ρt.

3. Parameter Learning of Pairwise Graphical
Models

3.1. Private Sparse Logistic Regression

As a subroutine of our parameter learning algorithm, we
will solve the following problem of private sparse logistic

Algorithm 1 APFW (D,L, ρ, C) : Private FW Algorithm
Input: Data set: D = {d1, · · · , dn}, loss function:
L(w;D) = 1

n

∑n
j=1 log(1 + e−y

j〈w,xj〉), convex set:
C = {w ∈ Rp : ‖w‖1 ≤ λ}, iteration times: T , and
privacy parameters: ρ
Initialize w from an arbitrary point in C.
for t = 1 to T − 1 do
∀s ∈ S, αs ← 〈s,∇L(w;D)〉+ Lap

(
0,

L1‖C‖1
√
T

n
√
ρ

)
.

w̃t ← arg mins∈S αs.
wt+1 ← (1− µt)wt + µtw̃t, where µt = 2

t+2 .
end for
Output: wpriv = wT

regression: given a training data set D consisting of n ex-
amples dj = (xj , yj) drawn from a distribution P , where
xj ∈ Rp with

∥∥xj∥∥∞ ≤ 1 and yj ∈ {±1}, a constraint set
C = {w ∈ Rp : ‖w‖1 ≤ λ}, we want to minimize popu-
lation logistic loss EP

[
log(1 + e−Y 〈w,X〉)

]
subject to pri-

vacy constraint. To do so, we will leverage the private Frank-
Wolfe (FW) algorithm by (Talwar et al., 2014), which min-
imizes the empirical risk L(w;D) = 1

n

∑n
j=1 `(w; dj) =

1
n

∑n
j=1 log(1 + e−y

j〈w,xj〉). We show that their algorithm
also satisfies zCDP; meanwhile establishes the empirical
loss guarantee and population loss guarantee in sparse lo-
gistic regression. These results are stated in Theorem 1.3
and Theorem 3.1, respectively, and we defer the proof to the
supplement.

Theorem 3.1 (Private sparse logistic regression). Algo-
rithm 1 satisfies ρ-zCDP. Given a data set D drawn i.i.d.
from an unknown distribution P , with probability at least
1− β over the randomness of the algorithm and D,

EP
[
`(wpriv; (X,Y ))

]
− min
w∈C

EP [`(w; (X,Y ))]

≤ O

λ 4
3 log(npβ )

(n
√
ρ)

2
3

+
λ log

(
1
β

)
√
n

.
3.2. Privately Learning Ising Models

We first consider the problem of estimating the weight ma-
trix of the Ising model. To be precise, given n i.i.d. sam-
ples {z1, · · · , zn} generated from an unknown distribution
D(A, θ), our goal is to design an ρ-zCDP estimator Â such
that with probability at least 2

3 , maxi,j∈[p]

∣∣∣Ai,j − Âi,j∣∣∣ ≤
α.

An observation of the Ising model is that for any node Zi,
the probability of Zi = 1 conditioned on the values of the
remaining nodes Z−i follows from a sigmoid function. The
next lemma comes from (Klivans & Meka, 2017), which
formalizes this observation.
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Algorithm 2 Privately Learning Ising Models
Input: n samples {z1, · · · , zn}, where zm ∈ {±1}p
for m ∈ [n], an upper bound on λ(A, θ) ≤ λ, privacy
parameter ρ
for i = 1 to p do
∀m ∈ [n], xm ← [zm−i, 1], ym ← zmi .

wpriv ← APFW (D,L, ρ′, C),
where ρ′ = ρ

p , D = {(xm, ym)}nm=1, C = {‖w‖1 ≤
2λ}, and L(w;D) = 1

n

∑n
m=1 log

(
1 + e−y

m〈w,xm〉).
∀j ∈ p, Âi,j ← 1

2w
priv

j̃
, where j̃ = j when j < i and

j̃ = j − 1 if j > i.
end for
Output: Â ∈ Rp×p

Lemma 3.2. Let Z ∼ D(A, θ) and Z ∈ {−1, 1}p, then
∀i ∈ [p], ∀x ∈ {−1, 1}[p]\{i},

Pr (Zi = 1|Z−i = x) = σ

∑
j 6=i

2Ai,jxj + 2θi


= σ(〈w, x′〉).

where w = 2[Ai,1, · · · , Ai,i−1, Ai,i+1, · · · , Ai,p, θi] ∈ Rp,
and x′ = [x, 1] ∈ Rp.

By Lemma 3.2, we can estimate the weight matrix by solv-
ing a logistic regression for each node, which is utilized
in (Wu et al., 2018) to design non-private estimators. Our
algorithm uses the private FW method to solve the per-node
logistic regression problem and achieves the the following
theoretical guarantee.

Theorem 3.3. Let D(A, θ) be an unknown p-variable
Ising model with λ(A, θ) ≤ λ. There exists an effi-
cient ρ-zCDP algorithm which outputs a weight matrix
Â ∈ Rp×p such that with probability greater than 2/3,

maxi,j∈[p]

∣∣∣Ai,j − Âi,j∣∣∣ ≤ α if the number of i.i.d. samples
satisfies

n = Ω

(
λ2 log(p)e12λ

α4
+

√
pλ2 log2(p)e9λ
√
ρα3

)
.

Proof. We first prove that Algorithm 2 satisfies ρ-zCDP.
Notice that in each iteration, the algorithm solves a private
sparse logistic regression under ρp -zCDP. Therefore, Algo-
rithm 2 satisfies ρ-zCDP by composition (Lemma 2.11).

For the accuracy analysis, we start by looking at the first
iteration (i = 1) and showing that

∣∣∣A1,j − Â1,j

∣∣∣ ≤ α, ∀j ∈
[p], with probability greater than 1− 1

10p .

Given a random sample Z ∼ D(A, θ), we let X = [Z−1, 1],
Y = Z1. From Lemma 3.2, Pr (Y = 1|X = x) =
σ(〈w∗, x〉), where w∗ = 2[A1,2, · · · , A1,p, θ1]. We also
note that ‖w∗‖1 ≤ 2λ, as a consequence of the width con-
straint of the Ising model.

For any n i.i.d. samples {zm}nm=1 drawn from the Ising
model, let xm = [zm−1, 1] and ym = zm1 , it is easy to
check that each (xm, ym) is the realization of (X,Y ).
Let wpriv be the output of A

(
D,L, ρp , {w : ‖w‖1 ≤ 2λ}

)
,

where D = {(xm, ym)}nm=1. By Lemma 3.1, when

n = O

(√
pλ2 log2(p)
√
ργ

3
2

+ λ2 log(p)
γ2

)
, with probability

greater than 1 − 1
10p , EZ∼D(A,θ)

[
L(wpriv; (X,Y ))

]
−

EZ∼D(A,θ) [L(w∗; (X,Y ))] ≤ γ.

We will use the following lemma from (Wu et al., 2018).
Roughly speaking, with the assumption that the samples are
generated from an Ising model, any estimator wpriv which
achieves a small error in the loss L guarantees an accurate
parameter recovery in `∞ distance.

Lemma 3.4. Let X,Y be defined above. We suppose the
joint distribution of (X,Y ) is P , and Pr (Y = 1|X = x) =
σ(〈u1, x〉+ θ1) for some u1 ∈ Rp−1 and
θ1 ∈ R. If E(X,Y )∼P

[
log
(
1 + e−Y (〈u1,X〉+θ1)

)]
−

E(X,Y )∼P
[
log
(
1 + e−Y (〈u2,X〉+θ2)

)]
≤ γ for some

u2 ∈ Rp−1, θ2 ∈ R, and γ ≤ 1
2e
−4λ−6, then

‖u1 − u2‖∞ = O(e2λ · √γ).

By Lemma 3.4, if EZ∼D(A,θ)

[
L(wpriv; (X,Y ))

]
−

EZ∼D(A,θ) [L(w∗; (X,Y ))] ≤ O
(
α2e−6λ

)
, we have∥∥wpriv − w∗∥∥∞ ≤ α. By replacing γ = α2e−6λ, we

prove that
∥∥∥A1,j − Â1,j

∥∥∥
∞
≤ α with probability greater

than 1 − 1
10p . Noting that similar argument works for

the other iterations and non-overlapping part of the ma-
trix is recovered in different iterations. By union bound
over p iterations, we prove that with probability at least 2

3 ,

maxi,j∈[p]

∣∣∣Ai,j − Âi,j∣∣∣ ≤ α.

3.3. Privately Learning Pairwise Graphical Model over
General Alphabet

Next, we study parameter learning for pairwise graphi-
cal models over general alphabet. Given n i.i.d. sam-
ples {z1, · · · , zn} drawn from an unknown distribution
D(W,Θ), we want to design an ρ-zCDP estimator Ŵ such
that with probability at least 2

3 , ∀i 6= j ∈ [p],∀u, v ∈
[k],
∣∣∣Wi,j(u, v)− Ŵi,j(u, v)

∣∣∣ ≤ α. To facilitate our presen-
tation, we assume that ∀i 6= j ∈ [p], every row (and column)
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vector of Wi,j has zero mean.2

Analogous to Lemma 3.2 for the Ising model, a pairwise
graphical model has the following property, which can be
utilized to recover its parameters. The proof is similar and
we omit it for simplicity.

Lemma 3.5. Let Z ∼ D(W,Θ) and Z ∈ [k]p. For any
i ∈ [p], any u 6= v ∈ [k], and any x ∈ [k]p−1,

Pr (Zi = u|Zi ∈ {u, v}, Z−i = x)

= σ

∑
j 6=i

(Wi,j(u, xj)−Wi,j(v, xj)) + θi(u)− θi(v)

.
Now we introduce our algorithm. Without loss of generality,
we consider estimating W1,j for all j ∈ [p] as a running
example. We fix a pair of values (u, v), where u, v ∈ [k] and
u 6= v. Let Su,v be the samples where Z1 ∈ {u, v}. In order
to utilize Lemma 3.5, we do the following transformation on
the samples in Su,v: for the m-th sample zm, let ym = 1 if
zm1 = u, else ym = −1. And xm is the one hot encoding of
the vector [zm−1, 1], where OneHotEncode(s) is a mapping
from [k]p to Rp×k, and the i-th row is the t-th standard basis
vector given si = t. Then we define w∗ ∈ Rp×k as follows:

w∗(j, ·) = W1,j+1(u, ·)−W1,j+1(v, ·),∀j ∈ [p− 1];

w∗(p, ·) = [θ1(u)− θ1(v), 0, · · · , 0].

Lemma 3.5 implies that ∀t, Pr (Y t = 1) = σ(〈w∗, Xt〉),
where 〈·, ·〉 is the element-wise multiplication of matri-
ces. According to the definition of the width of D(W,Θ),
‖w∗‖1 ≤ λk. Now we can apply the sparse logistic regres-
sion in Algorithm 3 to the samples in Su,v .

Suppose wprivu,v is the output of the private Frank-Wolfe
algorithm, we define Uu,v ∈ Rp×k as follows: ∀b ∈ [k],

Uu,v(j, b) = wprivu,v (j, b)− 1

k

∑
a∈[k]

wprivu,v (j, a),∀j ∈ [p− 1];

Uu,v(p, b) = wprivu,v (p, b) +
1

k

∑
j∈[p−1]

∑
a∈[k]

wprivu,v (j, a).

(1)
Uu,v can be seen as a “centered” version of wprivu,v (for the
first p − 1 rows). It is not hard to see that 〈Uu,v, x〉 =
〈wprivu,v , x〉, so Uu,v is also a minimizer of the sparse logistic
regression.

2The assumption that Wi,j is centered is without loss of gener-
ality and widely used in the literature (Klivans & Meka, 2017; Wu
et al., 2018). We present the argument here for completeness. Sup-
pose the a-th row of Wi,j is not centered, i.e.,

∑
bWi,j(a, b) 6= 0,

we can define W ′i,j(a, b) = Wi,j(a, b) − 1
k

∑
bWi,j(a, b) and

θ′i(a) = θi(a)+
1
k

∑
bWi,j(a, b), and the probability distribution

remains unchanged.

Algorithm 3 Privately Learning Pairwise Graphical Model
Input: alphabet size k, n i.i.d. samples {z1, · · · , zn},
where zm ∈ [k]p for m ∈ [n], an upper bound on
λ(W,Θ) ≤ λ, privacy parameter ρ
for i = 1 to p do

for each pair u 6= v ∈ [k] do
Su,v ← {zm,m ∈ [n] : zmi ∈ {u, v}}.

∀zm ∈ Su,v, xm ← OneHotEncode([zm−i, 1]),
ym ← 1 if zmi = u; yt ← −1 if zmi = v.

wprivu,v ← APFW (D,L, ρ′, C),
where ρ′ = ρ

k2p , D = {(xm, ym) : zm ∈ Su,v},
L(w;D) = 1

|Su,v|
∑|Su,v|
m=1 log

(
1 + e−y

m〈w,xm〉),
C = {‖w‖1 ≤ 2λk}.

Define Uu,v ∈ Rp×k by centering the first p − 1
rows of wprivu,v , as in Equation 1.

end for
for j ∈ [p]\i and u ∈ [k] do
Ŵi,j(u, :) ← 1

k

∑
v∈[k] Uu,v(j̃, :), where j̃ = j

when j < i and j̃ = j − 1 when j > i.
end for

end for
Output: Ŵi,j ∈ Rk×k for all i 6= j ∈ [p]

For now, let we suppose ∀j ∈ [p − 1], b ∈ [k], Uu,v(j, b)
is a “good” approximate of (W1,j+1(u, b)−W1,j+1(v, b)),
which is proved in the supplement. If we sum over v ∈ [k],
it can be shown that 1

k

∑
v∈[k] Uu,v(j, b) is also a “good”

approximate of W1,j+1(u, b), for all j ∈ [p− 1], and u, b ∈
[k], because of the centering assumption ofW , i.e., ∀j ∈
[p− 1], b ∈ [k],

∑
v∈[k]W1,j+1(v, b) = 0.

The following theorem is the main result of this section,
where its proof is structurally similar to that of Theorem 3.3
and we leave it to the supplement.

Theorem 3.6. Let D(W,Θ) be an unknown p-variable
pairwise graphical model distribution, and we suppose that
D(W,Θ) has width λ(W,Θ) ≤ λ. There exists an efficient
ρ-zCDP algorithm which outputs Ŵ such that with prob-
ability greater than 2/3,

∣∣∣Wi,j(u, v)− Ŵi,j(u, v)
∣∣∣ ≤ α,

∀i 6= j ∈ [p],∀u, v ∈ [k] if the number of i.i.d. samples
satisfy

n = Ω

(
λ2k5 log(pk)eO(λ)

α4
+

√
pλ2k5.5 log2(pk)eO(λ)

√
ρα3

)
.

4. Lower Bounds for Parameter Learning
The lower bound for parameter estimation is based on mean
estimation in `∞ distance. For details on the construction,
refer to Section 1.1, and the proof appears in the supplement.
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Theorem 4.1. Suppose A is an (ε, δ)-differentially private
algorithm that takes n i.i.d. samples Z1, . . . , Zn drawn
from any unknown p-variable Ising model D(A, θ) and out-

puts Â such that E
[
maxi,j∈[p] |Ai,j − Âi,j |

]
≤ α ≤ 1/50.

Then n = Ω
(√

p

αε

)
.

5. Structure Learning of Graphical Models
In this section, we will give an (ε, δ)-differentially private
algorithm for learning the structure of a Markov Random
Field. The dependence on the dimension d will be only
logarithmic, in comparison to the complexity of privately
learning the parameters. The following lemma is immediate
from stability-based mode arguments (see, e.g., Proposition
3.4 of (Vadhan, 2017)).
Lemma 5.1. Suppose there exists a (non-private) algorithm
which takes X = (X1, . . . , Xn) sampled i.i.d. from some
distribution D, and outputs some fixed value Y (which may
depend on D) with probability at least 2/3. Then there
exists an (ε, δ)-differentially private algorithm which takes

O
(
n log(1/δ)

ε

)
samples and outputs Y with probability at

least 1− δ.

We can now directly import the following theorem from (Wu
et al., 2018).
Theorem 5.2 ((Wu et al., 2018)). There exists an algo-
rithm which, with probability at least 2/3, learns the struc-
ture of a pairwise graphical model. It requires n =

O
(
λ2k4e14λ log(pk)

η4

)
samples.

This gives us the following private learning result as a corol-
lary. Similar results for binary MRFs appear in the supple-
ment.
Corollary 5.3. There exists an (ε, δ)-differentially private
algorithm which, with probability at least 2/3, learns the
structure of a pairwise graphical model. It requires n =

O
(
λ2k4e14λ log(pk) log(1/δ)

εη4

)
samples.

6. Lower Bounds for Structure Learning
In this section we state our structure learning lower bounds
under pure DP or zCDP, for learning either Ising models or
pairwise graphical models. We show that under both ε-DP
and ρ-zCDP, a polynomial dependence on the dimension is
unavoidable. Due to the page limit, we defer the proofs to
the supplement.
Theorem 6.1. Any (ε, 0)-DP algorithm which learns the
structure of an Ising model with minimum edge weight η
requires n = Ω

(√
p

ηε + p
ε

)
samples. Furthermore, n =

Ω
(√

p
ρ

)
samples are required for the same task under ρ-

zCDP.

Theorem 6.2. Any (ε, 0)-DP algorithm which learns the
structure of a p-variable pairwise graphical model with min-
imum edge weight η requires n = Ω

(√
p

ηε + k2p
ε

)
samples.

Furthermore, n = Ω
(√

k2p
ρ

)
samples are required for the

same task under ρ-zCDP.
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