Supplemental Materials for: Mix-n-Match: Ensemble and Compositional
Methods for Accurate and Data-efficient Uncertainty Calibration

S1. Proofs of Proposition 3.1: Accuracy-Preserving Calibration Maps

For an arbitrary pair of classes (Vi,j € [L], where [L] denotes the set of positive integers up to L) of the prediction
probability vector z, let us assume that z; < z; without loss of generality. By definition, the strictly isotonic function g
will output g(z;) < g(z;) after the transformation. After dividing by the same normalization constant G(z), the following
relationship holds: [T'(z)]; < [T'(z)],, where [.]; represents the i-th entry of the vector. Since the order of entries in the
prediction vector is unchanged after the calibration, the classification accuracy is preserved.

S2. Proofs of Theorem 4.1: Statistical Properties of KDE-based ECE

Mirror image KDE for boundary correction. Considering that we work with the probability simplex A’ in the context
of calibration, KDE can suffer from excessively large bias near the boundary of the simplex. To suitably correct for boundary
bias without compromising the estimation quality, we adopt the mirror image KDE strategy (Singh & Pdczos, 2014b). The
convergence/consistency properties will be proved for such a choice.

Smoothness assumption on the underlying densities. Let 5 and N be positive numbers. Given a vector s = (s1, ..., SL)

. o . llsl . . .
with non-negative integer entries, let us use D* := 8512878@ to denote the differential operator. The 5-Holder class of
1. ZL

densities (5, ) contains those densities p : [0, ”L — R satisfying the following relationship:
[D%p(z) = D*p(=')] < Nz — /|11,

forall z, 2z’ € Z and all s with ||s||; = 8 — 1. We assume that the distribution for predictions p(z) as well as the calibration
probabilities 7; for each class [ € [L] belongs to the S-Holder class.

Assumption on the kernel function. We assume that the kernel function K : R — R>( has bounded support [—1, 1] and
satisfies:

1

/_IK(u)duzl;HKHl :/ K ()] du < o0:Vj € [5—1],/ WK () du = 1.

—1 -1

Boundedness assumption. We denote C; := sup, ||z — 7(2)||1 and C, := sup,p(z) and assume they are both finite.

We can bound the KDE estimation error of [ECE(f) — EEE( f)] after applying the triangle inequality:
IECE() ~ BCB(1)| = | [l = w(e) o) ds— [l = 7)) ds
< [ oz = @ = 5l = st =+ [ |o)(1s =~ 7l - 12 = 71|

<sup, ||z — w(z Hl/\p P(2)| dz +sup,p(z) /||7T ) —7(2)]|1 dz

<, [ 1) = )| de . [ () = () d

(ShH

which connects the absolute estimation error of ECE to the integrated estimation errors on the unknown densities p(z) and
m(z). We then borrow the established convergence rate and consistency proofs for (conditional) density functional of mirror
KDE (Singh & Pdczos, 2014a) to derive the statistical properties for the proposed KDE-based ECE estimator.
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Bias convergence rate. Taking the expectation and applying the Fubini’s theorem on both sides in Eq. (S1), we can derive:

BIECE() ~ BCE(f)| < Cr [ Blp(z) - (2)|d=+C. [ Eln(:) = 7(2)) |1 dz

1

< CrCpi (WP + 1% + 1h)+0032(hﬂ+h26+ T ——) <O+ 1% +

n hL )7

where C'p1 and C'p, are constants given the sample size n, and bandwidth h and C = C.Cpy + C,Cps. The quantity
h?? is introduced by the Bias Lemma (Singh & Péczos, 2014b) from the mirror image KDE. For [ E|p(z) — p(z)|dz,
we follow the standard KDE results (see Prop 1.1,1.2 and 1.2.3 (Tsybakov, 2008)) while the bound on the other term
[ E|jx(z) — 7(2))||1 dz follows 6.2 in (Singh & Pdczos, 2014a) or (Déring et al., 2016; Gyorfi et al., 2006).

L/(5+L) BP0y

The optimal bandwidth is h < n. , leading to a convergence rate of O(ne_

Consistency. Let p’ denote the KDE marginal density of z when an existing sample point is replaced by a new sample
from the same distribution p(z), and similarly 7’ denote the KDE canonical calibration function after replacing a sample.
Following (Singh & Pdéczos, 2014a), we can bound the density discrepancy before/after replacing a single sample by:

CV1 Cvz
1p(2)

€
where Cy1 and Cy 5 are constants in the class-dimension L and the kernel norm || K ||; for exact values. Suppose that we use

two sets of n, independent samples to estimate p and 7, respectively. Since ECE( f) depends on 2n, independent variables,
combining Eq. (S2) with Eq. (S1), we can use McDiarmid’s Inequality (McDiarmid, 1989) to derive that:

(2)|1dz < (82)

— —— ? i
P(|ECE(f) — EECE(f)| > ¢) < 2exp ( - M} = Zexp (‘ Zc%)

for Cy = max(Cy1, Cy2). As P([ECE(f) — EECE(f)| > ¢) approaches 0 when n, — oo, the KDE-based ECE estimator
is consistent.

S3. KDE Implementation Detail

Kernel function choice. Different types of kernel functions K (u) can be used, such as the Gaussian and Epanechnikov
functions. Our choice is the Triweight Kernel K, (u) = (1/h)33(1 — (u/h)?)® on [~1,1], since it has been recommended
for problems with limited support interval (de Haan, 1999).

Bandwidth selection. We use the popular rule-of-thumb A = 1.066n. 1/5 (Scott, 1992), where ¢ is the standard deviation
of the samples.

S4. Proof for Proposition 4.2: Calibration Gain for Accuracy-Preserving Methods

According to the calibration refinement decomposition (Murphy, 1973), the expected calibration error ECE? is equal to:
ECE*(f) = E|lz — 7(2)[I3 = Ellz — 5 — Ell=(2) - yll3, (83)

where E||z — y||3 is the standard square loss and E||7(2) — y||3 is the refinement error (Murphy, 1973) that penalizes the
existence of inputs sharing the same prediction but different class labels. Before proceeding further, we first introduce the
definition of injective calibration maps:

Definition S4.1 (Injective Calibration Map). The calibration map is injective if different prediction vectors remain different
after calibration: Vz, 2’ € Z,T(z) # T(z) if z # 2.

Proposition S4.1. The accuracy-preserving calibration map T in Def. 3.1is injective.

Proof. Given z # z', without loss of generality assume G(z) > G(2’) for their normalization constants. Since z # 2/,
there must exists at least one class [ where z; < z;. After the transformation by a strictly isotonic function g, we know that
g(z1) < g(z]). Then we can derive that:
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Therefore, T'(z) # T(2') because their [-th entry is not equal. The calibration map is then injective.

Note that the canonical calibration function in Eq. (1) is essentially the conditional expectation of binary random variables
Y,asm(z) = P[Y; = 1|f(X) = z] = E[Y}| f(X) = z]. By elementary properties of the conditional expectation, one can
easily show that injective calibration maps will not change the canonical calibration probabilities, thus 7(z) = 7(7T'(z)) for
injective T'. Combining this with the decomposition relationship in Eq. (S3), we can show that:

AECE?(T) = ECE*(f) — ECE*(T o f)
= Ellz = yll3 — Ell7(2) — yl3 — (BIT(2) - yll3 — E[7(T(2)) - yli3) (84
=E|lz - yll3 - EIIT(2) - yl3.
Therefore, after applying an injective calibration map, which include the proposed accuracy-preserving ones, any changes in

the squared loss will be due to the change in ECE?. O

Remark. Most existing calibration methods are not injective. For example, in histogram binning (Zadrozny & Elkan, 2001)
or the original isotonic regression method (Zadrozny & Elkan, 2002), all predictions inside certain intervals will be mapped
to be identical, and violate the injective requirement. For parametric methods, such as vector, matrix (Guo et al., 2017), or
Dirichlet scaling (Kull et al., 2019), different logits can be transformed to produce the same prediction probability vectors,
and violate the injective requirement.

SS. Experimental Details and Additional Results in Section 5.1
S5.1. Experimental details
For the synthetic example, the labels (Y') and input features (X)) are distributed as:
PYi=1)=PYe=1)=1/2P(X =2z|Y1=1) = N(z; —-1,1);P(X = z|Ys = 1) = N(z;1,1). (S5)
The probability of observing the label Y7 = 1 conditioned on the input 2 can be written as:

P(Y; = 11X =z) = 1/[1 + exp(2z)].

We assume the prediction models to be in the following form, parameterized by 3, and (;:

1 exp(—fo — P17) )
1+exp(—=Bo — fix)’ 1+ exp(—Fo — fiz) )
This leads to close-form expressions for the canonical calibration functions 7(z) = (71 (z), m2(2)):

_250 +log(1/z1 — 1)
f1

2= 1) = (a0 =

m1(z) = [1 + exp( 7Y me(2) =1 = mi(2). (S6)

Finally, we estimate the ground-truth ECE? based on Monte Carlo integration: (i) generate 10° random input-output sample
pairs according to Eq. (S5), and (ii) record the sample average value of the quantity |z; — 7 (2)|? as the ground-truth.

S5.2. Additional results

We plot the distribution of the errors between the ECE estimates and the ground-truth ECE in two representative scenarios: a
data-limited scenario with n, = 64 in Figure S1 and a data-rich scenario with n, = 1024 in Figure S2. The KDE estimation
errors are generally less biased (more concentrated around zero) as compared to histograms, corroborating the findings in
Sec. 5.1. Judging from the variance of the estimation errors, the KDE estimation errors are generally less dispersed than the
two histogram estimators, indicating that the KDE estimators are more reliable. In contrast, histogram ECE estimators tend
to severely over-estimates ECE in data-limited regime, with the majority of their estimation errors being positive. Their
sensitivity to the binning schemes can be also observed from the distribution discrepancies between using equal-width
and data-dependent bins: the histogram estimator with data-dependent bins generally performs better than the one with
equal-width bins, although it cannot reach the accuracy level of KDE estimators. However, it performs the worst in the
data-rich scenario of Case 2 (Figure S2 bottom).
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Figure S1. Distribution of ECE estimation errors in Case 1: By = 0.5, 81 = —1.5 with (a) n. = 64 and, (b) n. = 1024.
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Figure S2. Distribution of ECE estimation errors in Case 2: o = 0.2, 1 = —1.9 with (a) n. = 64, and (b) n. = 1024.
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Recently (Kumar et al., 2019) proposed a debiased histogram-based estimator for ECEY=2, by leveraging error cancellations
across different bins. We compare the proposed KDE ECE estimator with the debiased versions of histogram-based ECE
estimators with both equal-width and data-dependent binning schemes. We vary the size of evaluation samples n. from 64 to
1024 and plot the mean absolute error (averaged over 1000 independent experiments) between KDE/Debiased-Histograms
estimates for ECE? and the ground truth in Figure S3. We observe that KDE-based estimator consistently performs better
than the best-performing debiased histogram-based ECE estimators. This agrees with the findings in Sec. 5.1 and confirms
the advantage of using KDE-based estimator over histograms-based estimators.
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Figure S3. Average absolute error for KDE ECE and debiased histogram ECE estimators as a function of the number of samples used in
the ECE estimation. KDE-based ECE estimator achieves lower estimation error, especially when the evaluation dataset is small.

S6. Experimental Detail and Additional Results in Section 5.2
S6.1. Training details

For training neural networks on CIFAR-10/100, we use SGD with Nesterov momentum and the cross-entropy loss. The
weight decay is set to 0.0005, dampening to 0, momentum to 0.9, and minibatch size to 128. The initial learning rate is
set to 0.1, and is dropped by a factor of 0.2 at 60, 120 and 160 epochs. For Wide ResNets, we use a dropout rate of 0.3.
We train the models for a total of 500 epochs. We use standard mean/std normalization with flipping and data cropping
augmentation as described in (Zagoruyko & Komodakis, 2016) on CIFAR-10/100 images.

S6.2. Expanded results

The quantitative measure of expressive power and data-efficiency is illustrated graphically in Figure S4 and discussed in
Table S1 and Table S2. To summarize, ETS is comparably expressive to TS on CIFAR-10 and noticeably more expressive
on CIFAR-100 and ImageNet. Both IRM and IROvVA-TS are more efficient than IROvA. The relative efficiency gain of IRM
increases as the problems become more complex. On the other hand, the relative efficiency gain of IROVA-TS appears to be
quite stable on a wide range of problems.

We also provide expanded results on the learning curve analysis for additional neural network classifiers (see Figure S5 to
Figure S7). From the visual comparison of the ECE learning curves of ETS and TS, or IRM/IROVA-TS and IROVA, we
can confirm the importance to preserve the classification accuracy and the consistent benefit of employing the proposed
Mix-n-Match strategies. Overall, in data-limited regime, parametric variants (TS, ETS) perform better than traditional
non-parametric variants (IROvA, IROVA-TS) due to their high data-efficiency. ETS significantly outperforms TS and
performs the best as the added expressive power from ensembles allow ETS to make further descent on ECE. The proposed
accuracy-preserving non-parametric variant IRM also performs good: it is sometimes more effective than TS, although
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Table S2. Required calibration data amount 7. to reach IRM’s per-
Table S1. ECE! (%) with n. = 10000 for CIFAR and n. = 45000 formance with n. = 128 samples; lower value means more data-
for ImageNet; lower values imply more expressive power. efficient. All values are normalized (divided by 128) to show how
many samples are equivalent to one sample in IRM for each method.

Dataset Model TS ETS
CIFAR-10 DenseNet 40 132 132 Dataset Model IRM IROvA IROvVA-TS
CIFAR-10  LeNet5 149 148 CIFAR-10  DenseNet 40 1.0 2.45 2.10
CIFAR-10  ResNet 110 212 212 CIFAR-10  LeNet5 1.0 3.15 2.92
CIFAR-10  WRN 28-10 1.67 1.67 CIFAR-10  ResNet 110 1.0 1.84 1.70
CIFAR-100 DenseNet40 173 172 CIFAR-10 WRN28-10 10 198 190
CIFAR-100 LeNet5 1.39 131 CIFAR-100 DenseNet 40 1.0 37.6 17.9
CIFAR-100  ResNet 110 281 215 CIFAR-100 LeNet 5 1.0 58.7 43.0
CIFAR-100 WRN 28-10 323 285 CIFAR-100 ResNet 110 1.0 28.1 10.7
TmageNet DenseNet 161 1.95 175 CIFAR-100 WRN 28-10 1.0 242 15.6
ImageNet ResNeXt 101  2.97 222 ImageNet DenseNet 161 1.0 282 174
ImageNet VGG 19 1.89 1.83 ImageNet ResNeXt 101 1.0 226 98.6
ImageNet WRN 50-2 252 210 ImageNet VGG 19 1.0 251 180
ImageNet WRN 50-2 1.0 258 161

it cannot outperform ETS in most examined cases. The relatively good performance of IRM can be accredited to its
high data-efficiency on complex calibration tasks. Going to the data-rich regime, the ECE reduction progress stalls for
parametric methods. On complex problems, such as CIFAR-100 and ImageNet, this also applies to the accuracy-preserving
non-parametric variants (IRM) due to its expressivity-efficiency trade-off. In contrast, the high expressive power of non-
parametric variants (IROvA, IROVA-TS) allow them to keep minimizing the ECE and eventually outperform less expressive
methods (ETS, TS or IRM) with sufficient amount of data — although, this cannot be verified in all the examined cases
due to our limited data budget. In such regime, the composition method IROvA-TS significantly outperforms IROvA and
performs the best due to its enhanced data-efficiency. Based on such observations, our further discussion on the guidelines
of calibration methods will be restricted to ET'S, IRM and IROvA-TS.
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Figure S4. Graphical illustration for the proposed measure of expressive power and data-efficiency.
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Figure S5. Learning curve comparisons of various calibration methods on top-label ECE* (left) and the classification accuracy (right) on
CIFAR-10 dataset with (a) DenseNet 40 model; (b) LeNet 5 model; and (c) ResNet 110 model.
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Figure S6. Learning curve comparisons of various calibration methods on top-label ECE* (left) and the classification accuracy (right) on
CIFAR-100 dataset with (a) DenseNet 40 model; (b) LeNet 5 model; and (c) ResNet 110 model.
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Figure S7. Learning curve comparisons of various calibration methods on top-label ECE® (left) and the classification accuracy (right) on
ImageNet dataset with (a) DenseNet 161 model; (b) ResNext 101 model; and (c) VGG 19 model.
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S7. Guidelines

First, we provide guidelines on choosing an appropriate calibration evaluation metric. If knowing the exact value of ECE is
important, we recommend KDE-based top-label ECE estimator for its superior data-efficiency as compared to histograms. If
the goal is to infer just the rankings not actual calibration errors, one should use the calibration gain metric. It provides
a reliable and faithful comparison of different methods based on their actual calibration capabilities. We also note that
calibration gain metric might be a lower bound for certain calibration methods, e.g., non accuracy-preserving methods.

We next provide general guidelines on selecting the best calibration method (ETS vs. IRM vs. IROvA-TS), based on: (a) the
complexity of the calibration task which is a function of the model complexity (number of free parameters) and the data
complexity (number of classes), and (b) resources at hand (the amount of the calibration data).

The complexity of the calibration task is directly related to the complexity of the canonical calibration function in Eq. (1).
Although, we do not have the knowledge of the canonical calibration function, we expect a learning task with low model
complexity and low data complexity to result in a low complexity calibration task ( see Figure S5 (b)). Next, a learning task
with low model complexity but high data complexity (Figure S6 (b)), or high model complexity but low data complexity
(Figure S5 (a) and (c)) is expected to result in a moderately complex calibration task. Finally, we expect a learning task with
high model & data complexity to result in a highly complex calibration task (Figure S6 (a) and (c), Figure S7).

For low complexity calibration tasks, we see that the performance of uncalibrated models are already satisfactory. This
observation agrees with results in (Guo et al., 2017). Further, all the calibration methods perform similarly, however,
proposed variants performing slightly better than the baseline approaches. The use case of the most practical interest is
where the calibration task is expected to be complex. In such scenarios, an ideal calibration map should have enough
expressive power to accurately approximate the canonical calibration function in Eq. (1). However, to fit an expressive
calibration map, sufficiently large amount of calibration data is required which may or may not be available. In data limited
regime, ETS is recommended as the first choice, while IRM is a potential alternative when the parametric assumptions of
ETS are improper (see Figure 6 top left and Figure S5 (c)). In data rich regime, we recommend using IROVA-TS for its high
expressive power. For moderate complexity calibration tasks, the patterns are similar to high complexity calibration tasks.
The only difference is that the gain of the proposed Mix-n-Match strategies are not as drastic as of the case where calibration
task is of high complexity. Of course, if the user has hard-constraints on accuracy-preservation, the choice would be limited
to the accuracy-preserving calibrators regardless of the data size or the task complexity. In such scenarios, we recommend
ETS and IRM. We also want to emphasize that both ETS and IRM are fairly efficient and perform well on all ranges of the
calibration data size.

In summary, our take-home messages on the most appropriate calibration method are the following:

e For complex calibration task (poorly calibrated model, large number of classes), when a large calibration dataset is
available and the user does not have hard constraints on preserving accuracy, the proposed compositional method
IROVA-TS is recommended to achieve the best degree of calibration.

e For all other cases, the proposed ensemble method ETS is recommended when the parametric assumption is proper.
IRM is a strong alternative to be considered in order to avoid the risk of parametric form mis-specification of ETS in
certain cases. Both approaches preserve the classification accuracy, and one can conveniently compare them based on
the proposed calibration gain metric.
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