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Abstract

Neural ODEs and i-ResNet are recently proposed
methods for enforcing invertibility of residual neu-
ral models. Having a generic technique for con-
structing invertible models can open new avenues
for advances in learning systems, but so far the
question of whether Neural ODEs and i-ResNets
can model any continuous invertible function re-
mained unresolved. Here, we show that both of
these models are limited in their approximation
capabilities. We then prove that any homeomor-
phism on a p-dimensional Euclidean space can
be approximated by a Neural ODE operating on
a 2p-dimensional Euclidean space, and a similar
result for i-ResNets. We conclude by showing
that capping a Neural ODE or an i-ResNet with a
single linear layer is sufficient to turn the model
into a universal approximator for non-invertible
continuous functions.

1. Introduction

A neural network block is a function F' that maps an input
vector z € X C RP to output vector F'(z,0) € RP', and is
parameterized by a weight vector §. We require that F' is
almost everywhere differentiable with respect to both of its
arguments, allowing the use of gradient methods for tuning
0 based on training data and an optimization criterion, and
for passing the gradient to preceding network blocks.

One type of neural building blocks that has received atten-
tion in recent years is a residual block (He et al., 2016),
where F'(z,0) = = + f(x,0), with f being some differen-
tiable, nonlinear, possibly multi-layer transformation. In-
put and output dimensionality of a residual block are the
same, p, and such blocks are usually stacked in a sequence,
a ResNet, z;11 = x4 + fi(2,0;). Often, the functional
form of f; is the same for all blocks ¢ € {1,...T'} in the
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sequence. Then, we can represent the sequence through
Zi41 — ¢ = fo(w,t), where © consists of trainable pa-
rameters for all blocks in the sequence; the second argument,
t, allows us to pick the proper subset of parameters, 6;. If we
allow arbitrary fe, for example a neural network with input
and output dimensionality p but with many hidden layers of
dimensionality higher than p, a sequence of residual blocks
can, in principle, model arbitrary mappings x — ¢r(x),
where we define ¢7(z9) = x7 to be the result of applying
the sequence of T residual blocks to the initial input xg.
For example, a linear layer preceded by a deep sequence
of residual blocks is a universal approximator for Lebesgue
integrable functions R? — R (Lin & Jegelka, 2018).

Recently, models arising from residual blocks have gained
attention as a means to construct invertible networks; that
is, training a network results in a mapping o — zr for
which an inverse mapping zp — x( exists. Ability to train
a mapping that is guaranteed to be invertible has practical
applications; for example, they give rise to normalizing
flows (Deco & Brauer, 1995; Rezende & Mohamed, 2015),
which allow for sampling from a complicated, multi-modal
probability distribution by generating samples from a simple
one, and transforming them through an invertible mapping.
Thus, it is important to know whether an invertible model
can be trained to approximate arbitrary invertible mappings,
or if its approximation capabilities are limited.

1.1. Invertible Models

We focus our attention on two invertible models proposed
recently: i-ResNet, a constrained ResNet, and Neural ODE,
a continuous generalization of a ResNet.

Invertible Residual Networks While ResNets refer to
arbitrary networks with any residual blocks z;4; = x; +
fo(xy,t), thatis, can have any residual mapping fo(x¢, t), i-
ResNets (Behrmann et al., 2019), and their improved variant,
Residual Flows (Chen et al., 2019), are built from blocks
in which fg is Lipschitz-continuous with constant lower
than 1 as a function of x; for fixed ¢, which we denote by
Lip(fe) < 1. This constraint is sufficient (Behrmann et al.,
2019) to guarantee invertibility of the residual network, that
is, to make x; — x4y1 a one-to-one mapping.

Given the constraint on the Lipschitz constant, an invert-
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ible mapping x — 2z cannot be performed by a single
i-ResNet layer. But a stack of two layers, each of the form
r — o+ (v/2 — 1)z and thus Lipschitz-continuous with
constant lower than 1, yields the desired mapping. A single
i-ResNet layer ;11 = (I 4+ fo)(x¢,t), where [ is the iden-
tity mapping, is Lip({ + fo) = k < 2, and a composition
of T such layers has Lipschitz constant of at most K = k7.
Thus, for any finite K, it might be possible to approximate
any invertible mapping h with Lip(h) < K by a series of
i-ResNet layers, with the number of layers depending on
K. However, the question whether the possibility signaled
above is true, and i-ResNet have universal approximation ca-
pability within the class of invertible continuous mappings,
has not been considered thus far.

Neural Ordinary Differential Equations Neural ODEs
(ODE-Nets) (Chen et al., 2018) are a recently proposed class
of differentiable neural network building blocks. ODE-Nets
were formulated by observing that processing an initial input
vector x( through a sequence of residual blocks can be seen
as evolution of z, in time ¢ € {1,...T'}. Then, a residual
block (eq. 1) is a discretization of a continuous-time system
of ordinary differential equations (eq. 2)

T — 2 = fo(xe,t), (1)

dzy . T4, — Tt
— L s T . 2
dt a0 o fo(@,t) @

The transformation ¢ : X — X taking z( into x realized
by an ODE-Net for some chosen, fixed time 7" € R is not
specified directly through a functional relationship z —
f () for some neural network f, but indirectly, through the
solutions to the initial value problem (IVP) of the ODE

T
rr = ¢r(T0) = To +/ fola,t)dt 3)
0

involving some underlying neural network fg(x,t) with
trainable parameters ©. By a p-ODE-Net we denote an
ODE-Net that takes a p-dimensional sample vector on in-
put, and produces a p-dimensional vector on output. The
underlying network fg must match those dimensions on its
input and output, but in principle can have arbitrary inter-
nal architecture, including multiple layers of much higher
dimensionality.

By the properties of ODEs, ODE-Nets are always invertible,
we can just reverse the limits of integration, or alternatively
integrate — fo (¢, t). The adjoint sensitivity method (Pon-
tryagin et al., 1962) based on reverse-time integration of an
expanded ODE allows for finding gradients of the IVP so-
lutions ¢ (o) with respect to parameters © and the initial
values z(. This allows training ODE-Nets using gradient
descent, as well as combining them with other neural net-
work blocks. Since their introduction, ODE-Nets have seen

improved implementations (Rackauckas et al., 2019) and
enhancements in training and stability (Gholami et al., 2019;
Zhang et al., 2019).

Unlike an unconstrained residual block, a Neural ODE on
its own does not have universal approximation capability.
Consider a continuous, differentiable, invertible function
f(z) = —x on X = R. There is no ODE defined on R
that would result in 27 = ¢r(x9) = —xz¢ (Dupont et al.,
2019). Informally, in ODEs, paths (x4, t) between the initial
value (x0,0) and final value (z7,T) have to be continu-
ous and cannot intersect in X x R for two different initial
values, and paths corresponding to z — —z and 0 — 0
would need to intersect. By contrast, in an unconstrained
residual block sequence, a discrete dynamical system on X,
we do not have continuous paths, only points at unit-time
intervals, with an arbitrary transformation between points;
finding an unconstrained ResNet for x — —x is easy. While
ODE-Nets used out-of-the-box have limited modeling ca-
pability, some evidence exists that this limitation can be
overcome by changing the way way ODE-Nets are applied.
Yet, the question whether they can be turned into universal
approximators remains open.

1.2. Our Contribution

We analyze the approximation capabilities of ODE-Nets
and i-ResNets. The results most closely related to ours have
been recently provided by the authors of ANODE (Dupont
et al., 2019), who focus on a p-ODE-Net followed by a lin-
ear layer. They provide counterexamples showing that such
an architecture is not a universal approximator of R? — R
functions. However, they show empirical evidence indicat-
ing that expanding the dimensionality and using g-ODE-Net
for ¢ > p instead of a p-ODE-Net has positive impact on
training of the model and on its generalization capabilities.
The authors of i-ResNet (Behrmann et al., 2019) also use
expanded dimensionality in their experiments, observing
that it leads to a modest increase in model’s accuracy.

Here, we prove that setting ¢ = p + 1 is enough to turn
Neural ODE followed by a linear layer into a universal
approximator for R? — R. We show similar result for i-
ResNet. Our main focus is on modeling invertible functions
— homeomorphisms — by exploring pure ODE-Nets and i-
ResNets, not capped by a linear layer. We show a class of
X — X invertible mappings that cannot be expressed by
these modeling approaches when they operate within X'. We
then prove that any homeomorphism X — X, for X C RP,
can be modeled by a Neural ODE / i-ResNet operating on
an Euclidean space of dimensionality 2p that embeds X as a
linear subspace. In our proofs, we relied on using universal
approximation property of feed-forward networks, thus, the
invertible models may need to be large.
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2. Background on ODEs, Flows, and
Embeddings

This section provides background on invertible mappings
and ODEs; we recapitulate standard material, for details see
(Utz, 1981; Lee, 2001; Brin & Stuck, 2002; Younes, 2010).

2.1. Flows

A mapping h : X — X is a homeomorphism if h is a one-
to-one mapping of X’ onto itself, and both h and its inverse
h~! are continuous. Here, we will assume that X C RP? for
some p, and we will use the term p-homeomorphism where
dimensionality matters.

A topological transformation group or a flow (Utz, 1981) is
an ordered triple (X, G, ®) involving an additive group G
with neutral element 0, and a mapping ® : X xG — X such
that ®(z,0) = x and ®(P(x, s),t) = P(x, s+t) forall x €
X, all s,t € G. Further, mapping ®(z, t) is assumed to be
continuous with respect to the first argument. The mapping
® gives rise to a parametric family of homeomorphisms
¢¢ : X — X defined as ¢;(z) = ®(z,t), with the inverse
being <;§;1 = ¢_;. We will use the term p-flow to indicate
that X C RP.

Given a flow, an orbit or a trajectory associated with x € X
is a subspace G(z) = {®(z,t) : t € G}. Given z,y € X,
either G(z) = G(y) or G(z) N G(y) = 0; two orbits are
either identical or disjoint, they never intersect. A point
x € X is a fixed point if G(x) = {x}. A path is a part of
the trajectory defined by a specific starting and end points.
A path is a subset of X'; we will also consider a space-time
path composed of points (z;, t) if we need to make the time
evolution explicit.

A discrete flow is defined by setting G = Z. For arbi-
trary homeomorphism h of X onto itself, we easily get
a corresponding discrete flow, an iterated discrete dynam-
ical system, ¢o(z) = @, P11 = h(de(x)), ¢-1(z) =
h=1(¢¢(z)). Setting f(x) = h(x) — x gives us a ResNet
211 = x¢ + f(x¢) corresponding to h, though not neces-
sarily an i-ResNet, since there is no Lip(f) < 1 constraint.
For Neural ODEzs, the type of flow that is relevant is a con-
tinuous flow, defined by setting G = R, and adding an
assumption that the family of homeomorphisms, the func-
tion ® : X x R — &, is differentiable with respect to its
second argument, ¢, with continuous d®/ d¢. The difference
compared to a discrete flow is that the flow at time t, ¢;(x),
is now defined for arbitrary ¢ € R, not just for integers.

Informally, in a continuous flow the orbits are continuous,
and the property that orbits never intersect has consequences
for what homeomorphisms ¢, can result from a flow. Unlike
in the discrete case, for a given homeomorphism h there
may not be a continuous flow such that ¢ = h for some 7.

We cannot just set ¢ = h, what is required is a continuous
family of homeomorphisms ¢; such that ¢ = h and ¢y is
identity — such family may not exist for some h. In such
case, a Neural ODE would not be able to model h. While
i-ResNets are discrete, the way they are constructed may
also limit the space of mappings they can model to a subset
of all homeomorphisms, even if each residual mapping is
made arbitrarily complex within the Lipschitz constraint.

2.2. Continuous Flows and ODEs

Given a continuous flow (X, R, ®) one can define a corre-
sponding ODE on X by defining a vector V(z) € R? for
every v € X C RP such that V(z) = d®(z,t)/dt[,_,.
Then, the ODE dz/ d¢t = V' (z) corresponds to continuous
flow (X,R,®). Indeed, ®(xo,T) = zo + fOT V() dt,
¢o is identity, and ¢(sy7)(70) = ¢1r(ds(wo)) for time-
independent V. Thus, for any homeomorphism family &
defining a continuous flow, there is a corresponding ODE
that, integrated for time 7', models the flow at time 7,

o ().

The vectors of derivatives V(z) € RP for all x € X are
continuous over X and are constant in time, and define
a continuous vector field over RP. The ODEs evolving
according to such a time-invariant vector field, where the
right-hand side of eq. 2 depends on z; but not directly on
time ¢, are called autonomous ODEs, and take the form of
dz/dt = fe(x).

Any time-dependent ODE (eq. 2) can be transformed into an
autonomous ODE by removing time ¢ from being a separate
argument of fg(x¢,t), and adding it as part of the vector
x;. Specifically, we add an additional dimension' z[7] to
vector x, with 7 = p + 1. We equate it with time, z[7] = ¢,
by including dz[7]/ d¢ = 1 in the definition of how fg acts
on x4, and including xo[7] = 0 in the initial value z(. In
defining fo, explicit use of ¢ as a variable is being replaced
by using the component x[7] of vector x;. The result is an
autonomous ODE.

Given time 7" and an ODE defined by feo, ¢, the flow at
time 7', may not be well defined, for example if fg diverges
to infinity along the way. However, if fg is well behaved,
the flow will exist at least locally around the initial value.
Specifically, Picard-Lindel6f theorem states that if an ODE
is defined by a Lipschitz-continuous function fg (), then
there exists € > 0 such that the flow at time T, ¢, is
well-defined and unique for —¢ < T" < ¢, with the range
€ in which the flow is unique and within certain bounds
depending the inverse of the Lipschitz constant. If exists,
¢7 is a homeomorphism, since the inverse exists and is
continuous; simply, ¢_r is the inverse of ¢r.

"To avoid confusion with x; indicating time, we use z[i] to
denote ¢-th component of vector x.
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2.3. Flow Embedding Problem for Homeomorphisms

Given a p-flow, we can always find a corresponding ODE.
Given an ODE, under mild conditions, we can find a corre-
sponding flow at time T, ¢, and it necessarily is a homeo-
morphism. Is the class of p-flows equivalent to the class of
p-homeomorphisms, or only to its subset? That is, given a
homeomorphism h, does a p-flow such that ¢ = h exist?
This question is referred to as the problem of embedding
the homeomorphism into a flow. In the embedding problem,
equality ¢ = h is need, which contrasts it with results on
approximating h by ¢ up to arbitrary error € in L, sense
over a bounded domain, as studied in (Brenier & Gangbo,
2003) and in the context of deep models in (Li et al., 2019).

For ahomeomorphism h : X — X, its restricted embedding
into a flow is a flow (X, R, ®) such that h(zx) = &(x,T)
for some T'; the flow is restricted to be on the same domain
as the homeomorphism. Studies of homeomorphisms on
simple domains such as a 1D segment (Fort, 1955) or a 2D
plane (Andrea, 1965) showed that a restricted embedding
does not always exist.

An unrestricted embedding into a flow (Utz, 1981) is a flow
(Y, R, @) on some space ) of dimensionality higher than
p. It involves a homeomorphism g : X — Z that maps X
into some subset Z C ), such that the flow on Y results
in mappings on Z that are equivalent to h on X" for some
T, that is, g(h(z)) = ®(g(z),T). While a solution to the
unrestricted embedding problem always exists, it involves a
smooth, non-Euclidean manifold ). For a homeomorphism
h: X — X, the manifold ), variously referred to as the
twisted cylinder (Utz, 1981), or a suspension under a ceiling
function (Brin & Stuck, 2002), or a mapping torus (Browder,
1966), is a quotient space Y = X x [0,1]/ ~ defined
through the equivalence relation (z,1) ~ (h(z),0). The
flow that maps x at ¢t = 0 to h(z) att = 1 and h(h(z)) at
t = 2 involves trajectories in X’ x [0, 1]/ ~ in the following
way: for ¢ going from O to 1, the trajectory tracks in a
straight line from (x,0) to (z,1); in the quotient space
(z,1) is equivalent to (h(x),0). Then, for ¢ going from 1
to 2, the trajectory proceeds from (h(z),0) to (h(z),1) ~

(h(h(x)),0).

The fact that the solution to the embedding problem involves
a flow on a non-Euclidean manifold makes applying it in
the context of gradient-trained ODE-Nets difficult.

3. Approximation of Homeomorphisms by
Neural ODEs

In exploring the approximation capabilities of Neural ODEs
for p-homeomorphisms, we will assume that the neural
network fo(z:) on the right hand side of the ODE is a
universal approximator and, if needed, can be made large
enough to closely approximate any desired function. Thus,

our concern is with what flows can be modeled by a g-
ODE-Net assuming that fg(x;) can have arbitrary internal
architecture, including depth and dimensionality, as long
as its input-output dimensionality remains fixed at g. We
consider two scenarios, ¢ = p, and ¢ > p.

3.1. Restricting the Dimensionality Limits Capabilities
of Neural ODEs

We show a class of functions that a Neural ODE cannot
model, a class that generalizes the z — —x one-dimensional
example reported previously (Dupont et al., 2019).

Theorem 1. Let X = RP, and let Z C X be a set that
partitions X into two or more disjoint, connected subsets
C;, for i = [m]; that is, X = Z U (|, C;). Consider a
mapping h : X — X that

* is an identity transformation on Z, that is, Vz €
Z. h(z) =2,

* maps some x € C; into h(x) € Cj, fori # j.
Then, no p-ODE-Net can model h.

Proof. A p-ODE-Net can model £ if a restricted flow em-
bedding of h exists. Suppose that it does, a continuous flow
(X, R, @) can be found for h such that the trajectory (see
Fig. 2, left) of ®(z,t) is continuous on ¢ € [0,7] with
&(z,0) =, ®(x,T) = h(x) forsome T € R, all z € X.

If h maps some = € C; into h(z) € C, for i # j, the
trajectory from ®(x,0) =z € C; to ®(z,T) = h(x) € C}
crosses Z — there is z € Z such that ®(x, 7) = z for some
7 € (0,7). From uniqueness and reversibility of ODE
trajectories, we then have ®(z, —7) = z. From additive
property of flows, we have ®(z,T — 7) = h(z).

Since h is identity over Z and Z C X, thus h(z) =
®(z,T) = ®(z,0) = z. That is, the trajectory over
time 7T is a closed curve starting and ending at z, and
®(z,t) = ®(2,T + t) for any t € R. Specifically,
O(z2,T —7) = ®(2,—7) = z. Thus, h(z) = . We
arrive at a contradiction with the assumption that - and h(x)
are in two disjoint subsets of R? separated by Z. Thus, no
p-ODE-Net can model h.

O

The result above shows that Neural ODEs applied in the
most natural way, with ¢ = p, are restricted in the way
distinct regions of the input space can be rearranged in order
to learn and generalize from the training set, and the restric-
tions go well beyond requiring invertibility and continuity.
For example, a mirror reflection around a multidimensional
place meets the conditions in the theorem above, and thus
cannot be modeled by any Neural ODE.
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a) Surface view of trajectories in R? x time for three different homeomorphisms h: R - R
h(x) = 2x

h(x) = x+1
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Figure 1. Trajectories in R*” that embed an R” — R? homeomorphism, using f(7) = (1 —cos77)/2 and g(7) = (1 — cos 277). Three
examples for p = 1 are shown, including the mapping h(x) = —x that cannot be modeled by Neural ODE on R?, but can in R??. In a),
shading is used to represent 3D shapes, in b) trajectory color changes with time from blue (¢ = 0) to red (¢t = 1).

3.2. Neural ODEs with Extra Dimensions are Universal
Approximators for Homeomorphisms

If we allow the Neural ODE to operate on Euclidean space
of dimensionality ¢ > p, we can approximate arbitrary p-
homeomorphism X — X, as long as ¢ is high enough?.
Here, we show that is suffices to take ¢ = 2p. We construct
a mapping from the original problem space, X € RP into
R?? that ?

* preserves X as a p-dimensional linear subspace con-
sisting of vectors [z, 0(P)],

» leads to an ODE that maps [z, 0?P)] — [h(z), 0()].

Thus, we provide a solution with a structure that is conve-
nient for out-of-the-box training and inference using Neural
ODE:s - it is sufficient to add p zeros to input vectors.

Theorem 2. For any homeomorphism h X — A,
X C RP, if a feed-forward network for mapping 0(x) =
h(z) —  can be constructed, then there exists a 2p-ODE-
Net ¢ : R? — R?P for T = 1 such that ¢ ([z,0P)]) =
[h(x),0®)] for any x € X.

Proof. We prove the existence in a constructive way, by
showing a vector field in R??, and thus an ODE, with the
desired properties.

>The quotient space ) from Section 2.3, the twisted cylin-
der resulting from a p-homeomorphism, is a smooth manifold of
dimensionality p + 1. Strong Whitney embedding theorem (Whit-
ney, 1944) ensures existence of an embedding of ) in (2p + 2)-
dimensional Euclidean space as its submanifold.

3We use upper subscript z® to denote dimensionality of vec-
tors; that is, 0P) € RP.

We start with the extended space (x, 7) with a variable 7
corresponding to time added as the last dimension, as in the
construction of an autonomous ODE from time-dependent
ODE. We then define a mapping y(z,7) : R? x R — R??
that will represent paths starting from x at time 7 = 0. For
T € [0, 1], the mapping (see Fig. 1) is defined through

y(a,7) =[x+ f(7)0z, 62g(7)] - )

For each z, let 0, € R? be defined as d, = h(x) — z. The
functions f,g : R — R are required to have continuous
first derivative, and have f(0) = 0, f(1) = 1, g(1) =0
iff 7 € Z, and the derivatives df/ d7 and dg/ d7 are null
at 7 € Z and only there. The mapping indeed just adds p
dimensions of 0 to z at time 7 = 0, and at time 7 = 1 it
gives the result of the homeomorphism applied to z, again
with p dimensions of 0

y(z,0)) = [$7O(p)]a
y(@,1) = [z + 6,07 = [h(z),0%)] = y(h(z),0).

For the purpose of constructing an ODE-Net with universal
approximation capabilities, 7 € [0, 1] suffices. However,
more generally we can define the mapping for 7 ¢ [0, 1],
by setting y(z,7) = y(hl"D 7 — |7]); for example,
y(z, —1.75) = y(h =1 (h~1(x)),0.25). Intuitively, the map-
ping y(x,7) will provide the position in R?" of the time
evolution for duration 7 of an ODE on R?? starting from a
position corresponding to x.

For two distinct z,2’ € RP, the paths in R?P given by
eq. 4 do not intersect at the same position at the same
point in time. First, consider the case where ¢, is not par-
allel to d,-. Then, the second set of p variables is equal
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only if g(7) = 0, that is, only at integer 7. At those time
points, the first set of p variables takes iterates of h, that
is, .., h =1,z h(x), h(h(z)), ..., which are different for dif-
ferent x because h is a homeomorphism. Second, consider
x,x’ such that §,» = cd, for some c. Then, either ¢ # 1
and thus g(7) # cg(7) for all non-integer 7, that is, the
second set of p variables are always different except at 7
corresponding to iterates of h, which are distinct; or ¢ = 1,
and the second set of p variables are always the same. In
the latter case, also f(7)d, = f(7)d., hence the first set
of variables is « + f(7)J,, is only equal to &’ + f(7)d, if
x = 2'. Thus, in R?P, paths starting from two distinct points
do not intersect at the same point in time. Intuitively, we
have added enough dimensions to the original space so that
we can reroute all trajectories without intersections.

We have 7 correspond directly to time, that is, d7/dt = 1
The mapping y has continuous derivative with respect to ¢,
defining a vector field over the image of g, a subset of R??

dy _[df. dg
dt [dt 0z, dtéx] ’

From the conditions on f, g, we can verify that this time-
dependent vector field defined through derivatives of y(x, 7)
with respect to time has the same values for 7 = 0 and
7 = 1for any z

dy
dt

dy
dt

(2,0) = 09,00] = ¥ (2,1) = L (h(a), 0

Thus, the vector field is well-behaved at y(z,1) =
y(h(z),0), it is continuous over the whole image of y. The
vector field above is defined over a closed subset y(z, 7) of
R?P, and can be (see (Lee, 2001), Lemma 8.6) extended to
the whole R??. A (2p)-ODE-Net with a universal approxi-
mator network fg on the right hand side can be designed to
approximate the vector field arbitrarily well. The resulting
ODE-Net approximates [z, 07] to [h(z), 07]. O

Based on the above result, we now have a simple method for
training a Neural ODE to approximate a given continuous,
invertible mapping h and, for free, obtain also its continuous
inverse . On input, each sample z is augmented with p
zeros. For a given x, the output of the ODE-Net is split into
two parts. The first p dimensions are connected to a loss
function that penalizes deviation from h(x). The remaining
p dimensions are connected to a loss function that penalizes
for any deviation from 0. Once the network is trained, we
can get h~! by using an ODE-Net with — fg instead of fo
used in the trained ODE-Net.

For any well-behaving invertible function h, given a training
set of pairs (z, h(z)), a large-enough feed-forward network
can approximate it on that training set. But even if h is a
homeomorphism, training the network is unlikely to produce

an invertible mapping, it may have h(z') = h(z") for some
2’ # 2", especially outside of the training set. Our results
rely on univeral approximation capabilities of feed-forward
networks. We required existence of a feed-forward network
that can be used to defined the trajectories leading to a flow
equal to h. In our constructions, we relied on a mapping
d(x) = h(z) — x and on simple functions f and g, thus,
the feed-forward network needed to learn the vector field
should be comparable in size to a network needed to learn
h without any invertibility guarantees.

4. Approximation of Homeomorphisms by
i-ResNets

4.1. Restricting the Dimensionality Limits Capabilities
of i-ResNets

We show that similarly to Neural ODEs, i-ResNets cannot
model a simple f(z) — —x homeomorphism R — R,
indicating that their approximation capabilities are limited.

Theorem 3. Let F,(x) = (I + fn)o (I + fn_1)o0---0
(I + f1)(x) be an n-layer i-ResNet, and let xo = x and
Ty = Fyp(xo). IfLip(fi) < lforalli = 1,...,n, then
there are is no number n > 1 and no functions f; for all
i =1,...,n such that x,, = —xy.

Proof. Consider ag € R and bg = ag+dg. Then, a; = ag+
f1 (ao) and by = ag + g + f1 (ao + (50) From Llp(fl) <1
we have that |f1(ag + do) — f1(ao)| < |do| (see Fig. 2,
center). Let 1 = b; — aq. Then, we have

01 = ag + 6o + fi(ao + do) — ao — fi(ao)
= do + fi(ao + o) — fi(ao),

51 > (5() — |(50|7

51 < 8o + [ol.

That is, d; has the same sign as dp. Thus, applying the
reasoning to arbitrary ¢, ¢ + 1 instead of 0,1, if a; < b;,
then A < bi+1, and if a; > b;, then Ajpr1 > bi+1, for all
1 =20,...,n — 1. Assume we can construct an i-ResNet F},
such that F,(0) = 0; then F,,(z) > 0 for any z > 0, and
F,(z) cannot map z into —z. O

The result above leads to a more general observation about
paths in spaces of dimensionality higher than one. As with
ODE-Nets, we will use p-i-ResNet to denote an i-ResNet
operating on RP.

Corollary 4. Let the straight line connecting r; € RP
to viv1 = x¢ + f(xr) € RP be called an extended path
Ty — Ti41 of a time-discrete topological transformation
group on X € RP. In p-i-ResNet, for x; # x}, extended
paths vy — x,41 and x; — x;, = x; do not intersect.
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Figure 2. Tllustration of constructions used in proofs. Left: Theorem 1. Center: Theorem 3. Right: Collorary 4.

Proof. For two extended paths to intersect, vectors
Ty, Ty, Tyq1, Ty, have to be co-planar. If we restrict at-
tention to dynamics starting form x;, x}, we can view it as
a one-dimensional system, with the space axis parallel to
x; — x4, and time axis orthogonal to it. If zy ) — 2}, is
parallel to z; — x}, Theorem 3 shows that if z} is above x4,
then x} , ; is above 2, 1; extended paths do not intersect.

If 2441 — 2}, is not parallel to 2, — x} (see Fig. 2, right),
construct a new i-ResNet z — z + g(x) with g(x;) =
cf(xy) and g(x}) = ¢ f(x}), with 0 < ¢, < 1 to preserve
Lipschitz condition *. Assuming extended paths from x, x,
intersect in the original i-ResNet, we can pick ¢, ¢ such that
x¢ + g(xy) = z; + g(z}). This preserves the intersection in
the new i-ResNet, and makes x,;1, z},; equally far from
the line z; — ;. Now, Theorem 3 can be applied as above,
leading to contradiction; the intersection cannot exist in the
original i-ResNet. O

The result allows us to show that i-ResNets faces a similar
constraint in its capabilities as Neural ODEs

Theorem 5. Let X =RP, andlet Z C X andh: X — X
be the same as in Theorem 1. No p-i-ResNet can model h.

Proof. Consider a T-layered i-ResNet on X, giving rise to
extended space-time paths in X x [0, T'], with integer ¢ €
[0, T'] corresponding to activations in subsequent layers. For
any x € Z, the extended path in X' x [0, T'] starts at (x,0)
and ends at (z,T). Since i-ResNet layers are continuous
transformations, the union of all extended paths arising
from Z is a simply connected subset of X’ x [0, T'; it has no
holes and partitions X' x [0, T'] into separate regions. Since
extended paths cannot intersect, (x, T') remains in the same
region as (x,0), which is in contradiction with mapping
h. O

It preserves it for the x¢, ) pair. Then, function g that is
Lip(g) < 1 over whole R” can always be constructed around
g(zy) = cf(ze) and g(zi) = ' f(zy) for 0 < ¢, < 1,
Lip(f) < 1, e.g. by interpolating g linearly between g(z:) and
g(x}) over the segment [z, 7], replicating the segment endpoints
beyond its ends on the line passing through it, and replicating g
from the line into the rest of R”.

The proof shows that the limitation in capabilities of the two
architectures for invertible mappings analyzed here arises
from the fact that paths in invertible mappings constructed
through NeuralODEs and i-ResNets are not allowed to in-
tersect and from continuity in X.

4.2. i-ResNets with Extra Dimensions are Universal
Approximators for Homeomorphisms

Similarly to Neural ODEs, expanding the dimensionality of
the i-ResNet from p to 2p by adding zeros on input guaran-
tees that any p-homeomorphism can be approximated, as
long as its Lipschitz constant is finite and an upper bound
on it is known during i-ResNet architecture construction.

Theorem 6. For any homeomorphism h : X — X, X C
RP with Lip(h) < k, if a feed-forward network for mapping
d(x) = h(xz) — = can be constructed, then there exists a
2p-i-ResNet ¢ : R?P — R?P with |k + 4] residual layers
such that ¢([z,0P)]) = [h(z),0P)] for any x € X.

Proof. For a given invertible i-ResNet approximating h,
define a possibly non-invertible mapping 6(z) = (h(z) —
x)/T, where T = |k + 1]; we have Lip(§(x)) < 1. Ani-
ResNet that models h using 7'+ 3 layers ¢; fori = 0, ..., T+
2 can be constructed in the following way:

¢0([Ivo]) - [:E,O] + [0,5(17)],

oil[z,y]) = [z, 9] + WT/(T +1),0]
for i=0,...,T,

¢r2([h(z),0(x)]) = [A(z),d(2)] + [0, =4 ()]

The first layer maps x into §(z) and stores it in the second
set of p activations. The subsequent 1" + 1 layers progress
in a straight line from [z, ()] to [h(z),0(z)] in T + 1
constant-length steps, and the last layer restores null values
in the second set of p activations.

All layers are continuous mappings. The residual part
of the first layer has Lipschitz constant below one, since
Lip(6(x)) < 1. The middle layers have residual part con-
stant in z and contractive in y, with Lipschitz constant be-
low one. The residual part of the last layer is a mapping
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of the form [h,d] — [0,—0d]. For a pair z,2’ € X, let
h = h(z),h = h(z'), § = §(z),d’ = §(z'). We have
110, =6] = [0, =0"J|| = [0 = &"[| < [|[h, 6] — [#, &"]|, with
equality only if & = A'. Since h(x) is a homeomorphism,
from invertibility of h(x) we have that h = h’ implies
x = x’ and thus § = ¢’; hence, the residual part of the last
layer also has Lipschitz constant below one. O

The construction above suggests that while on the order of k
layers may be needed to approximate arbitrary homeomor-
phism h(z) with Lip(h) < k, only the first and last layers
depend on h(z) and need to be trained; the middle layers
are simple, fixed linear layers. The last layer for z — h(z)
is the same as the first layer of h(x) — x would be, but the
inverse of the first layer, but since i-ResNet construct invert-
ible mappings  — x + f(z) using possibly non-invertible
f (), it has to be trained along with the first layer.

The construction for i-ResNets is similar to that for Neu-
ralODEs, except one does not need to enforce differentia-
bility in the time domain, hence we do not need smooth
accumulation and removal of d(z) in the second set of p
activations, and the movement from « to h(x) in the original
p dimensions does not need to be smooth. In both cases, the
transition from x to h(x) progresses along a straight line
in the first p dimensions, with the direction of movement
stored in the second set of p variables.

5. Invertible Networks capped by a Linear
Layer are Universal Approximators

We show that a Neural ODE or an i-ResNet followed by
a single linear layer can approximate functions, including
non-invertible functions, equally well as any traditional feed-
forward neural network. Since networks with shallow-but-
wide fully-connected architecture (Cybenko, 1989; Hornik,
1991), or narrow-but-deep unconstrained ResNet-based ar-
chitecture (Lin & Jegelka, 2018) are universal approxima-
tors, so are ODE-Nets and i-ResNets. Consider a function
RP — R". For any (x, y) such that y = f(z), the mapping
[x,0] — [z,y] is a (p + r)-homeomorphism, and as we
have shown, can be approximated by a 2(p + r)-ODE-Net
or 2(p + r)-i-ResNet; y can be extracted from the result by
a simple linear layer. Through a simple construction, we
show that using just p 4 r dimensions is sufficient.

Theorem 7. Consider a neural network F' : RP — R"
that approximates function f : X — R" that is Lebesgue
integrable for each of the r output dimensions, with X C RP
being a compact subset. For ¢ = p + r, there exists a linear
layer-capped q-ODE-Net that can perform the mapping
F. If f is Lipschitz, there also is a linear layer-capped
g-i-ResNet for F.

Proof. Let G be a neural network that takes input vectors

2@ = [2() 2(")] and produces ¢-dimensional output vec-
tors y(9 = [y, 4], where y(") = F(z(®) is the de-
sired transformation. G is constructed as follows: use F'
to produce y(™ = F(x(), ignore ("), and always out-
put y® = 0. Consider a ¢-ODE-Net defined through
dz/dt = G(zy) = [0(1’),F(x£p))]. Let the initial value
be 29 = [2(P),0(")]. The ODE will not alter the first p di-
mensions throughout time, hence for any ¢, F(mgp )) =y,
After time 1" = 1, we will have

1 1
or=an+ [ Glade=o®,00)+ [0,y ar
0 0

— [x(p)7 F(x(”))].

Thus, for any = € RP?, the output F'(z) can be recovered
from the output of the ODE-Net by a simple, sparse linear
layer that ignores all dimensions except the last r, which
it returns. A similar construction can be used for defining
layers of i-ResNet. We define k residual layers, each with
residual mapping [z(®), ...] — [z®),..]+[0®) F(z®))/k].
If Lip(F) < k, then the residual mapping [z(),..] —
[0(®) F(x(P)) /K] has Lipschitz constant below 1. O

The result shows that invertible models can serve as a build-
ing block for arbitrary learning problems.

6. Experimental Results
6.1. i-ResNets

We tested whether i-ResNet operating in one dimension
can learn to perform the z — —z mapping, and whether
adding one more dimension has impact on the ability learn
the mapping. To this end, we constructed a network with
five residual blocks. In each block, the residual mapping is
a single linear transformation, that is, the residual block is
41 = oy + Waxy. We used the official i-ResNet PyTorch
package (Behrmann et al., 2019) that relies on spectral nor-
malization (Miyato et al., 2018) to limit the Lipschitz con-
stant to less than unity. We trained the network on a set of
10,000 randomly generated values of = uniformly distributed
in [—10, 10] for 100 epochs, and used an independent test
set of 2,000 samples generated similarly.

For the one-dimensional x — —xz and the two-dimensional
[x,0] = [—z, 0] target mapping, we used MSE as the loss.
Adding one extra dimension results in successful learning of
the mapping, confirming Theorem 6. The test MSE on each
output is below 10~19; the network learned to negate x, and
to bring the additional dimension back to null, allowing for
invertibility of the model. For the i-ResNet operating in the
original, one-dimensional space, learning is not successful
(MSE of 33.39), the network learned a mapping x — cz for
a small positive c, that is, the mapping closest to negation of
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Figure 3. Left and center: test set cross-entropy loss, for increasing number d of null channels added to RGB images. For each d, the
input images have dimensionality 32 X 32 x (3 + d). Left: ODE-Net with k=64 convolutional filters; center: k=128 filters. Right:
Minimum of test set cross-entropy loss across all epochs as a function of d, the number of null channels added to input images, for

ODE-Nets with different number of convolutional filters, k.

x that can be achieved while keeping non-intersecting paths,
confirming experimentally Corollary 4.

We also performed a similar test for a 2D mapping, where
the homeomorphism to be learned is a reflection around
a random line. We used random data sampled uniformly
from the [—1,1]? cube, with training and test sets sizes
as above. For the variant with augmented dimensionality,
we used a loss with equal weight in front of the MSE for
approximating h(z) on the first two dimensions and the Lo
penalty on the added two dimensions. The test set MSE for
the model that uses only two dimensions is 0.166. Once
two more dimensions are added, test set MSE drops to
2711 for approximating h on the first two dimensions, and
the other two dimensions returns to almost zero, their mean
magnitude is 9712, These results confirm Theorem 6 beyond
one-dimensional settings.

6.2. Neural ODEs

To validate Theorem 2, we used the same two-dimensional
problem as for i-ResNets, learning to approximate a reflec-
tion around a random line. The test set MSE for the model
that only uses two dimensions is 0.166, same as with i-
ResNet. Once two more dimensions are added, test set MSE
drops to 377 for approximating h on the first two dimen-
sions, and the other two dimensions returns to almost zero,
they have magnitude of 6=°.

We also performed experiments to validate if the ¢ > 2p-
dimensions threshold beyond which any p-homeomorphism
can be approximated by a g-ODE-Net can be observed em-
pirically in a practical classification problem. We used the
CIFAR10 dataset (Krizhevsky, 2009) that consists of 32 x 32
RGB images, that is, each input image has dimensionality
of p = 32 x 32 x 3. We constructed a series of g-ODE-
Nets with dimensionality ¢ > p, and for each measured the
cross-entropy loss for the problem of classifying CIFAR10
images into one of ten classes. We used the default split
of the dataset into 50,000 training and 10,000 test images.

In designing the architecture of the neural network under-
lying the ODE we followed ANODE (Dupont et al., 2019).
Briefly, the network is composed of three 2D convolutional
layers. The first two convolutional layers use k filters, and
the last one uses the number of input channels as the num-
ber of filters, to ensure that the dimensionalities of the input
and output of the network match. The convolution stack is
followed by a ReLU activation function. A linear layer, with
softmax activation and cross-entropy loss, operates on top
the ODE block. We used torchdiffeq package (Chen et al.,
2018) and trained on a single NVIDIA Tesla V100 GPU.

To extended the dimensionality of the space in which the
ODE operates, we introduce additional null channels on
input, that is, we use input images of the form 32 x 32 x
(3+d). Then, to achieve ¢ = 2p, we need d = 3. We tested
d € {0, ..., 7}. To analyze how the capacity of the network
interplays with the increases in input dimensionality, we
also experimented with varying the number of convolutional
filters, k, in the layers inside the ODE block.

The results in Fig. 3 show that once the networks with
small network capacity, below 64 filters, behaves differently
than networks with 64 or more filters. Once the network
capacity is high enough, at 64 filters or more, adding dimen-
sions past beyond 3, that is, beyond 2p, results in slower
decrease in test set loss. To quantify if this slowdown is
likely to arise by chance, we calculated the change in test
set loss ¢, for dimensionality d as the d increases by one,
0g = bq — Lyg_1, for d=1,...,7. We pooled the results from
experiments with 64 convolution filter or more. Two-tailed
nonparametric Mann-Whitney U test between 1, ..., d3 and
04, .-, 07 shows the change of trend is significant (p=.002).
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