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Abstract

Single-objective black box optimization (also
known as zeroth-order optimization) is the pro-
cess of minimizing a scalar objective f(z), given
evaluations at adaptively chosen inputs x. In
this paper, we consider multi-objective optimiza-
tion, where f(x) outputs a vector of possibly
competing objectives and the goal is to converge
to the Pareto frontier. Quantitatively, we wish
to maximize the standard hypervolume indicator
metric, which measures the dominated hypervol-
ume of the entire set of chosen inputs. In this
paper, we introduce a novel scalarization func-
tion, which we term the hypervolume scalar-
ization, and show that drawing random scalar-
izations from an appropriately chosen distribu-
tion can be used to efficiently approximate the
hypervolume indicator metric. We utilize this
connection to show that Bayesian optimization
with our scalarization via common acquisition
functions, such as Thompson Sampling or Up-
per Confidence Bound, provably converges to the
whole Pareto frontier by deriving tight hyper-
volume regret bounds on the order of O(v/T).
Furthermore, we highlight the general utility of
our scalarization framework by showing that any
provably convergent single-objective optimiza-
tion process can be effortlessly converted to a
multi-objective optimization process with prov-
able convergence guarantees.

1. Introduction

Single-objective optimization has traditionally been the fo-
cus in the field of machine learning for many practical
and interesting applications, from standard regression ob-
jectives (Kutner et al., 2005) to ever-increasingly compli-
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cated losses used in deep learning (LeCun et al., 2015) and
reinforcement learning (Sutton et al., 1998). However, in
the recent years, there has been a growing need to care
about multiple objectives in learning and understanding
the inherent tradeoffs between these conflicting objectives.
Examples include classical tradeoffs such as bias vs vari-
ance (Neal et al., 2018), and accuracy vs calibration (Guo
et al., 2017) but there are increasingly complex tradeoffs
between accuracy and robustness to attack (Zhang et al.,
2019), accuracy and fairness (Zliobaite, 2015), between
multiple correlated tasks in multi-task learning (Kendall
etal., 2018), between network adaptations in meta-learning
(Finn et al., 2017), or any combination of the above.

To understand and visualize a growing number of com-
plex tradeoffs, many turn to multi-objective optimiza-
tion, which is the maximization of k objectives F'(z) :=
(f1(x), ..., fr(x)) over the parameter space x € X C R™.
Since one often cannot simultaneously maximize all f;,
multi-objective optimization aims to find the entire Pareto
frontier F of the objective space, where intuitively z is on
the Pareto frontier if there is no way to improve on all ob-
jectives simultaneously. To measure progress, a natural and
widely used metric to compare Pareto sets is the hypervol-
ume indicator, which is the volume of the dominated por-
tion of the Pareto set (Zitzler & Thiele, 1999). The hyper-
volume metric is especially desirable because it has strict
Pareto compliance meaning that if a set A C B C R, then
the hypervolume of B is greater than that of A. While the
hypervolume indicator satisfies strict Pareto compliance,
almost all other unary metrics do not, thereby explaining
the popularity of using hypervolume as the predominant
measure of progress (Zitzler et al., 2003).

While the hypervolume indicator remains the gold standard
in evaluating multi-objective algorithms, note that it is a
function of a set of objective vectors and not just a single
evaluation. This means evolutionary algorithms often can-
not use the hypervolume as a fitness score although some
discretized version exist (Emmerich et al., 2005). Fur-
thermore, it is computationally inefficient: the best cur-
rent asymptotic runtime calculating the hypervolume indi-
cator in R* is O(n*/2) via a reduction to Klee’s Measure
Problem (Beume & Rudolph, 2006). This cannot be sub-
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stantially sped up as hypervolume calculation is shown to
be #P-hard and even approximating the hypervolume im-
provement by a O(Zdlﬁ) factor is NP-hard for any ¢ > 0
(Bringmann & Friedrich, 2010). For £ < 3, fast albeit
complicated algorithms exist (Yang et al., 2019).

Due to the difficulty of using the hypervolume di-
rectly, many multi-objective optimization problems use
a heuristic-based scalarization strategy, which splits the
multi-objective optimization into numerous single "scalar-
ized" objectives (Roijers et al., 2013). For some weights
A € R*, we have scalarization functions sy (y) : R¥ — R
that convert multi-objective outputs into a single-objective
scalars. Bayesian optimization is then applied to this family
of single-objective functions sy (F(z)) for various A and if
we construct sy to be monotonically increasing in all coor-
dinates, then

= F
x) arglglea%(sA( (x))

is on the Pareto frontier (Paria et al., 2018).

Early works on scalarization include heuristic-based al-
gorithms such as ParEgo (Knowles, 2006) and MOEAD
(Zhang & Li, 2007). The most popular scalarizations are
the linear scalarization s)(y) = >, A\;y; and the Cheby-
shev scalarization s (y) = min; A;(y; — z;) for some refer-
ence point z and some distribution over A (Nakayama et al.,
2009). Using the linear scalarization is especially popular
among researchers and practitioners, as it can be viewed
as using f; as a regularization function and \; as the cor-
responding Lagrange multipliers. When f; are all convex,
classical Lagrange duality then guarantees that varying A
will explore the entire Pareto frontier.

However, the choices of weight distribution, reference
point, and even the scalarization functions themselves are
crucial to the success of multi-objective optimization, lead-
ing researchers to put forth a diverse set of options for
each of these choices between different papers (Paria et al.,
2018; Nakayama et al., 2009; Zhang & Li, 2007). Re-
cently, some works have come up with novel scalariza-
tions that perform better empirically (Aliano Filho et al.,
2019; Schmidt et al., 2019) and others have tried to do
comparisons between different scalarizations with varying
conclusions (Kasimbeyli et al., 2019). Some have also pro-
posed adaptively weighted approaches that have connec-
tions to gradient-based multi-objective optimization (Lin
et al., 2019) .

In addition to scalarization, there are a large diverse ar-
ray of multi-objective optimization rules that are often
heuristic-based and lack theoretical guarantees, such as
aggregation-based, decomposition-based, diversity-based,
elitism-based, gradient-based, and hybrid approaches (Em-
merich & Deutz, 2018; Zitzler et al., 2004; Konak et al.,

2006). Furthermore, many Bayesian optimization ap-
proaches have been extended to the multi-objective setting,
such as predictive entropy search (Hernandez-Lobato et al.,
2016) or uncertainty measures (Picheny, 2015). To our
knowledge, there have been limited theoretical works that
give regret and convergence bounds for multi-objective op-
timization. Some works show that the algorithms achieve
small Pareto regret, which only guarantees that one recov-
ers a single point close to the Pareto frontier (Lu et al.,
2019; Oner et al., 2018; Turgay et al., 2018). For many
scalarization functions, Paria et al provides a Bayes regret
bound with respect to a scalarization-induced regret (Paria
et al., 2018) but small Bayes regret with a monotone scalar-
ization only guarantees recovery of a single Pareto opti-
mal point . Zuluaga et al provides sub-linear hypervolume
regret bounds; however, they are exponential in k and its
analysis only applies to a specially tailored algorithm that
requires an unrealistic classification step (Zuluaga et al.,
2013).

1.1. Our contributions

We introduce a scalarization function, which we term the
hypervolume scalarization, and present a connection, inde-
pendently discovered by (Deng & Zhang, 2019), between
this scalarization function and the hypervolume indicator.
We provide the first hypervolume regret bounds that are
valid for common Bayesian optimization algorithms such
as UCB and Thompson Sampling and can be polynomial
in the number of objectives k¥ when X is suitably compact.
This implies that our choice of scalarization functions and
weight distribution D), is theoretically sound and leads to
provable convergence to the whole Pareto frontier. Further-
more, we can utilize the connection of scalarization to hy-
pervolume indicator to provide a computationally-efficient
and accurate estimator of the hypervolume, providing a
simple algorithm for approximating the hypervolume that
easily generalizes to higher dimensions. The first lemma
that we rely on is the following:

Lemma 1 (Hypervolume Scalarization: Informal Restate-
ment of Lemma 5). Let Y = {y1,..,ym} be a set of m
points in R* and let = € R¥ be a reference point such that
yi > z for all i. Then, the hypervolume HV ,(Y) of Y with
respect to z is given by:

HY(Y) := ckExop {max sa(y — Z)}
yey

for some scalarization functions s (y) and fixed weight dis-
tribution D.

Note our resulting hypervolume scalarization functions,
which mirrors Equation 6 of (Deng & Zhang, 2019), are
similar to the Chebyshev scalarization approach sy (y) =
min),;(y; — 2;) but they come with provable guarantees.
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Specifcally, using these scalarizations, we can first easily
extend a single-objective optimization algorithm into the
multi-objective setting: at each step, we first apply a ran-
dom scalarization, then we attempt to maximize along that
scalarization function via any single-objective optimization
procedure to find the next suggested point. We show novel
regret bounds for combining our hypervolume scalariza-
tion with popular and standard Bayesian optimization algo-
rithms, such as Thompson Sampling (TS) and Upper Con-
fidence Bound (UCB) methods.

If we let z; € X denote the point chosen in step ¢,
and let V; := {F(x;):i=1,2,...,t}, then the hyper-
volume regret at time ¢ is defined as r; := HV,(Y™) —
HV.(Y:), where Y* is the Pareto frontier. We show
that our cumulative hypervolume regret at step 1" for TS
and UCB is bounded by O(k*\/4rTInT), where v7 is
a kernel-dependent quantity known as the maximum in-
formation gain. Intuitively, the maximum information
gain allows us to quantify the increase in certainty after
evaluating 7" points and is usually mild. For example,
vyr = O(polylog(T)) for the squared exponential ker-
nel and since r; is by definition monotonically decreas-
ing, our regret bound translates immediately into a con-
vergence bound of O(T~'/?) and we provably converge
rapidly to the Pareto frontier. We note that the bound
for the single-objective case can be recovered by setting
k = 1 and matches the bounds of previous work (Russo &
Van Roy, 2014; Srinivas et al., 2010). Furthermore, since
the single-objective bounds are shown to be tight up to
poly-logarithmic factors (Scarlett et al., 2017), our regret
bounds are thus also tight for our dependence on 7. Our
main theorem can be stated as follows:

Theorem 2 (Convergence of Bayesian Optimization with
Hypervolume Scalarization: Informal Restatement of The-
orem 8). The cumulative hypervolume regret for using ran-
dom hypervolume scalarization with UCB or TS after T
observations is upper bounded as

D> (HV.(Y™) = HY.(1)) < O(K*n'2[yr T In(T)]*/?)

t=1

Furthermore, HV,(Yr) > HV.(Y™*) — ep, where ep =
O(k*n?[yp In(T)/T)*/?).

Lastly, we show that if the single-objective optimization
procedure admits good convergence properties, then we
can solve multi-objective optimization by simply applying
the single-objective procedure on sufficiently large num-
ber of randomly chosen hypervolume scalarizations. Fur-
thermore, this method is provably correct as we can de-
duce hypervolume error bounds via concentration proper-
ties. Specifically, by using the single-objective procedure
for T iterations on [ = O(1/€*) different randomly chosen
scalarizations, we can bound the hypervolume error by ¢

after the total number of observations of T' - | = O(T/€*).
Therefore, we present a novel generic framework that ex-
tends any single-objective convergence bound into a con-
vergence bound for the multi-objective case that provably
demonstrates convergence to the Pareto frontier. Note that
these bounds hold for any algorithm but are not tight and
can likely be improved, unlike those presented above in the
Bayesian optimization setting.

Theorem 3 (Convergence of General Optimization with
Hypervolume Scalarization: Informal Restatement of The-
orem 9). Let A be any single-objective optimization algo-
rithm with the guarantee that it converges to within er of
the maximum after T iterations and observations.

Then, running A with random hypervolume scalarization
converges to the Pareto frontier and admits an hypervolume
error of O(er) after O(T /€k.) observations.

We empirically validate our theoretical contributions by
running our multiobjective algorithms with hypervolume
scalarizations on the Black-Box Optimization Benchmark
(BBOB) functions, which can be used for bi-objective op-
timization problems (TusSar et al., 2016). We see that our
multi-objective Bayesian optimization algorithms, which
admit strong regret bounds, consistently outperforms the
multi-objective evolutionary algorithms. Furthermore, we
observe the superior performance of the hypervolume
scalarization functions over other scalarizations, although
that difference is less pronounced when the Pareto frontier
is even somewhat convex.

Guided by our theory, we believe that researchers and prac-
titioners alike should slowly move away from using linear
scalarizations for multi-objective optimization and move
towards hypervolume scalarizations. We summarize our
contributions as follows:

e Introduction of the theoretically guided hypervolume
scalarization function, with connections to hypervol-
ume indicator and provable guarantees.

e Development of simple algorithm for approximating
hypervolume indicator with hypervolume scalariza-
tions that is accurate due to good smoothness and con-
centration properties.

e Novel hypervolume regret bounds for Bayesian opti-
mization with UCB or TS when using hypervolume
scalarization.

e Derivation of convergence hypervolume error bounds
for any single-objective optimization procedure when
using hypervolume scalarization.
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2. Preliminaries

We first define a few notations for the rest of the paper.
For two vectors z,y, we define x < y and similarly all
other comparisons/operators element-wise and || - || is the
Euclidean norm unless specified otherwise. We define a +
b:= a+ bl for a € R¥ and b € R. For a function f(z) :
R™ — R, we say f is L-Lipschitz if |f(z) — f(z')] <
Llz —2'||.

Let X' be a compact subset of R™ and let () : R — R¥
be our multi-objective function with k objective functions
fi. For two points 1,2, € X, we say that z; is Pareto-
dominated by x4 if f;(x1) < fi(x2) for all i and there
exists j such that f;(z1) < fj(z2). A point is Pareto-
optimal in X if no point in X dominates it. Let X* de-
note the set of Pareto-optimal points in X. A Pareto set
for input points X = {x1, .., 2,, } is the set of points in R¥
is {F(x)|xr € X}, denoted as simply F'(X). The Pareto
frontier Y* := {F(x)|x € X*} is the Pareto set of X*.

Our main progress indicators are given by the hypervolume
indicator. For S C R¥ compact, let vol(S) be the hyper-
volume of S.

Definition 4. For Y C R”, we define the (dominated) hy-
pervolume indicator of Y with respect to reference point
z as:

HV.(Y) = vol({z |z > 2, x is dominated by some y € Y })

Therefore, for a finite set Y, HV,(Y) can be viewed as
the hypervolume of the union of the dominated hyper-
rectangles for each point y; > z that has one corner at z and
the other corner at y;. Note that our definition also holds for
non-finite set as a limiting integral in the Lesbesgue mea-
sure. We let S5' = {y € R*|||y| =1,y > 0} and let

Y~ S_lf_*l denote that y is drawn uniformly on S_lffl.

2.1. Scalarization with Bayesian Optimization

Bayesian optimization uses a probabilistic model to fit to
the blackbox function. Gaussian processes (GP) are a stan-
dard way to model distributions over functions and are
commonly used to derive good regret bounds (Williams &
Rasmussen, 2006). We will begin with a brief review of
GPs and their role in Bayesian Optimization.

A Gaussian process, GP(u, k), is a distribution over func-
tions. In a GP, the similarity between points x;, x; are de-
termined by the kernel function «(z;, «;) and for some fi-
nite set of points X = {x1,...,x,} € X, the distribution
of f(x1), ..., f(xy) over f is modeled as multivariate Gaus-
sian whose covariance matrix is 3;; = £(z;, ;) and mean
is given by p; = u(x;). Examples of popular kernels are
the squared exponential, % (x;, x;) = exp(—7y||lz; — x;|?),
and the Matérn kernel. The mean function, prior to receiv-

ing data, is often assumed to be zero.

When datapoints for values of y; = f(x;) + ¢; are received
with €; ~ N(0, 0?), the GP is then updated into a posterior
distribution over functions that attempts to fit the datapoints
values. This is done by applying conditioning and because
all relevant distribution are Gaussian, the resulting distribu-
tion is still a GP. This posterior GP induces an unique mean
function p(z) and standard deviation function o (z) given
by the standard formulas:

w@) =k, X) (S +0°1) Ny

a(x) = K(z,z) — Kz, X) " [E + 1] w(z, X)
where k(z, X) denotes the vector with entries as k(x, x;).

Bayesian optimization then uses the probabilistic model
to optimize for the best inputs for the blackbox function.
Since we have a distribution over functions, the optimiza-
tion is done via an acquisition function, a(z) : R® — R,
that assigns a scalar value to each point based on the afore-
mentioned distribution. A popular and natural method is
Thompson Sampling (TS), which draws a random sample
from the posterior f ~ GP(u, k), and simply uses that
as a non-deterministic acquisition function a(z) = f(x)
(Thompson, 1933). Another popular method is the Upper
Confidence Bound (UCB) acquisition that combines the
mean and variance function into a(z) = u(z) + /Bo(z),
where 3 is a function of m and n (e.g., 8 = O(nln(m))
in (Srinivas et al., 2010)). In both cases, the acquisition
A(z) is maximized as well to suggest the next point to ex-
plore.

For multi-objective Bayesian optimization, we assume
that all objectives f; are samples from known GP priors
GP(0, k;) with input domain X. Therefore, we will have a
separate GP and acquisition function A;(x) for each f; and
let the acquisition vector be A(x) = (a1(z), ..., ar(x)). It
then becomes unclear if there is a single acquisition func-
tion that can be used to explore the Pareto frontier well
in this setting. Scalarization is a well-known means to
combine multiple single-objective acquisition functions for
this task. Given a distribution over scalarization functions
sa(y) for y € R*, we simply draw a random scalarization
function and optimize according to sy (A(z)). The full al-
gorithm is outline in Algorithm 1.

Examples of scalarizations are the simple linear scalariza-
tion sx(y) = >, \iy; and the Chebyshev scalarization
sx(y) = min; \;(y; — z;) for some input distribution D).
However, these scalarizations lack provable guarantees and
it is in fact known that the linear scalarization can only
provide solutions on the convex part of the Pareto frontier
(Boyd & Vandenberghe, 2004). Furthermore, the Cheby-
shev scalarization is criticized for lacking diversity and uni-
formity in the Pareto frontier (Das & Dennis, 1998).
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Algorithm 1 Scalarization for Multi-Objective Bayesian
Optimization

Input: F : R® — R*: multi-objective function , T' €
Z: number of iterations, A(z) : R® — R* acquisition
function, D) : distribution to sample A for known s (z)
fort =1to7T do
Sample: Draw independently A\; ~ D,.
Optimize: z; = arg max,cx Sx, (A(x)) where A =
(Aq, .., Ay) is evaluated with GP~D
Evaluate: y;, = F'(x;)
Update: Incorporate (z,y,;) into GP*~Y to obtain
GP®, where the posterior update is done indepen-
dently for each f; and GP(u;, ;)
end for
return {azt}thl

3. Hypervolume Scalarization

In this section, we introduce our hypervolume scalariza-
tion function and demonstrate that the expected scalariza-
tion value under a certain distribution of weights will give
the dominated hypervolume, up to a constant factor differ-
ence. Our proof technique relies on a volume integration
argument in spherical coordinates and mirrors an indepen-
dent proof of (Deng & Zhang, 2019). Later, we prove con-
centration of the empirical mean, allowing for an accurate
estimator of the dominated hypervolume.

Lemma 5 (Also in (Deng & Zhang, 2019)). Let Y =
{Y1, -, Ym} be a set of m points in RE. Then, the hyper-
volume of Y with respect to a reference point z is given
by:

HYV (V) = Ck-E)\NSicr—l [11}16&)}/( saly — z)}

where s)(y) = min(max(0,y;/\;))* and c, =

k/2

- . . Lo
TR 18 @ dimension-independent constant.

Intuitvely, this lemma says that although the maximization
of any specific scalarization will bias the optimization to a
certain point on the Pareto frontier, there is a specific com-
bination of scalarizations with different weights such that
the sum of the maximization of these scalarizations over
Y will give the hypervolume of Y. It is important for the
maximization to be inside the expectation, implying that
maximizing various randomized single-objective scalariza-
tions could serve to also maximize the hypervolume, which
is our ultimate objective. In fact, it is easy to see that the
hypervolume of a set cannot be written solely as a maxi-
mization over the expectation of any scalarizations.

Furthermore, note that our scalarization function, similar

to the Chebyshev scalarization, is a minimum over coordi-

nates s (y) = min (max(0, y;/\;))*. Intuitively, this min-
K3

imization captures the notion that Pareto dominance is a

coordinate-wise optimality criterion, as we can redefine x;

being Pareto dominated by x2 as min f;(x2) — fi(z1) > 0.
?

Now that we can rewrite the hypervolume as a specific
expectation of maximization of random scalarizations, we
proceed to show that our random estimator has controlled
variance and therefore concentrates. Specifically, we show
that the hypervolume indicator can be computed efficiently
via this integral formulation, providing a simple and fast
implementation to give an approximation to the hypervol-
ume indicator. Our argument relies on proving smooth-
ness properties of our hypervolume scalarizations for any
A > 0 and then applying standard concentration inequali-
ties. We note that it is non-obvious why sy (y) is smooth,
since s)(y) depends inversely on \; so when \; is small,
sy might change very fast. The full proof is in the supple-
mentary material.

Lemma 6 (Hypervolume Concentration). Let ¥ =
{Y1, ..., ym} C R¥ and z be a reference point and assume
for some B > 1, we can bound y; < z + B. Then, s)(y)
is O(B*E'*/2)—Lipschitz for any \ and we can indepen-
dently draw A1, ..., \s such that

1 1
- - — )<
o HV.(Y) . Zr??ea}z( Y (y—2)| <e

J

holds with probability at least 1 — § with s =
O(B?* k¥ log(1/5)/€%) samples.

4. Hypervolume Regret Bounds

In this section, we derive novel hypervolume regret
bounds for Bayesian optimization with UCB and TS
acquisition functions under the hypervolume scalariza-
tions. Furthermore, we introduce an algorithmic frame-
work to turn any single-objective optimization algorithm
to a multi-objective optimization algorithm via scalariza-
tions and show that single-objective convergence guaran-
tees can provably translate into multi-objective conver-
gence bounds.

For a fixed weight \, if X = {z1,...,2,,} is our dataset
and recall X* is the maximal input set corresponding to
the Pareto frontier Y*, we define the scalarized regret to be

rA(X) = max s (F(x)) — max s (F())

The scalarized regret only captures the regret for a spe-
cific weighting A and we emphasize that scalarized regret
bounds will guarantee convergence to only one pointin X *.
To prove convergence to the whole frontier, we consider
the following Bayes regret given by R(X) = E, [rA(X)],
which integrates over all A for some distribution D).
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Note that Bayes regret cannot be minimized by a single
point, rather it requires a set of points across the Pareto
frontier to achieve a small Bayes regret. Let Xp =
{x1, ..., z7 } be the set of chosen inputs up to time 7. Then,
we wish to bound R(Xr7). We cannot analyze the Bayes
regret directly. Rather, we bound it via a slightly surrogate
regret measure. Let use define the instantaneous regret at
time step ¢ as:

r(ze, A) = max sy, (F(2)) = s, (F(z4))
The cumulative regret at time step 7' is then Ro(T) =
Zthl r(x¢, \¢). We will first bound the cumulative regret
and then use the cumulative regret to bound the Bayes re-
gret, which is a scaled version of our hypervolume regret
when using hypervolume scalarizations.

Regret bounds are derived using a metric known as the
maximum information gain (MIG), which captures an
information-theoretic notion of uncertainty reduction of
our blackbox function. For any A C X, we define the
random set y4 = {y, = f(a) + ¢4la € A} be our noisy
evaluations. The reduction in uncertainty of the distri-
bution over functions f induced by the GP by observ-
ing y4 is given by the mutual information I(ya; f) =
H(f)—H(f|ya) = H(ya) — H(yal|f), where H denotes
the Shannon entropy. The maximum information gain after
T observations is defined as :

I(ya; f)

max
ACX:|A|=T

T =
The mutual information can also be explicitly calculated
via a useful formula: I(ya; f) = % log |[I+0 2K 4|, where
K 4 is the T-by-T covariance matrix of dataset A and | - |
is the determinant operator. Using the formula, one can
derive bounds of vz = O((log T')"*!) for the squared ex-
ponential kernel and similar bounds for the Matérn and lin-
ear/polynomial kernels for any A (Srinivas et al., 2010).
When the maximum information gain is small, the GP
function distribution induced by the corresponding is rel-
atively easier to model and regret bounds are therefore
tighter.

Theorem 7 (Theorem 1 in (Paria et al., 2018)). Let each
objective f;(x) for x € [0,1]™ follow a Gaussian distribu-
tion with marginal variances bounded by 1 and observation
noises €; ~ N (0, 02»2) are independent with UZ.Q <og2<1.
Let yp 1, < yr, where yr i, is the MIG for the k-th objec-
tive. Running Algorithm 1 with L-Lipschitz scalarizations
on either UCB or TS acquisition function produces an ex-
pected cumulative regret after T steps that is bounded by:

E{Ro(T)] = O(Lkn*/? [y T In(T)]"/?)

where the expectation is over choice of Ay and GP measure.

Theorem 8. Assume the conditions in Theorem 7 holds
and let F(X) C [0,2/5]% and z > 0 and Y, = F(X;).
Running Algorithm 1 with hypervolume scalarizations with
reference point z and D) = Sifl on either UCB or TS
acqusition function produces hypervolume regret after T
observations that is bounded by:

D> (HV.(Y*) = HY.(V1)) < O(K*n'2[yr T In(T)]*/?)
t=1

Furthermore, HV,(Yr) > HV.(Y™*) — ep, where ep =
O(k*n/?[yp In(T)/T)*/?).

Proof. WLOG, let z = 0. From Lemma 5, we see that for
our hypervolume scalarization, we can rewrite our regret
using the Bayes regret.

HY.(Y*) — HV.(Y2)

= crBy st-1 | max 53 (F(2)) — max 53 (F(x))

= CkEANSi’l [T)\(Xt)]

== CkR(Xt)

Therefore, our Bayes regret is exactly a scaled version of
our hypervolume regret with ¢, = 7%/2 /(2*T'(k/2+41)) <
(mk/2ek/2) /(2% (k /2 4 1)*/?) with standard bounds on T.
Next, we use the instantaneous regret to bound Bayes risk
and note that \; ~ Sffl.

RXG) =By gt 1 sn(P(0) = g (P (o)

< Byt | oa(F(0) — sy (Plan)|
S NS

Therefore, by Theorem 7, we conclude that we can bound
the Bayes and hypervolume regret by observing the follow-
ing relations:

T
ZR(Xt) <SExion [Z (@, /\t)]

) < E[Rc(T)] i
= O(Lkn1/2[’YTT1H(T)]1/2)

Lastly, by Lemma 6, we see that L < 2=k E1+k/2 and note
that cx L < k(7*/2e#/2)/(5F) < k. Together, we finally
conclude that

T
S (HV.(YY) = HV.(Vy) < O(k*n [y T In(T)]H/?)

t=1
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Algorithm 2 Scalarization with General Single-Objective
Optimization

Input:F' : R® — R*: multi-objective function , T €
Z - number of iterations, A : single-objective optimiza-
tion algorithm, D, : distribution to sample A for known
sx(z), I € Z4: number of scalarization samples
fori=1to!ldo

Sample: Draw independently \; ~ D,.

Optimize: Run A on single-objective func-

tion sy,(F(z)) for T iterations to obtain points

{0,562, .. a0}
end for
T

return | {zf\tb)}

7 t=1

For the final claim, by definition of H), and our equiva-
lence between HV, and R, we conclude that R(X;) must
be monotonically decreasing. Our final claim follows from
monotonicity and simple algebra. [

We note that our regret bounds hold for classical Bayesian
optimization procedures that are widely used with no artifi-
cial modifications. Furthermore, we can generalize our re-
sults to show that for any single-objective optimization pro-
cedure, one can use hypervolume scalarizations to convert
the procedure into a multi-objective optimization procedure
via a natural extension (Algorithm 2). More remarkably,
if the single-objective optimization procedure admits con-
vergence bounds, we can immediately derive hypervolume
convergence bounds by appealing to our previous connec-
tions between scalarization and hypervolume via the fol-
lowing theorem. Practically, this implies that any currently
used single-objective optimization algorithms can be easily
generalized to the multi-objective setting with minimal ef-
fort and enjoy provable convergence bounds. The full proof
is in the supplementary material.

Theorem 9. Let F(X) C [0,B]* and = > 0 and let A
be any single-objective maximization algorithm on objec-
tive function g(x) that guarantees that after T iterations,
it returns xr such that g(xr) > g(z*) — er, where z*
is the optima. Then, running Algorithm 2 on hypervolume
scalarizations with reference point z and D) = S_]f__l with
[l = 5((2B)k2kk+1/(cﬁfle§fl)) converges to the Pareto
frontier and after | - T observations, we have

HVZ(YT) Z HVZ(Y*) — 5Ck€T

5. Experiments

We empirically demonstrate the utility of hypervolume
scalarizations by running our proposed multiobjective
algorithms on the Black-Box Optimization Benchmark

(BBOB) functions, which can be paired up into multiple
bi-objective optimization problems (Tusar et al., 2016). To
emphasize the utility of a new theoretically sound scalar-
ization, we focus on scalarization-related algorithms and
comparisons were not made to the vast array of diverse
multi-objective blackbox optimization used in certain prac-
tical settings. Therefore, our goal is therefore to compare
scalarizations on commonly used optimization algorithms,
such as UCB and evolutionary strategies. Furthermore, we
note that scalarized algorithms have very fast practical run-
times and are especially relevant in settings with a low com-
putational budget.

Our objectives are given by BBOB functions, which are
usually non-negative and are minimized. The input space
is always a compact hypercube [—5,5]™ and the global
minima is often at the origin. For bi-objective opti-
mization, given two different BBOB functions fi, fo,
we attempt to maximize the hypervolume spanned by
(= f1(x;), — f2(x;)) over choices of inputs x; with respect
to the reference point (—5, —5). Therefore, all relevant out-
put points are contained in the square between (—5, —5)
and (0, 0), giving a maximum hypervolume of 25. Because
BBOB functions can drastically different ranges, we first
normalize the function by a measure of standard deviation
computed by taking the empirical variance over a determin-
sitic set of 30 different inputs. We also apply large random
shifts/rotations as well as allow for adding moderate ran-
dom observation noise to the objective function.

We run each of our algorithms in dimensions n = 8, 16, 24
and optimize for 70 iterations with 5 repeats. Our algo-
rithms are the Random algorithm, UCB algorithm, and
Evolutionary Strategy (ES). Our scalarizations include the
linear and hypervolume scalarization with the weight distri-
bution D) as S}r. Note that for brevity, we do not include
the Chebyshev scalarization because it is almost a mono-
tonic transformation of the hypervolume scalarization with
a different weight distribution. We run the UCB algorithm
via an implementation of Algorithm 1 with a constant stan-
dard deviation multiplier of 1.8 and a standard Matérn ker-
nel, while we run the ES algorithms using Algorthm 2 with
T = 1and [ = 70 by relying on a well-known single-
objective evolutionary strategy known as Eagle (Yang &
Deb, 2010).

From our results, there is a clear trend that UCB algorithms
outperform both ES and Random algorithms in all cases,
empirically affirming the utility of Bayesian optimization
and its strong theoretical regret bounds. We believe that
this is because evolutionary strategies tend to follow local
descent procedures and get stuck at local minimas, there-
fore implicitly having less explorative mechanisms. Mean-
while, Bayesian optimization inherently promotes explo-
ration via usage of its standard deviation estimates.
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Figure 1. Dominated hypervolume plot of bi-objective optimiza-
tion of SCHWEFEL and ELLIPSOID BBOB functions in 24D
with no and Gaussian observation noise. Notice that Hypervol-
ume scalarization is slightly better than Linear scalarization in
both UCB and ES algorithms and this is more stark in the noise-
less case.

Furthermore, we see that the hypervolume scalarization
slightly outperforms the linear scalarization, with UCB-
Hypervolume being a clear winner in certain cases, even
with Gaussian observation noise (see Fig 2). The supe-
rior performance of the hypervolume scalarization is seen
in both UCB and ES algorithms (see Fig 1), and using the
hypervolume scalarization is often never worse than us-
ing the linear scalarization. We note that the difference
is more stark when there is no noise added, allowing for
less variance when calculating the scalarization. Also, we
note that when the Pareto frontier is almost convex, the dif-
ference in performance becomes hard to observe. As seen
from the Pareto plot in Fig 2, we see that although UCB-
Hypervolume does produce a better Pareto frontier than
UCB-Linear, the convex nature of the Pareto frontier al-
lows linear scalarizations to perform decently. A complete
profile of the plots are given in the supplementary material.
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e ——— ’ E—
e —
JEp—r
A
P

Hypervolume

0 10 20 sa [ 0

B al
Humber of Suggostions

Objective plot: SPHERE vs. ELLIPSOID_SEPARABLE

Linear .
@ Hypervolume ., |
-05 Fo 8,
*aste k)

SPHERE

-5 -4 -3 -2 -1 0
ELLIPSOID_SEPARABLE

Figure 2. Dominated hypervolume and Pareto plot of bi-objective
optimization of ELLIPSOID and SPHERE BBOB functions in
24D with no (UNSET) observation noise. Notice that the UCB
algorithms outperform the ES algorithms and the Hypervolume
scalarization is slightly better. Also, when comparing UCB-
Hypervolume (blue points) and UCB-Linear (pink points) in the
Pareto plot, the Hypervolume scalarization is slightly better and
never suggests points that are significantly sub-optimal, although
the difference is not very stark because of the convex nature of the
Pareto frontier.

6. Conclusion

We introduced the hypervolume scalarization functions
and utilized its connection to the hypervolume indicator
to derive hypervolume regret bounds for many classes
of multi-objective optimization algorithms that rely on
single-objective subroutines. Ultimately, we hoped to have
presented a convincing case as to the underlying reason
why researchers and practitioners should use hypervolume
scalarizations, as opposed to the more popular linear scalar-
izations, which are provably suboptimal. Even though our
scalarization function enjoys smoothness and concentra-
tion bounds, we note that possible improvements to the
scalarizations can be made for variance reduction. We be-
lieve that a lower-variance and better-concentrated scalar-
ization can be constructed that also can similar provable hy-
pervolume error guarantees. Furthermore, it is conceivable
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that variance reduction techniques during the optimization
process can be applied to achieve better concentration and
convergence.

Furthermore, our regret bounds can likely be improved, es-
pecially the general regret bound for any single-objective
optimization procedure given by Theorem 9. We believe
the exponential dependence on k2 can be improved, as well
as removing the extra [ factor completely. However, to
achieve these better convergence bounds, it will most likely
require algorithmic changes. Lastly, our experiments could
be improved by concocting a specific optimization with a
concave Pareto frontier, looking at optimization with more
than two objectives, or considering a more diverse set of al-
gorithms. Understanding and quantifying the full impact of
using random scalarizations to generalize single-objective
algorithms to multi-objective algorithms is an open prob-
lem.
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