A. Missing Proofs

Proof of Lemma 5(Hypervolume as Scalarization).

Without loss of generality, let z=0 be the origin and consider computing the volume of a rectangle with corners at the origin and at $y=(y_1,...,y_k)\geq 0$, but doing so in polar coordinates centered at z. Given a direction $v\in \mathcal{S}_+^{k-1}$ with $v_i\geq 0$ for all i, and $\|v\|=1$, lets suppose a ray in the direction of v exits the rectangle at a point p=cv so that $\|p\|=c$. We claim that $\|p\|=\min_i(y_i/v_i)$. Note that this claim holds in any norm; however for the eventual dominated hypervolume calculation to hold, we use the ℓ_2 norm.

Note that by definition of p we have $p_j \leq y_j$ for all j and there must exist i such that $p_i = y_i$. Also $p_j/v_j = c = p_i/v_i$ for any i, j since p = cv. It follows that $c \leq y_j/v_j$ for all j and $c = y_i/v_i$, which proves $||p|| = \min_i (y_i/v_i)$.

Integrating in polar coordinates, we can approximate an volume via radial slivers of the circle, which for a radius r sweeping through angles $d\theta$ have an volume proportional to $r^k d\theta$. Hence, the volume of the of the rectangle is

$$vol(R) = c_k \int_{v \in \mathcal{S}_1^{k-1}} \min_i \left(\frac{y_i}{v_i}\right)^k d\theta(v)$$

under a uniform measure θ , where the c_k is a constant that depends only on the dimension.

So far we assumed $y \ge 0$. Now, if any $y_i < 0$, then our total dominated hypervolume is zero and $\min_i \frac{y_i}{v_i} < 0$. So, by changing our scalarization slightly, we can account for any y and the volume of the rectangle with respect to the origin is given by:

$$\operatorname{vol}(R) = c_k \int_{v \in \mathcal{S}_+^{k-1}} \min_i \left(\max(0, y_i/v_i) \right)^k d\theta(v)$$

By definition of dominated hypervolume, note that $\mathcal{HV}_z(Y) = \operatorname{vol}(S)$ where

$$S = \{x \mid x \ge z, x \text{ is dominated by some } y \in Y\}$$
.

Since S is simply the union of rectangles at $y_1, ..., y_m$ and note that wherever p exists S, the length of p is the maximal over all rectangles and so

$$||p|| = \max_{y \in Y} \min_{i} \max(0, y_i/v_i).$$

Repeating the argument gives:

$$\operatorname{vol}(S) = c_k \int_{v \in \mathcal{S}_+^{k-1}} \max_{y \in Y} \left[\min_i \left(\max(0, y_i/v_i) \right)^k \right] d\theta(v)$$

To calculate c_k , we simply evaluate the hypervolume of the k-dimensional ball in the positive orthant. If the ball

has radius and is centered at the origin. In this case we get $\int_{v \in \mathcal{S}^{k-1}_+} r^k d\mu(v) = r^k$ and $c_k \int_{v \in \mathcal{S}^{k-1}_+} r^k d\mu(v) = V_k(r)/2^k$ where $V_k(r)$ is defined as the volume of the k-dimensional ball of radius r, which is $\pi^{k/2} r^k / \Gamma(k/2+1)$. The formula for c_k then follows from some basic algebra

Proof of Lemma 6 (Hypervolume Concentration). Recall $s_{\lambda}(y) = \min_{i} (\max(0,y_{i}/\lambda_{i}))^{k}$ and $\|\lambda\| = 1$. Note that there must exists i such that $\lambda_{i} \geq k^{-1/2}$ and therefore $(\max(0,y_{i^{*}}/\lambda_{i^{*}}))^{k} \leq (Bk^{1/2})^{k}$ where i^{*} is the index that minimizes $\max(0,y_{i}/\lambda_{i})^{k}$. Note that the gradient of $s_{\lambda}(y)$, if non-zero, is $ky_{i^{*}}^{k-1}/\lambda_{i^{*}}^{k}$ and therefore, the Lipschitz constant is bounded by $k(Bk^{1/2})^{k} = B^{k}k^{1+k/2}$.

Since $0 \le s_{\lambda}(y-z) \le B^k k^{k/2}$ for any λ and y, we conclude by standard Chernoff bounds that if weight vectors λ_i are independent samples,

$$\Pr\left(\left|\mathbb{E}_{\lambda \sim \mathcal{S}_{+}^{k-1}}\left[\max_{y \in Y} s_{\lambda}(y-z)\right] - \frac{1}{s} \sum_{j} \max_{y \in Y} s_{\lambda_{j}}(y-z)\right| \ge \epsilon\right)$$

$$< 2 \exp(-2s\epsilon^{2}/(B^{2k}k^{k}))$$

Therefore, choosing $s = O(B^{2k}k^k\log(1/\delta)/\epsilon^2)$ samples from \mathcal{S}_+^{k-1} bounds the failure probability by δ and using Lemma 5, our result follows.

Proof of Theorem 9 (General Regret Bounds). WLOG, let z=0. Let $X_T=\bigcup_i \left\{x_{\lambda_i}^{(t)}\right\}_{t=1}^T$. Then, for $\lambda_1,...,\lambda_l$, by the guarantees of \mathcal{A} , we deduce that

$$\frac{1}{l} \sum_{i=1}^{l} \left[\max_{x \in \mathcal{X}} s_{\lambda_i}(F(x)) - \max_{x \in X_T} s_{\lambda_i}(F(x)) \right] \le \epsilon_T$$

By Lemma 6, we see that for the Pareto frontier Y^* , we have concentration to the desired hypervolume:

$$\left| \frac{1}{c_k} \mathcal{H} \mathcal{V}_z(Y^*) - \frac{1}{l} \sum_{i} \max_{x \in \mathcal{X}} s_{\lambda_i}(x) \right| \le \epsilon$$

when $l = O(B^{2k}k^k\log(1/\delta)/\epsilon^2)$ with probability $1 - \delta$. We would like to apply the same lemma to also show that our empirical estimate is close to $\mathcal{HV}_z(X_T)$. However, since X_T depends on λ_i , this requires a union bound and we proceed with a ϵ -net argument.

We assume that $F(\mathcal{X}) \subseteq [0, B]^k$ and let us divide the hypercube into a grid with spacing Δ . Then, there are

 $O((B/\Delta)^k)$ lattice points on the grid. Consider the Pareto frontier of any set of points, call it S. Out of the $(B/\Delta)^k$ small hypercubes of volume Δ^k in grid, note that by the monotonicity property of the frontier, S intersects at most $(2B/\Delta)^{k-1}$ small hypercubes.

Therefore, we can find a set S_u consisting of at most $(2B/\Delta)^{k-1}$ lattice points on the grid such that $|\mathcal{HV}_z(S) - \mathcal{HV}_z(S_u)| \leq (2B)^k \Delta$. This can be done by simply looking at each small hypercube that has intersection with S and choosing the lattice point that increases the dominated hypervolume. Since each small hypercube has volume Δ^k and there are at most $(2B/\Delta)^{k-1}$ hypercubes, the total hypervolume increased is at most $2^k \Delta$.

Finally, there are at most $(B/\Delta)^{k(2B/\Delta)^{k-1}}$ choices of S_u , so to apply a union bound over all possible sets S_u , we simply choose $l = O(B^{2k}k^{k+1}(2B/\Delta)^{k-1}\log(B/\Delta)/\epsilon^2)$ so that for any possible S_u , we use Lemma 6 to deduce that with high probability,

$$\left| \frac{1}{c_k} \mathcal{HV}_z(S_u) - \frac{1}{l} \sum_{i} \max_{x \in S_u} s_{\lambda_i}(x) \right| \le \epsilon$$

Since $\mathcal{HV}_z(S)$ is close to $\mathcal{HV}_z(S_u)$, we conclude that for any S,

$$\left| \frac{1}{c_k} \mathcal{HV}_z(S) - \frac{1}{l} \sum_i \max_{x \in S} s_{\lambda_i}(x) \right| \le \epsilon + \frac{(2B)^k \Delta}{c_k}$$

Together, we conclude that

$$|\mathcal{HV}_z(F(X_T)) - \mathcal{HV}_z(Y^*)| \le c_k \epsilon_T + 2c_k \epsilon + (2B)^k \Delta$$

By choosing $\epsilon = \epsilon_T$ and $\Delta = c_k \epsilon_T (2B)^{-k}$, we conclude.

B. Figures

