
Spread Divergence

A. Annealing the Noise
In section(1.1.1) we discussed the common approach to first adding noise to a model Q in order to define a proper density
and then using maximum likelihood to fit that ‘noised model’ to data.

We can use standard Woodberry identities to rewrite the expected log likelihood eq(11) as
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where D = dim(θp).

Differentiating wrt θq , we note that the optimal solution is given when

θq = γθp, (66)

for scalar γ. Plugging this form back into eq(65) we find that the optimum is obtained when

θq =

√
θ2
p − σ2

θ2
p

θp. (67)

For finite Gaussian noise σ2 > 0 the resulting estimator for the toy model in section(1.1.1) is therefore not consistent.

A natural question is what would happen if one uses a numerical optimisation of eq(65) but anneals the noise σ2 to zero
during the optimisation process? As σ2 tends to zero, the expression eq(65) blows up. This means that a naive approach
to annealing σ2 towards zero whilst using a standard optimisation technique is unlikely to result in θq converging to θp.
However, if one considers removing the additive constant D log σ2 and multiplying the remaining objective by σ2, the
resulting quantity(
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)2(
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) − σ2 log
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)
, (68)

is well-behaved as σ2 → 0, as plotted in figure(7).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
2

0.0

0.2

0.4

0.6

0.8

1.0

2 = 0.2
2 = 0.1
2 = 0.05
2 = 0.01
2 = 0.001

Figure 7. The (modified) expected log likelihood eq(68) when adding noise σ2 to the model only and for unit length true data generating
parameter θ2p = 1. The x-axis is the value γ2 assuming that the optimal θq is of the form θq = γθp. As we see, as σ2 → 0 the scaled
objective becomes flat around the optimum point γ2 = 1.
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Nevertheless, the objective eq(68) becomes flat (with respect to θq) around the optimum as σ2 → 0. In figure(7) we plot
the scaling behaviour of the objective eq(68), assuming θq = γθp, showing how it becomes flat with respect to γ as σ2

is annealed towards zero. This means that a standard first-order numerical optimisation approach, even for this modified
objective, will result in a ‘critical slowing down’ phenomenon, leading to θq not updating. This might be fixable by taking
the curvature of the objective into consideration.

However, addressing all the above issues requires an understanding of the small σ2 behaviour of the original objective;
dealing with arbitrarily large constants, arbitrarily large scaling and loss of curvature. In general, such insight is unlikely
to be available for any given implicit generative model. Thus, we are doubtful that it will be possible to find an annealing
schedule and associated general numerical optimisation procedure that will result in a consistent estimator.

B. Noise Requirements for Discrete Distributions
Our main interest is to define a new divergence in situations where the original divergence D(p||q) is itself not defined. For
discrete variables x ∈ {1, . . . , n}, y ∈ {1, . . . , n}, the spread Pij = p(y = i|x = j) must be a distribution;

∑
i Pij = 1,

Pij ≥ 0, and

p̃i ≡
∑
j

Pijpj =
∑
j

Pijqj ≡ q̃i ∀i (69)

⇒ pj = qj ∀j, (70)

which is equivalent to the requirement that the matrix P is invertible. In addition, for the Spread Divergence to exist in the
case of f -divergences, p̃ and q̃ must have the same support. This requirement is guaranteed if∑

j

Pijpj > 0,
∑
j

Pijqj > 0 ∀i, (71)

which is satisfied if Pij>0. Therefore, in general there is a space of spread distributions p(y|x) that define a valid Spread
Divergence in the discrete case.

C. Validity of Stationary Spread f -Divergence
Lemma 1. let X and Y be two random variables with Borel probability measure PX and PY . Let K be an absolutely
continuous random variable that is independent of X and Y and has density function pK(x). We define X̃ and Ỹ as

X̃ = X +K, Ỹ = Y +K,

with distribution PX̃ and PỸ . Then X̃ and Ỹ are absolutely continuous with density functions

pX̃(x̃) =

∫
x

pK(x̃− x)dPX , pỸ (ỹ) =

∫
y

pK(ỹ − y)dPY .

Proof. The proof can be found in Durrett (2019, Theorem 2.1.16).

Theorem 1. Let X and Y be two random variables12 with Borel probability measure PX and PY . Let the stationary spread
noise K be an absolutely continuous random variable that is independent of X and Y , and its density function pK(x) has
support13 R. Using lemma(1) we define spreaded random variables X̃ = X +K, Ỹ = Y +K with density functions pX̃ ,
pỸ . We then define the stationary spread f -divergence between PX and PY as

D̃f (PX ||PY ) ≡ Df (pX̃ ||pỸ ) ≡
∫
f

(
pX̃(x)

pỸ (x)

)
pỸ (x)dx.

Furthermore, denote the characteristic function14 of the spread noise K by φK . Given φK 6= 0 or φK > 0 on at most a
countable set, then the stationary spread f -divergence is a valid divergence with the properties

D̃f (PX ||PY ) ≥ 0, D̃f (PX ||PY ) = 0⇔ PX = PY .
12We don’t require X (or Y ) to be absolutely continuous.
13The extension to higher dimensions is straightforward.
14When a distribution PX allows a density function pX , its characteristic function is equal to the Fourier transform of the density

function: φX = F{pX}, so the Fourier transform treatment used in the main text can be seen as a special case of the characteristic
function treatment.
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Proof. The proof contains the following two steps.

First step: We show that if K is an absolutely continuous random variable and its density function pK has support R,
then D̃f (PX ||PY ) = 0 ⇔ PX̃ = PỸ . By Lemma 1, we have X̃ and Ỹ are absolutely continuous and allow probability
density functions pX̃ and pỸ . Since pK has support R, pX̃ and pỸ will also have support R. The f -divergence between two
absolutely continuous distributions with common support is equal to zero if and only if two distributions are equal (Csiszár,
1967; 1972). We have Df (pX̃ ||pỸ ) = 0⇔ PX̃ = PỸ . Therefore,

D̃f (PX ||PY ) = 0⇔ PX̃ = PỸ .

Second step: We show that if the characteristic function of the spread noise φK 6= 0 or φK = 0 on at most a countable set
then PX̃ = PỸ ⇔ PX = PY .

The characteristic function of a probability measure PX is defined as φX(w) =
∫
eiwxdPX . Since a probability measure is

uniquely determined by its characteristic function (Kallenberg, 2006, Theorem 4.3), we have

PX̃ = PỸ ⇔ φX̃ = φỸ .

Using the fact that the characteristic function of the sum of two random variables is equal to the product of their characteristic
functions (Durrett, 2019, Theorem 3.3.2), we can write

φX̃ = φỸ ⇔ φXφK = φY φK .

When φK 6= 0, we have φXφK = φY φK ⇔ φX = φY .

When φK = 0 on at most a countable set C, we show that φXφK = φY φK ⇔ φX = φY still holds. We prove this by
contradiction:

We assume there is a point w0 ∈ C where φX(w0) 6= φY (w0). Without loss of generality, we assume φX(w0) −
φY (w0) = δ > 0. For points w0 + h that are not in C, we have φK(w0 + h) 6= 0, so φXφK = φY φK implies
φX(w0 + h)− φY (w0 + h) = 0. Since the characteristic function of a distribution is uniform continuous (Durrett, 2019,
Theorem 3.3.1), we have δ = φX(w0 + h)− φY (w0 + h)→ 0 when h→ 0, which leads to a contradiction (since δ cannot
be zero). Therefore, φXφK = φY φK ⇔ φX = φY .

By the uniqueness of the characteristic function (Kallenberg, 2006, Theorem 4.3), we have

φX = φY ⇔ PX = PY .

Using the results of the two steps, we can conclude

D̃f (PX ||PY ) = 0⇔ PX̃ = PỸ ⇔ PX = PY .

D. Spread Noise Makes Distributions More Similar
The data processing inequality for f -divergences (Gerchinovitz et al., 2018) states that Df (p̃(y)||q̃(y)) ≤ Df (p(x)||q(x)).
For completeness, we provide here an elementary proof of this result. We consider the following joint distributions with
densities

q(y, x) = p(y|x)q(x), p(y, x) = p(y|x)p(x), (72)

whose marginals are the spreaded distributions

p̃(y) =

∫
p(y|x)p(x)dx, q̃(y) =

∫
p(y|x)q(x)dx. (73)

The divergence between the two joint distributions is

Df (p(y, x)||q(y, x)) =

∫
q(y, x)f

(
p(y|x)p(x)

p(y|x)q(x)

)
dxdy = Df (p(x)||q(x)) . (74)
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More generally, the f -divergence between two marginal distributions is no larger than the f -divergence between the joint
(Zhang et al., 2018). To see this, consider

Df (p(u, v)||q(u, v)) =

∫
q(u)

∫
q(v|u)f

(
p(u, v)

q(u, v)

)
dydu (75)

≥
∫
q(u)f

(∫
q(v|u)

p(u, v)

q(v|u)q(u)
dv

)
du (76)

=

∫
q(u)f

(
p(u)

q(u)

)
du = Df (p(u)||q(u)) . (77)

Hence,

D̃f (q(x)||p(x)) ≡ Df (p̃(y)||q̃(y)) ≤ Df (p(y, x)||q(y, x)) = Df (p(x)||q(x)) . (78)

Intuitively, spreading two distributions increases their overlap, reducing the divergence. When the distributions P and Q are
absolutely continuous and their densities p and q have the same support, the spread f -divergence is always a lower bound of
f -divergence. When the densities do not have the same support or are not well defined, then Df (P||Q) is not well-defined.

E. Mixture Divergence
We motivated the Spread Divergence between distribution P and Q by the requirement to produce a divergence that satisfying
D̃(P||Q) = 0⇒ P = Q, where the original D(P||Q) does not exist. We briefly discuss the case that P and Q are absolutely
continuous but their density functions p and q have different supports, so f -divergence Df (P||Q) = D(p||q) is still not
defined. For example, P and Q can be two uniform distributions with different supports. We mention here an alternative
divergence that also can be used , namely a mixture divergence, and discuss why we focus on the Spread Divergence
thereafter. Specifically, we can define a mixture model with density p̃(x) of the original distribution and a ‘noise’ distribution
with density function n(x):

p̃(x) = αp(x) + (1− α)n(x) (79)

for 0 < α < 1. Provided n(x) is non-zero, then p̃(x) has support everywhere. Similarly, we can define

q̃(x) = αq(x) + (1− α)n(x). (80)

As with the Spread Divergence formulation presented previously, this will usually enable us to define a divergence D(p̃||q̃)
when supp (p) 6= supp (q). Furthermore, provided the divergence between p̃ and q̃ is zero, then the two distributions p̃ and q̃
match, as do the original distributions p and q since

p̃(x) = q̃(x)⇔ αp(x) + (1− α)n(x) = αq(x) + (1− α)n(x)⇔ p(x) = q(x). (81)

Therefore, creating a mixture model in this way also allows us to define a divergence between absolutely continuous
distributions that otherwise would not have an appropriate divergence15. However, in contrast to the Spread Divergence
formulation, we cannot use this approach for distributions that are not absolutely continuous, which for many applications
of interest cannot be achieved. As a simple example, consider generalised densities p(x) = δ (x− µp), q(x) = δ (x− µq)
with

p̃(x) = αδ (x− µp) + (1− α)n(x), q̃(x) = αδ (x− µq) + (1− α)n(x). (82)

In this case, the divergence D(p̃(x)||q̃(x)) is not defined since neither p̃(x) nor q̃(x) is a valid probability density. A similar
issue arises in training implicit generative models in which a value cannot be feasibly computed for p̃ or q̃; see section(4.2).
Hence, for implicit models in, we cannot feasibly assign a value to this mixture divergence. As such it appears to have only
limited value in training continuous variable models.

One can combine the spread and the mixture approaches to produce a more general affine divergence

p̃(y) = α

∫
p(y|x)p(x)dx+ (1− α)n(y), (83)

15This approach is equivalent to the ‘anti-freeze’ method used in (Furmston & Barber, 2009), which was used to enable EM style
training in deterministic transition Markov Decision Processes of discrete states - see also (Barber, 2012).
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for spread p(y|x) and (generalised) density p(x). It follows for this case that D(p̃||q̃) = 0⇔ P = Q; however, the benefit
of the mixture noise over the spread noise is not clear. Our central interest in this work is to train implicit models and, as
such, we focus interest only on the first ‘spread’ term

∫
x
p(y|x)p(x) in eq(83) and leave the study of the potential additional

benefits of including a mixture component n(y) for future work.

F. Statistical Properties of Maximum Likelihood Estimator
F.1. Existence of Spread MLE

In some situations there may not exist a Maximum Likelihood Estimator (MLE) for p(x|θ), but there can exist a MLE for the
spread model p(y|θ) =

∫
p(y|x)p(x|θ)dx. For example, suppose that X ∼ N (µ, σ2) (µ, 0 < σ2 <∞). So θ = (µ, σ2) ∈

R× R+. Assume we only have one data point x. Then the log-likelihood function is L(x; θ) ∝ − log σ − 1
2σ2 (x− µ)2.

Maximising with respect to µ, we have µ = x and the log-likelihood becomes unbounded as σ2 → 0. In this sense, the
MLE for (µ, σ2) does not exist, see (Casella & Berger, 2002) for more discussions.

In contrast, we can check whether the MLE for p(y|θ) exists. We assume Gaussian spread noise with fixed variance
σ2
f . Since we only have one data point x, the spread data distribution becomes p(y|x) = N (y|x, σ2

f ), and the model
is p(y|θ) = N (y|µ, σ2 + σ2

f ). We can sample N points from the spread model, so the spread log likelihood function
is (neglecting constants) L(y1, . . . , yN ; θ) = −N2 log(σ2 + σ2

f ) − 1
2(σ2+σ2

f )

∑N
i=1(yi − µ)2. The MLE solution for µ is

µ = 1
N

∑N
i=1 yi; the MLE solution for σ2 is σ2 = 1

N

∑
i(yi − µ)2 − σ2

f , which has bounded spread likelihood value. Note
that in the limit of a large number of spread samples N →∞ , the MLE σ2 = 1

N (yi − µ)2 → σ2
f tends to 0. Throughout,

however, the (scaled by N ) log likelihood remains bounded.

F.2. Consistency

Consistency of an estimator is an important property that guarantees the validity of the resulting estimate at convergence
as the number of data points tends to infinity. In what follows, we outline the sufficient conditions for a consistent MLE
estimator, before addressing the question of whether using spread MLE is also consistent and under what conditions.

F.2.1. CONSISTENCY FOR MLE

Sufficient conditions for the MLE being consistent and converging to the global maximum are given in (Wald, 1949).
However, they are usually difficult to check even for some standard distributions. The sufficient conditions for MLE being
consistent and converging to a local maxima are given in (Cramér, 1999) and are more straight forward to check:

C1. (Identifiable): p(x|θ1) = p(x|θ2)→ θ1 = θ2.

C2. The parameter space Θ is an open interval (
¯
θ, θ̄), Θ : −∞ ≤

¯
θ < θ < θ̄ ≤ ∞.

C3. p(x|θ) is continuous in θ and differentiable with respect to θ for all x.

C4. The set A = {x : pθ(x) > 0} is independent of θ.

Let X1, X2, . . . be i.i.d with density p(x|θ0) (θ ∈ Θ) satisfying conditions C1–C4, then there exists a sequence θ̂n =

θ̂n(X1, ..., Xn) of local maxima of the likelihood function L(θ0) =
∏n
i=1 p(xi|θ0) which is consistent:

θ̂
p−→ θ0 for all θ ∈ Θ.

The proof can be found in (Lehmann, 2004) or (Cramér, 1999).

F.2.2. CONSISTENCY OF SPREAD MLE

We provide the necessary conditions for Spread MLE being consistent.

C1. (Identifiable): p(x|θ) is identifiable. From section(2.1) it follows immediately that p(y|θ1) = p(y|θ2)→ p(x|θ1) =
p(x|θ2) → θ1 = θ2, where the final implication follows from the assumption that p(x|θ) is identifiable. Hence if
p(x|θ) is identifiable, so is p(y|θ).
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C2. The parameter space Θ is an open interval (
¯
θ, θ̄), Θ : −∞ ≤

¯
θ < θ < θ̄ ≤ ∞. This condition is unchanged for p(y|θ).

C3. On p(y|θ), we require the same condition on p(x|θ) as in MLE; p(y|θ) is continuous in θ and differentiable with
respect to θ for all y.

C4. For spread noise p(y|x) who has full support on Rd (for example Gaussian noise), p(y|θ) is greater than zero everywhere
and hence the original condition C4 is automatically guaranteed.

The conditions that guarantee consistency for spread MLE are weaker for the spread model p(y|θ) than for the standard
model p(x|θ), since C4 is automatically satisfied. (Ferguson, 1982) gives an example for which MLE exists but is not
consistent by violating condition C4, whereas spread MLE can be used to obtain a consistent estimator.

F.3. Asymptotic Efficiency

A key desirable property of any estimator is that it is efficient. The Cramer-Rao bound places a lower bound on the variance
of any unbiased estimator and an efficient estimator must reach this minimal value in the limit of a large amount of data.
Under certain conditions (see below) the Maximum Likelihood Estimator attains this minimal variance value meaning that
there is no better estimator possible (in the limit of a large amount of data). This is one of the reasons that the maximum
likelihood is a cherished criterion.

F.3.1. ASYMPTOTIC EFFICIENCY FOR MLE

Building upon conditions C1-C4, additional conditions on p(x|θ) are required to show MLE is asymptotical efficient:

C5. For all x in its support, the density pθ(x) is three times differentiable with respect to θ and the third derivative is
continuous.

C6. The derivatives of the integral
∫
pθ(x)dx respect to θ can be obtained by differentiating under the integral sign, that is:

∇θ
∫
pθ(x)dx =

∫
∂θpθ(x)dx.

C7. There exists a positive number c(θ0) and a function Mθ0(x) such that∣∣∣∣ ∂3

∂θ3
log pθ(x)

∣∣∣∣ ≤Mθ0(x) for all x ∈ A, |θ − θ0| < c(θ0),

where A is the support set of x and Eθ0 [Mθ0(x)] <∞.

Let X1, ..., Xn be i.i.d with density pθ(x) and satisfy conditions C1-C7, then any consistent sequence θ̂ = θ̂n (X1, ..., Xn)
of roots of the likelihood equation satisfies

√
n(θ̂ − θ0)

d−→ N
(
0, F (θ0)−1

)
, (84)

where F−1(θ0) is the inverse of Fisher information matrix (also called Cramér-Rao Lower Bound, which is a lower bound
on variance of any unbiased estimators ). The conditions and proof can be found in (Lehmann, 2004).

F.3.2. ASYMPTOTIC EFFICIENCY FOR MLE

As with MLE above, we require further conditions on p(y|θ) for ensuring spread MLE is asymptotically efficient:

C5. On p(y|θ), we require the same condition as applied to p(x|θ) in the MLE case; for all y in its support, the density
pθ(y) is three times differentiable with respect to θ and the third derivative is continuous.

C6. For spread noise p(y|x), which has full support on Rd (for example Gaussian noise), the support of y is independent
of θ. Leibniz’s rule16 allows us to differentiate under the integral: ∇θ

∫
pθ(y)dy =

∫
∂θpθ(y)dy, so this condition is

automatically satisfied.

16Leibniz’s rule tells us: d
dθ

∫ b(θ)
a(θ)

p(x, θ)dx =
∫ b(θ)
a(θ)

∂θp(x, θ)dx + p(b(θ), θ) d
dθ
b(θ) − p(a(θ), θ) d

dθ
a(θ), so if a(θ) and b(θ) are

independent of θ, then d
dθ

∫ b
a
p(x, θ)dx =

∫ b
a
∂θp(x, θ)dx.
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C7. On p(y|θ), we require the same condition as applied to p(x|θ) in the MLE case; There exist positive number c(θ0) and
a function Mθ0(y) such that∣∣∣∣ ∂3

∂θ3
log pθ(y)

∣∣∣∣ ≤Mθ0(y) for all y ∈ A, |θ − θ0| < c(θ0),

where A is the support set of y and Eθ0 [Mθ0(y)] <∞.

Thus the conditions that guarantee asymptotic efficiency for the spread model p(y|θ) are weaker than for the standard model
p(x|θ), since C4 and C6 are automatically satisfied.

G. Spread Divergence for Deterministic Deep Generative Models
Instead of minimising the likelihood, we train an implicit generative model by minimising the Spread Divergence

min
θ

KL(p̃(y)||p̃θ(y)) . (85)

For Gaussian noise with fixed diagonal noise p(y|x) = N(y|x, σ2IX), we can write

p̃(y) =
1

N

N∑
n=1

N
(
y xn, σ

2IX
)
. (86)

and

p̃θ(y) =

∫
p(y|x)pθ(x)dx =

∫
N
(
y gθ(z), σ

2IX
)
p(z)dz =

∫
pθ(y|z)p(z)dz. (87)

For the Spread Divergence with learned covariance Gaussian noise, which is discussed in section(3.1), we can write

pψ(y|x) = N (y|x,Σψ) , p̃(y) =
1

N

N∑
n=1

N (y xn,Σψ) (88)

and Spread Divergence with a learned injective function as discussed in section(3.2)

pψ(y|x) = N
(
y|fψ(x), σ2IX

)
, p̃(y) =

1

N

N∑
n=1

N
(
y|fψ(x), σ2IX

)
. (89)

According to our general theory,

min
θ

KL(p̃(y)||p̃θ(y)) = 0 ⇔ p(x) = pθ(x). (90)

Here

KL(p̃(y)||p̃θ(y)) = −
∫
p̃(y) log p̃θ(y)dy + const. (91)

Typically, the integral over y will be intractable and we resort to an unbiased sampled estimate (though see below for
Gaussian q). Neglecting constants, the KL divergence estimator is

1

NS

N∑
n=1

S∑
s=1

log p̃θ(y
n
s ), (92)

where yns is a perturbed version of xn. For example yns ∼ N
(
yns xn, σ

2IX
)

for the fixed Gaussian noise case. In most
cases of interest, with non-linear g, the distribution p̃θ(y) is intractable. We therefore use the variational lower bound

log p̃θ(y) ≥
∫
qφ(z|y) (− log qφ(z|y) + log (pθ(y|z)p(z))) dz. (93)



Spread Divergence

Parameterising the variational distribution as a Gaussian,

qφ(z|y) = N (z µφ(y),Σφ(y)) , (94)

we can then use the reparameterization trick (Kingma & Welling, 2013) and write

log p̃θ(y) ≥ H(Σφ(y)) + EN (ε 0,I) [log pθ(y|z = hφ(y, ε)) + log p(z = hφ(y, ε))], (95)

where hφ(y, ε) = µφ(y) + Cφ(y)ε and H(Σφ(y)) is the entropy of a Gaussian with covariance Σφ(y), where Cφ(y) is
the Cholesky decomposition of Σφ(y). For fixed covariance Gaussian spread noise in D dimensions, this is (ignoring the
constant)

log p̃θ(y) ≥ H(Σφ(y)) + EN (ε 0,I)

[
− 1

(2σ2)
D/2

(y − gθ (hφ(y, ε)))
2

+ log p(z = hφ(y, ε))

]
. (96)

We can integrate the above equation over y to give the bound (ignoring the constant)∫
N
(
y x, σ2IX

)
log p̃θ(y) ≥ EN (y x,σ2IX)

[
H(Σφ(y)) + EN (ε 0,I) [log p(z = hφ(y, ε))]

]
− 1

(2σ2)
D/2

EN (ε 0,I)

[
EN (y x,σ2IX)

[
(y − gθ (hφ(y, ε)))

2
]]
, (97)

where

EN (y x,σ2IX)

[
(y − gθ (hφ(y, ε)))2

]
= σ2 − 2EN (εx 0,IX) [εxgθ(hφ(x+ σεx, ε))]

+ EN (εx 0,IX)

[
(x− gθ(hφ(x+ σεx, ε)))

2
]
. (98)

We notice that the second term is zero, so the final bound for the fixed Gaussian spread KL divergence is (ignoring the
constant)∫

N
(
y x, σ2IX

)
log p̃θ(y) ≥ EN (y x,σ2IX)

[
H(Σφ(y)) + EN (ε 0,I) [log p(z = hφ(y, ε))]

]
− 1

(2σ2)
D/2

EN (εx 0,IX)

[
EN (ε 0,I)

[
(x− gθ(hφ(x+ σεx, ε)))

2
]]
. (99)

By analogy, for spread KL divergence with learned variance, the bound is (ignoring the constant)∫
N (y x,Σψ) log p̃θ(y) ≥ EN (y x,Σψ)

[
H(Σφ(y)) + EN (ε 0,I) [log p(z = hφ(y, ε))]

]
− EN (εx 0,Σψ)

[
EN (ε 0,I)

[
(x− gθ(hφ(x+ Sψεx, ε)))

T
Σ−1
ψ (x− gθ(hφ(x+ Sψεx, ε)))

]]
, (100)

where Sψ is the cholesky decomposition of Σψ .

For spread KL divergence with a learned injective function, the bound is (ignoring the constant)∫
N
(
y fψ(x), σ2IX

)
log p̃θ(y) ≥ EN (y x,σ2IX)

[
H(Σφ(y)) + EN (ε 0,I) [log p(z = hφ(y, ε))]

]
− 1

(2σ2)
D/2

EN (εx 0,IX)

[
EN (ε 0,I)

[
(fψ(x)− fψ(gθ(hφ(x+ σεx, ε))))

2
]]
. (101)

The overall procedure is therefore a straightforward modification of the standard VAE method (Kingma & Welling, 2013)
with an additional sub-routine for learning the spread online to maximize the divergence:

1. Choose a noise distribution p(y|x).
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2. Choose a tractable family for the variational distribution, for example qφ(z|y) = N (z µφ(y),Σφ(y)), and initialise φ.

3. Sample a yn for each data point (if we’re using S = 1 samples).

4. If learning the spread noise:

(a) Draw samples ε to estimate − log p̃θ(yn) according to the corresponding bound.
(b) Do a gradient ascent step in ψ.

5. Draw samples ε to estimate log p̃θ(yn) according to the corresponding bound.

6. Do a gradient ascent step in (θ, φ).

7. Go to 3 and repeat until convergence.

H. MNIST Experiment
We first scaled the MNIST data to lie in [0, 1]. We use Laplace spread noise with σ = 0.3 and Gaussian spread noise
with σ = 0.3 for the δ-VAE case. Both the encoder and the decoder networks contain 3 feed-forward layers, each layer
has 400 units and use ReLu activation functions. The latent dimension is Z = 64. The variational inference network
qφ(z|y) = N (z|µφ(y), σ2

φIZ) has a similar structure for the mean network µφ(y). For fixed spread δ-VAE , learning was
done using the Adam (Kingma & Ba, 2014) optimizer with learning rate 5e−4 for 200 epochs. For δ-VAE with learned
spread (learned covariance), we interleave 2 covariance training epochs with 10 model training epochs (using the Adam
optimizer with learning rate 5e−5).

I. CelebA Experiment
We pre-processed CelebA images by first taking 140x140 centre crops and then resizing to 64x64. Pixel values were
then rescaled to lie in [0, 1]. For the learned spread we use Gaussian noise with a learned injective function ResNet
fψ(·) = I(·) + gψ(·), where gψ(·) is a one layer convolutional neural net with kernel size 3× 3, with stride length 1. We use
spectral normalization (Miyato et al., 2018) to satisfy the Lipschitz constraint. That is, we replace the weight matrix w of
the convolution kernel by wSN (w) := c× w/σ(w), where σ(w) is the spectral norm of w and c ∈ (0, 1). This guarantees
that fψ is invertible - see (Behrmann et al., 2018).

The encoder and decoder are 4-layer convolutional neural networks with batch norm (Ioffe & Szegedy, 2015). Both networks
use a fully convolutional architecture with 5x5 convolutional filters with stride length 2 in both vertical and horizontal
directions, except the last deconvolution layer where we use stride length 1. Convk represents a convolution with k filters
and DeConvk represents a deconvolution with k filters, BN for the batch normalization (Ioffe & Szegedy, 2015), Relu for
the rectified linear units, and FCk for the fully connected layer mapping to Rk.

x ∈ R64×64×3 → injectivef(·) ∈ R64×64×3

→ Conv128 → BN→ Relu
→ Conv256 → BN→ Relu
→ Conv512 → BN→ Relu
→ Conv1024 → BN→ Relu→ FC100

z ∈ R100 → FC10×10×1024

→ DeConv512 → BN→ Relu
→ DeConv256 → BN→ Relu
→ DeConv128 → BN→ Relu→ DeConv3 → sigmoid(·)
→ injectivef(·) ∈ R64×64×3

We use batch size 100 and latent dimension dim(Z) = 100 in all CelabA experiments. For the δ-VAE with fixed spread, we
use the fixed Gaussian noise with 0 mean and (0.5)2I covariance. We train the model for 500 epochs using Adam optimizer
with learning rate 1e−4. We decay the learning rate with scaling factor 0.9 every 100000 iterations.
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For the δ-VAE with learned spread we first train a δ-VAE with fixed f(x) = x and fixed Gaussian noise with 0 mean and
(0.5)2I diagonal covariance for 300 epochs. We decay the learning with scaling factor 0.9 every 100000 iterations. We start
iterative training by doing one step inner maximisation over the Spread Divergence parameters ψ using Adam optimizer
with learning rate 1e−5 and one step minimization over the model parameter’s (θ, φ) using Adam optimizer for additional
200 epochs. We can share the first 300 epochs between the two models. When we sample form two models, we first sample
from a 100 dimensional standard Gaussian distribution z ∼ N (0, I) and use the same latent code z to get samples from
both δ-VAE with fixed and learned spread, so we can easily compare the sample quality between two models.

(a) Laplace with fixed covariance (b) Gaussian with fixed covariance

(c) Gaussian with learned covariance

Figure 8. Samples from an implicit generative model trained using δ-VAE with (a) Laplace noise with fixed covariance, (a) Gaussian
noise with fixed covariance and (c) Gaussian noise with learned covariance.
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(a) Fixed spread noise

(b) Learned spread noise

Figure 9. Samples from an implicit generative model trained using δ-VAE with (a) fixed and (b) learned spread with injective mean
transformation.


