Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization

A. Missing Proofs

Proof of Lemma 5(Hypervolume as Scalarization).
Without loss of generality, let z = 0 be the origin and
consider computing the volume of a rectangle with corners
at the origin and at y = (y1,...,yx) > 0, but doing so
in polar coordinates centered at z. Given a direction
v € 8K~ with v; > 0 for all 4, and ||v|| = 1, lets suppose
a ray in the direction of v exits the rectangle at a point
p = cv so that ||p|| = ¢. We claim that ||p|| = min; (y;/v;).
Note that this claim holds in any norm; however for the
eventual dominated hypervolume calculation to hold, we
use the ¢, norm.

Note that by definition of p we have p; < y; for all j and
there must exist ¢ such that p; = y;. Also p;/v; = ¢ =
pi/v; for any 4, j since p = cv. It follows that ¢ < y,/v;
for all j and ¢ = y;/v;, which proves ||p|| = min; (y;/v;).

Integrating in polar coordinates, we can approximate an
volume via radial slivers of the circle, which for a radius
r sweeping through angles df have an volume proportional
to r*d0. Hence, the volume of the of the rectangle is

vol(R) = ck/ min (‘%> do(v)
v€8$ Lo Ui

under a uniform measure 6, where the ¢, is a constant that
depends only on the dimension.

So far we assumed y > 0. Now, if any y; < 0, then our
total dominated hypervolume is zero and min; g—z < 0. So,
by changing our scalarization slightly, we can account for
any y and the volume of the rectangle with respect to the
origin is given by:

vol(R) = ¢, /es’“‘l min (max (0, y; /v;))* df(v)

K2

By definition of dominated hypervolume, note that

HV.(Y) = vol(S) where

S ={xz|xz > 2z, is dominated by some y € Y'}.
Since S is simply the union of rectangles at y1, ..., ¥, and
note that wherever p exists S, the length of p is the maximal

over all rectangles and so

= i 07 v/ Vi)
Il = max min max(0, /v
Repeating the argument gives:
vol(S) = Ck/ max [mm (max (0, y;/v;))*| db(v)
UGS’” 1 yey v

To calculate ci, we simply evaluate the hypervolume of
the k-dimensional ball in the positive orthant. If the ball

has radius and is centered at the origin. In this case we

k — ok k —
get fvesi*” du(v) = r* and ¢ fvesi—l'f' dp(v) =
Vi (r)/2* where Vi(r) is defined as the volume of the k-
dimensional ball of radius r, which is 7%/2r* / T'\(k/24-1).
The formula for c;, then follows from some basic alge-
bra. O

Proof of Lemma 6 (Hypervolume Concentration). Recall
sa(y) = min(max(0,y;/A;))* and ||A| = 1. Note that

> k=1/2 and therefore

there must exists 7 such that \;
(max(0, ys- /Xi-))* < (BEY2)* where i* is the index
that minimizes max(0,y;/A;)*. Note that the gradient
of sx(y), if non-zero, is kyf,fl /AL and therefore, the
Lipschitz constant is bounded by k(Bk'/2)k = BFE1+F/2,

Since 0 < s)(y — 2) < BFE*/2 for any X and 3, we con-
clude by standard Chernoff bounds that if weight vectors
A; are independent samples,

P E a — - - a — >
(1B estr maxsa(y - 2) Zr;l&wx (y—2) =€

< 2exp(—2se”/(B*E"))

Therefore, choosing s = O(B? k¥ log(1/8)/e?) samples
from Sf“[l bounds the failure probability by ¢ and using
Lemma 5, our result follows. O

Proof of Theorem 9 (General Regret Bounds). WLOG, let
z=0. Let X7 = U{ (f)} Then, for Ay, ..., A\;, by
t=1

i
the guarantees of A, we deduce that

(2)) = nax s, (F)| < er

1
YZ [maxs)\

By Lemma 6, we see that for the Pareto frontier Y*, we
have concentration to the desired hypervolume:

1 1
- o —— ) <
o HY.(Y™) ] E I:EI?;}((SA’ (x) €

?

when | = O(B*k*log(1/5)/€?) with probability 1 — 4.
We would like to apply the same lemma to also show that
our empirical estimate is close to H)V.(Xr). However,
since X depends on )\;, this requires a union bound and
we proceed with a e-net argument.

We assume that F(X) C [0, B]* and let us divide the
hypercube into a grid with spacing A. Then, there are
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O((B/A)¥) lattice points on the grid. Consider the Pareto
frontier of any set of points, call it S. Out of the (B/A)*
small hypercubes of volume A* in grid, note that by the
monotonicity property of the frontier, S intersects at most
(2B/A)*~1 small hypercubes.

Therefore, we can find a set .S, consisting of at most
(2B/A)*~! lattice points on the grid such that |HV,(S) —
HYV.(S,)| < (2B)*A. This can be done by simply look-
ing at each small hypercube that has intersection with .S
and choosing the lattice point that increases the dominated
hypervolume. Since each small hypercube has volume A*
and there are at most (2B/A)*~! hypercubes, the total hy-
pervolume increased is at most 2 A.

Finally, there are at most (B/A)]“@B/A)k_1 choices of .Sy,
so to apply a union bound over all possible sets .S,,, we sim-
ply choose | = O(B*kF+1(2B/A)*~Llog(B/A)/€%) so
that for any possible S, we use Lemma 6 to deduce that
with high probability,

1 1
—HV.(Sy) — 7 Z max sy, (z)| <e

Ck

Since HV,(5) is close to HV,(S,,), we conclude that for
any S,

(2B)FA

Ck

Together, we conclude that

|HV.(F(X7)) — HV.(Y")| < crer + 2cpe + (2B)FA

By choosing ¢ = e7 and A = cer(2B)~F, we conclude.

O

B. Figures
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