
Generative Adversarial Imitation Learning with Neural Network

Parameterization: Global Optimality and Convergence Rate

Yufeng Zhang
1

Qi Cai
1

Zhuoran Yang
2

Zhaoran Wang
1

Abstract

Generative adversarial imitation learning (GAIL)
demonstrates tremendous success in practice, es-
pecially when combined with neural networks.
Different from reinforcement learning, GAIL
learns both policy and reward function from ex-
pert (human) demonstration. Despite its empirical
success, it remains unclear whether GAIL with
neural networks converges to the globally opti-
mal solution. The major difficulty comes from
the nonconvex-nonconcave minimax optimization
structure. To bridge the gap between practice and
theory, we analyze a gradient-based algorithm
with alternating updates and establish its sublin-
ear convergence to the globally optimal solution.
To the best of our knowledge, our analysis estab-
lishes the global optimality and convergence rate
of GAIL with neural networks for the first time.

1. Introduction

The goal of imitation learning (IL) is to learn to perform a
task based on expert demonstration (Ho & Ermon, 2016).
In contrast to reinforcement learning (RL), the agent only
has access to the expert trajectories but not the rewards. The
most straightforward approach of IL is behavioral cloning
(BC) (Pomerleau, 1991). BC treats IL as the supervised
learning problem of predicting the actions based on the
states. Despite its simplicity, BC suffers from the compound-
ing errors caused by covariate shift (Ross et al., 2011; Ross
& Bagnell, 2010). Another approach of IL is inverse re-
inforcement learning (IRL) (Russell, 1998; Ng & Russell,
2000; Levine & Koltun, 2012; Finn et al., 2016), which
jointly learns the reward function and the corresponding

1Department of Industrial Engineering and Management
Sciences, Northwestern University, Evanston, IL 60208, USA
2Department of Operations Research and Financial Engineering,
Princeton University, Princeton, NJ 08544, USA. Correspondence
to: Zhaoran Wang <zhaoranwang@gmail.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

optimal policy. IRL formulates IL as a bilevel optimization
problem. Specifically, IRL solves an RL subproblem given
a reward function at the inner level and searches for the re-
ward function which makes the expert policy optimal at the
outer level. However, IRL is computationally inefficient as
it requires fully solving an RL subproblem at each iteration
of the outer level. Moreover, the desired reward function
may be nonunique. To address such issues of IRL, (Ho &
Ermon, 2016) propose generative adversarial imitation learn-
ing (GAIL), which searches for the optimal policy without
fully solving an RL subproblem given a reward function
at each iteration. GAIL solves IL via minimax optimiza-
tion with alternating updates. In particular, GAIL alternates
between (i) minimizing the discrepancy in expected cumula-
tive reward between the expert policy and the learned policy
and (ii) maximizing such a discrepancy over the reward func-
tion class. Such an alternating update scheme mirrors the
training of generative adversarial networks (GANs) (Good-
fellow et al., 2014; Arjovsky et al., 2017), where the learned
policy acts as the generator while the reward function acts
as the discriminator.

Incorporated with neural networks, which parameterize the
learned policy and the reward function, GAIL achieves sig-
nificant empirical success in challenging applications, such
as natural language processing (Yu et al., 2016), autonomous
driving (Kuefler et al., 2017), human behavior modeling
(Merel et al., 2017), and robotics (Tai et al., 2018). Despite
its empirical success, GAIL with neural networks remains
less understood in theory. The major difficulty arises from
the following aspects: (i) GAIL involves minimax optimiza-
tion, while the existing analysis of policy optimization with
neural networks (Anthony & Bartlett, 2009; Liu et al., 2019;
Bhandari & Russo, 2019; Wang et al., 2019) only focuses
on a minimization or maximization problem. (ii) GAIL with
neural networks is nonconvex-nonconcave, and therefore,
the existing analysis of convex-concave optimization with
alternating updates is not applicable (Nesterov, 2013). There
is an emerging body of literature (Rafique et al., 2018; Zhang
et al., 2019b) that casts nonconvex-nonconcave optimization
as bilevel optimization, where the inner level is solved to
a high precision as in IRL. However, such analysis is not
applicable to GAIL as it involves alternating updates.

Submission and Formatting Instructions for ICML 2020

In this paper, we bridge the gap between practice and theory
by establishing the global optimality and convergence of
GAIL with neural networks. Specifically, we parameterize
the learned policy and the reward function with two-layer
neural networks and consider solving GAIL by alternatively
updating the learned policy via a step of natural policy gra-
dient (Kakade, 2002; Peters & Schaal, 2008) and the reward
function via a step of gradient ascent. In particular, we pa-
rameterize the state-action value function (also known as
the Q-function) with a two-layer neural network and ap-
ply a variant of the temporal difference algorithm (Sutton
& Barto, 2018) to solve the policy evaluation subproblem
in natural policy gradient. We prove that the learned pol-
icy ⇡̄ converges to the expert policy ⇡E at a 1/

p
T rate

in the R-distance (Chen et al., 2020), which is defined as
DR(⇡E, ⇡̄) = maxr2R J(⇡E; r)� J(⇡̄; r). Here J(⇡; r) is
the expected cumulative reward of a policy ⇡ given a reward
function r(s, a) and R is the reward function class. The
core of our analysis is constructing a potential function that
tracks the R-distance. Such a rate of convergence implies
that the learned policy ⇡̄ (approximately) outperforms the
expert policy ⇡E given any reward function r 2 R within
a finite number of iterations T . In other words, the learned
policy ⇡̄ is globally optimal. To the best of our knowledge,
our analysis establishes the global optimality and conver-
gence of GAIL with neural networks for the first time. It
is worth mentioning that our analysis is straightforwardly
applicable to linear and tabular settings, which, however, are
not our focus.

Related works. Our work extends an emerging body of liter-
ature on RL with neural networks (Xu et al., 2019a; Zhang
et al., 2019a; Bhandari & Russo, 2019; Liu et al., 2019;
Wang et al., 2019; Agarwal et al., 2019) to IL. This line
of research analyzes the global optimality and convergence
of policy gradient for solving RL, which is a minimization
or maximization problem. In contrast, we analyze GAIL,
which is a minimax optimization problem.

Our work is also related to the analysis of apprenticeship
learning (Syed et al., 2008) and GAIL (Cai et al., 2019a;
Chen et al., 2020). (Syed et al., 2008) analyze the conver-
gence and generalization of apprenticeship learning. They
assume the state space to be finite, and thus, do not require
function approximation for the policy and the reward func-
tion. In contrast, we assume the state space to be infinite
and employ function approximation based on neural net-
works. (Cai et al., 2019a) study the global optimality and
convergence of GAIL in the setting of linear-quadratic regu-
lators. In contrast, our analysis handles general MDPs with-
out restrictive assumptions on the transition kernel and the
reward function. (Chen et al., 2020) study the convergence
and generalization of GAIL in the setting of general MDPs.
However, they only establish the convergence to a station-
ary point. In contrast, we establish the global optimality of

GAIL.

Notations. Let [n] = {1, . . . , n} for n 2 N+ and [m :
n] = {m,m + 1, . . . , n} for m < n. Also, let N(µ,⌃)
be the Gaussian distribution with mean µ and covariance
⌃. We denote by P(X) the set of all probability measures
over the space X . For a function f : X ! R, a constant
p � 1, and a probability measure µ 2 P(X), we denote
by kfkp,µ = (

R
X |f(x)|pdµ(x))1/p the Lp(µ) norm of the

function f . For any two functions f, g : X ! R, we denote
by hf, giX =

R
X f(x) · g(x)dx the inner product on the

space X .

2. Background

In this section, we introduce reinforcement learning (RL)
and generative adversarial imitation learning (GAIL).

2.1. Reinforcement Learning

We consider a Markov decision process (MDP)
(S,A, r, P, ⇢, �). Here S ✓ Rd1 is the state space,
A ✓ Rd2 is the action space, which is assumed to be finite
throughout this paper, r : S⇥A! R is the reward function,
P : S⇥A! P(S) is the transition kernel, ⇢ 2 P(S) is the
initial state distribution, and � 2 (0, 1) is the discount factor.
Without loss of generality, we assume that S⇥A is compact
and that k(s, a)k2  1 for any (s, a) 2 S ⇥A ✓ Rd, where
d = d1 + d2. An agent following a policy ⇡ : S ! P(A)
interacts with the environment in the following manner. At
the state st 2 S, the agent takes the action at 2 A with
probability ⇡(at | st) and receives the reward rt = r(st, at).
The environment then transits into the next state st+1 with
probability P (st+1 | st, at). Given a policy ⇡ and a reward
function r(s, a), we define the state-action value function
Q⇡

r : S ⇥A! R as follows,

Q⇡
r (s, a) (2.1)

= E⇡

(1� �) ·

1X

t=0

�t · r(st, at)
���� s0 = s, a0 = a

�
.

Here the expectation E⇡ is taken with respect to at ⇠
⇡(· | st) and st+1 ⇠ P (· | st, at). Correspondingly, we de-
fine the state value function V ⇡

r : S ! R and the advantage
function A⇡r : S ⇥A! R as follows,

V ⇡
r (s) = Ea⇠⇡(· | s)

⇥
Q⇡

r (s, a)
⇤
,

A⇡r (s, a) = Q⇡
r (s, a)� V ⇡

r (s).

The goal of RL is to maximize the following expected cu-
mulative reward,

J(⇡; r) = Es⇠⇢
⇥
V ⇡
r (s)

⇤
. (2.2)

The policy ⇡ induces a state visitation measure d⇡ 2 P(S)
and a state-action visitation measure ⌫⇡ 2 P(S⇥A), which

Submission and Formatting Instructions for ICML 2020

take the forms of

d⇡(s) = (1� �) ·
1X

t=0

�t · P
�
st = s

�� s0 ⇠ ⇢,⇡
�
,

⌫⇡(s, a) = d⇡(s) · ⇡(a | s). (2.3)

It then holds that J(⇡; r) = E(s,a)⇠⌫⇡ [r(s, a)]. Meanwhile,
we assume that the policy ⇡ induces a state stationary distri-
bution %⇡ over S , which satisfies that

%⇡(s) = P
�
st+1 = s

�� st ⇠ ⇢⇡, at ⇠ ⇡(· | st)
�
.

We denote by ⇢⇡(s, a) = %(s) · ⇡(a | s) the state-action
stationary distribution over S ⇥A.

2.2. Generative Adversarial Imitation Learning

The goal of imitation learning (IL) is to learn a policy that
outperforms the expert policy ⇡E based on the trajectory
{(sE

i , a
E
i)}i2[TE] of ⇡E. We denote by ⌫E = ⌫⇡E and dE =

d⇡E the state-action and state visitation measures induced
by the expert policy, respectively, and assume that the expert
trajectory {(si, ai)}i2[TE] is drawn from ⌫E. To this end, we
parameterize the policy and the reward function by ⇡✓ for
✓ 2 X⇧ and r�(s, a) for � 2 XR, respectively, and solve the
following minimax optimization problem known as GAIL
(Ho & Ermon, 2016),

min
✓2X⇧

max
�2XR

L(✓,�), (2.4)

where L(✓,�) = J(⇡E; r�)� J(⇡✓; r�)� � · (�).

Here J(⇡; r) is the expected cumulative reward defined in
(2.2), : XR ! R+ is the regularizer, and � � 0 is the
regularization parameter. Given a reward function class R,
we define the R-distance between two policies ⇡1 and ⇡2 as
follows,

DR(⇡1,⇡2) = max
r2R

J(⇡1; r)� J(⇡2; r) (2.5)

= max
r2R

E⌫⇡1

⇥
r(s, a)

⇤
� E⌫⇡2

⇥
r(s, a)

⇤
.

When R is the class of 1-Lipschitz functions, DR(⇡1,⇡2) is
the Wasserstein-1 metric between the state-action visitation
measures induced by ⇡1 and ⇡2. However, DR(⇡1,⇡2) is
not a metric in general. When DR(⇡1,⇡2)  0, the policy
⇡2 outperforms the policy ⇡1 for any reward function r 2 R.
Such a notion of R-distance is used in (Chen et al., 2020).
We denote by R� = {r�(s, a) |� 2 XR} the reward func-
tion class parameterized with �. Hence, the optimization
problem in (2.4) minimizes the R�-distance DR� (⇡E,⇡✓)
(up to the regularizer � · (�)), which searches for a policy
⇡̄ that (approximately) outperforms the expert policy given
any reward function r� 2 R� .

3. Algorithm

In this section, we introduce an algorithm with alternating
updates for GAIL with neural networks, which employs
natural policy gradient (NPG) to update the policy ⇡✓ and
gradient ascent to update the reward function r�(s, a).

3.1. Parameterization with Neural Networks

We define a two-layer neural network with rectified linear
units (ReLU) as follows,

uW,b(s, a) =
1p
m

mX

l=1

bl · 1
�
(s, a)>[W]l > 0

· (s, a)>[W]l

=
mX

l=1

⇥
�W,b(s, a)

⇤>
l
[W]l. (3.1)

Here m 2 N+ is the width of the neural net-
work, b = (b1, . . . , bm)> 2 Rm and W =
([W]>1 , . . . , [W]>m)> 2 Rmd are the parameters, and
�W,b(s, a) = ([�W,b(s, a)]>1 , . . . , [�W,b(s, a)]>m)> 2 Rmd

is called the feature vector in the sequel, where

⇥
�W,b(s, a)

⇤
l
=

blp
m

· 1
�
(s, a)>[W]l > 0

(s, a). (3.2)

It then holds that uW,b(s, a) = W>�W,b(s, a). Note that
the feature vector �W,b(s, a) depends on the parameters W
and b. We consider the following random initialization,

bl
i.i.d.⇠ Unif

�
{�1, 1}

�
, [W0]l

i.i.d.⇠ N(0, Id/d), 8l 2 [m].
(3.3)

Throughout the training process, we keep the parameter b
fixed while updating W . For notational simplicity, we write
uW,b(s, a) as uW (s, a) and �W,b(s, a) as �W (s, a) in the
sequel. We denote by Einit the expectation taken with respect
to the random initialization in (3.3). For an absolute constant
B > 0, we define the parameter domain as

SB =
�
W 2 Rmd

�� kW �W0k2  B

, (3.4)

which is the ball centered at W0 with the domain radius B.

In the sequel, we consider the following energy-based pol-
icy,

⇡✓(a | s) =
exp

�
⌧ · u✓(s, a)

�
P

a02A exp
�
⌧ · u✓(s, a0)

� , (3.5)

where ⌧ � 0 is the inverse temperature parameter and
u✓(s, a) is the energy function parameterized by the neural
network defined in (3.1) with W = ✓. In the sequel, we
call ✓ the policy parameter. Meanwhile, we parameterize
the reward function r�(s, a) as follows,

r�(s, a) = (1� �)�1 · u�(s, a), (3.6)

Submission and Formatting Instructions for ICML 2020

where u�(s, a) is the neural network defined in (3.1) with
W = � and � is the discount factor. Here we use the scaling
parameter (1 � �)�1 to ensure that for any policy ⇡ the
state-action value function Q⇡

r� (s, a) defined in (2.1) is well
approximated by the neural network defined in (3.1). In the
sequel, we call � the reward parameter and define the reward
function class as

R� = {r�(s, a) |� 2 SB�},

where SB� is the parameter domain of � defined in (3.4)
with domain radius B� . To facilitate algorithm design, we
establish the following proposition, which calculates the ex-
plicit expressions of the gradients rL(✓,�) and the Fisher
information I(✓). Recall that the Fisher information is de-
fined as

I(✓) = E(s,a)⇠⌫⇡✓

⇥
r✓ log ⇡✓(s, a)r✓ log ⇡✓(s, a)>

⇤
.

(3.7)

Proposition 3.1 (Gradients and Fisher Information). We
call ◆✓(s, a) = ⌧�1 · r✓ log ⇡✓(a | s) the temperature-
adjusted score function. It holds that

◆✓(s, a) = �✓(s, a)� Ea0⇠⇡✓(· | s)
⇥
�✓(s, a

0)
⇤
. (3.8)

It then holds that

I(✓) = ⌧2 · E(s,a)⇠⌫⇡✓

⇥
◆✓(s, a) ◆✓(s, a)

>⇤, (3.9)

r✓L(✓,�) = �⌧ · E(s,a)⇠⌫⇡✓

⇥
Q⇡✓

r� (s, a) · ◆✓(s, a)
⇤
,

(3.10)

r�L(✓,�) = (1� �)�1 · E(s,a)⇠⌫E

⇥
��(s, a)

⇤

� (1� �)�1 · E(s,a)⇠⌫⇡✓

⇥
��(s, a)

⇤

� � ·r� (�), (3.11)

where Q⇡✓
r� (s, a) is the state-action value function defined

in (2.1) with ⇡ = ⇡✓ and r = r� , ⌫⇡✓ is the state-action
visitation measure defined in (2.3) with ⇡ = ⇡✓, and I(✓) is
the Fisher information defined in (3.7).

Proof. See §C.1 for a detailed proof.

Note that the expression of the policy gradient r✓L(✓,�)
in (3.10) of Proposition 3.1 involves the state-action value
function Q⇡✓

r� (s, a). To this end, we estimate the state-action
value function Q⇡

r (s, a) by bQ!(s, a), which is parameter-
ized as follows,

bQ!(s, a) = u!(s, a). (3.12)

Here u!(s, a) is the neural network defined in (3.1) with
W = !. In the sequel, we call ! the value parameter.

3.2. GAIL with Alternating Updates

We employ an actor-critic scheme with alternating updates
of the policy and the reward function, which is presented in
Algorithm 1. Specifically, we update the policy parameter ✓
via natural policy gradient and update the reward parameter
� via gradient ascent in the actor step, while we estimate
the state-action value function Q⇡

r (s, a) via neural temporal
difference (TD) (Cai et al., 2019c) in the critic step.

Actor Step. In the k-th actor step, we update the policy
parameter ✓ and the reward parameter � as follows,

✓k+1 = ⌧�1
k+1 · (⌧k · ✓k � ⌘ · �k), (3.13)

�k+1 = ProjSB�

�
�k + ⌘ · br�L(✓k,�k)

, (3.14)

where ⌧k+1 = ⌘ + ⌧k and

�k 2 argmin
�2SB✓

��bI(✓k)� � ⌧k · br✓L(✓k,�k)
��
2
. (3.15)

Here ⌘ > 0 is the stepsize, SB✓ and SB� are the parameter
domains of ✓ and � defined in (3.4) with domain radii B✓
and B� , respectively, ProjSB�

: Rmd ! SB� is the projec-
tion operator, ⌧k is the inverse temperature parameter of ⇡✓k ,
and bI(✓k), br✓L(✓k,�k), br�L(✓k,�k) are the estimators of
I(✓k),r✓L(✓k,�k),r�L(✓k,�k), respectively, which are
defined in the sequel. In (3.13), we update the policy pa-
rameter ✓k along the direction �k, which approximates the
natural policy gradient I(✓)�1 · r✓L(✓,�), and in (3.15)
we update the inverse temperature parameter ⌧k to ensure
that ✓k+1 2 SB✓ . Meanwhile, in (3.14), we update the re-
ward parameter � via (projected) gradient ascent. Following
from (3.9) and (3.10) of Proposition 3.1, we construct the
estimators of I(✓k) and r✓L(✓k,�k) as follows,

bI(✓k) =
⌧2k
N

NX

i=1

◆✓k(si, ai) ◆✓k(si, ai)
>, (3.16)

br✓L(✓k,�k) = �
⌧k
N

NX

i=1

bQ!k(si, ai) · ◆✓k(si, ai), (3.17)

where {(si, ai)}i2[N] is sampled from the state-action vis-
itation measure ⌫⇡✓k

given ✓k with the batch size N , and
bQ!k(s, a) is the estimator of Q⇡✓k

r�k
(s, a) computed in the

critic step. Meanwhile, following from (3.11) of Proposition
3.1, we construct the estimator ofr�L(✓k,�k) as follows,

br�L(✓,�) =
1

N · (1� �)

NX

i=1

⇥
��k(s

E
i , a

E
i)� ��k(si, ai)

⇤

� � ·r� (�k), (3.18)

where {(sE
i , a

E
i)}i2[N] is the expert trajectory. For notational

simplicity, we write ⇡k = ⇡✓k , rk(s, a) = r�k(s, a), dk =

Submission and Formatting Instructions for ICML 2020

d⇡k and ⌫k = ⌫⇡k for the k-th step hereafter, where ⇡✓ is
the policy, r�(s, a) is the reward function, and d⇡, ⌫⇡ are
the visitation measures defined in (2.3).

Critic Step. Note that the estimator br✓L(✓,�) in (3.17)
involves the estimator bQ!k(s, a) of Q⇡k

rk (s, a). To this end,
we parameterize bQ!(s, a) as in (3.12) and adapt neural TD
(Cai et al., 2019c), which solves the following minimization
problem,

!k = argmin
!2SB!

E(s,a)⇠⇢k
⇥ bQ!(s, a)� T ⇡k

rk
bQ!(s, a)

⇤2
.

(3.19)

Here SB! is the parameter domain with domain radius B! ,
⇢k is the state-action stationary distribution induced by ⇡k,
and T ⇡k

rk is the Bellman operator. Note that the Bellman
operator T ⇡

r is defined as follows,

T ⇡
r Q(s, a) = (1� �) · r(s, a) + � · E⇡

⇥
Q(s0, a0)

�� s, a
⇤
,

where the expectation is taken with respect to s0 ⇠ P (· | s, a)
and a0 ⇠ ⇡(· | s0). In neural TD, we iteratively update the
value parameter ! via

�(j) = Q!(j)(s, a)� r(s, a)� � ·Q!(j)(s
0, a0),

!(j + 1) = ProjSB!

�
!(j)� ↵ · �(j) ·r!Q!(j)(s, a)

,

(3.20)

where �(j) is the Bellman residual, ↵ > 0 is the stepsize,
(s, a) is sampled from the state-action stationary distribution
⇢k, and s0 ⇠ P (· | s, a), a0 ⇠ ⇡k(· | s0) are the subsequent
state and action. We defer the detailed discussion of neural
TD to §B.

To approximately obtain the compatible function approxi-
mation (Sutton et al., 2000; Wang et al., 2019), we share the
random initialization among the policy ⇡✓, the reward func-
tion r�(s, a), and the state-action value function bQ!(s, a).
In other words, we set ✓0 = �0 = !(0) = W0 in our
algorithm, where W0 is the random initialization in (3.3).
The output of GAIL is the mixed policy ⇡̄ (Altman, 1999).
Specifically, the mixed policy ⇡̄ of ⇡0, . . . ,⇡T�1 is executed
by randomly selecting a policy ⇡k for k 2 [0 : T � 1] with
equal probability before time t = 0 and exclusively fol-
lowing ⇡k thereafter. It then holds for any reward function
r(s, a) that

J(⇡̄; r) =
1

T

T�1X

k=0

J(⇡k; r). (3.21)

4. Main Results

In this section, we first present the assumptions for our anal-
ysis. Then, we establish the global optimality and conver-
gence of Algorithm 1.

Algorithm 1 GAIL
Input: Expert trajectory {(sE

i , a
E
i)}i2[TE], number of itera-

tions T , number of iterations TTD of neural TD, stepsize
⌘, stepsize ↵ of neural TD, batch size N , and domain
radii B✓, B!, B� .

1: Initialization. Initialize bl ⇠ Unif({�1, 1}) and
[W0]l ⇠ N(0, Id/d) for any l 2 [m] and set ⌧0 0,
✓0 W0, and �0 W0.

2: for k = 0, 1, . . . , T � 1 do

3: Update value parameter !k via Algorithm 2 with ⇡k,
rk, W0, b, TTD, and ↵ as the input.

4: Sample {(si, ai)}Ni=1 from the state-action visitation
measure ⌫k, and estimate bI(✓k), br✓L(✓k,�k), and
br�L(✓k,�k) via (3.16), (3.17), and (3.18), respec-
tively.

5: Solve �k argmin�2S✓

��bI(✓k) · � � ⌧k ·
br✓L(✓k,�k)

��
2

and set ⌧k+1 ⌧k + ⌘.
6: Update policy parameter ✓ via ✓k+1 ⌧�1

k+1 · (⌧k ·
✓k � ⌘ · �k).

7: Update reward parameter � via �k+1
ProjSB�

{�k + ⌘ · br�L(✓k,�k)}.
8: end for

Output: Mixed policy ⇡̄ of ⇡0, . . . ,⇡T�1.

4.1. Assumptions

We impose the following assumptions on the stationary
distributions %k 2 P(S), ⇢k 2 P(S ⇥A) and the visitation
measures dk 2 P(S), ⌫k 2 P(S ⇥A).

Assumption 4.1. We assume that the following properties
hold.

(a) Let µ be either ⇢k or ⌫k. We assume for an absolute
constant c > 0 and any y > 0 and w 6= 0 that

E(s,a)⇠µ

h
1
�
|w>(s, a)|  y

 i
 c · y
kwk2

.

(b) We assume for an absolute constant Ch > 0 that

max
k2N

(����
ddE

ddk

����
2,dk

+

����
d⌫E

d⌫k

����
2,⌫k

)
 Ch,

max
k2N

(����
ddE

d%k

����
2,%k

+

����
d⌫E

d⇢k

����
2,⇢k

)
 Ch.

Here ddE/ddk, d⌫E/d⌫k, ddE/d%k, and d⌫E/d⇢k are
the Radon-Nikodym derivatives.

Assumption 4.1 (a) holds when the probability density func-
tions of ⇢k and ⌫k are uniformly upper bounded across k. As-
sumption 4.1 (b) states that the concentrability coefficients

Submission and Formatting Instructions for ICML 2020

are uniformly upper bounded across k, which is commonly
used in the analysis of RL (Szepesvári & Munos, 2005;
Munos & Szepesvári, 2008; Antos et al., 2008; Farahmand
et al., 2010; Scherrer et al., 2015; Farahmand et al., 2016;
Lazaric et al., 2016).

For notational simplicity, we write u0(s, a) = uW0(s, a)
and �0(s, a) = �W0(s, a), where uW0(s, a) is the neural
network defined in (3.1) with W = W0, �W0(s, a) is the
feature vector defined in (3.2) with W = W0, and W0 is the
random initialization in (3.3). We impose the following as-
sumptions on the neural network u0(s, a) and the transition
kernel P .

Assumption 4.2. We assume that the following properties
hold.

(a) Let Ū = sup(s,a)2S⇥A |u0(s, a)|. We assume for ab-
solute constants M0 > 0 and v > 0 and any t > 2M0

that

Einit[Ū
2] M2

0 , P(Ū > t)  exp(�v · t2). (4.1)

(b) We assume that the transition kernel P belongs to the
following class,

fM1,BP

=

⇢
P (s0 | s, a) =

Z
#(s, a;w)>'(s0;w) dq(w)

����

sup
w

����
Z
'(s;w)ds

����
2

 BP

�
.

Here BP > 0 is an absolute constant, q is the proba-
bility density function of N(0, Id/d), and #(s, a;w) is
defined as #(s, a;w) = 1{w>(s, a) > 0} · (s, a).

Assumption 4.2 (b) states that the MDP belongs to (a variant
of) the class of linear MDPs (Yang & Wang, 2019a;b; Jin
et al., 2019; Cai et al., 2019b). However, our class of transi-
tion kernels is infinite-dimensional, and thus, captures a rich
class of MDPs. To understand Assumption 4.2 (a), recall that
we initialize the neural network with [W0]l ⇠ N(0, Id/d)
and bl ⇠ Unif({�1, 1}) for any l 2 [m]. Thus, the neural
network u0(s, a) defined in (3.1) with W = W0 converges
to a Gaussian process indexed by (s, a) 2 S ⇥A as m goes
to infinity. Following from the facts that the maximum of a
Gaussian process over a compact index set is sub-Gaussian
(van de Geer & Muro, 2014) and that S ⇥ A is compact,
it is reasonable to assume that sup(s,a)2S⇥A |u0(s, a)| is
sub-Gaussian, which further implies the existence of the
absolute constants M0 and v in (4.1) of Assumption 4.2 (a).
Moreover, if we assume that m is even and initialize the
parameters W0, b as follows,
(
[W0]l

i.i.d.⇠ N(0, Id/d), bl ⇠ Unif
�
{�1, 1}

�
, 8l  m/2,

[W0]l = [W0]l�m/2, bl = �bl�m/2, 8l > m/2,

(4.2)

we have that u0(s, a) = 0 for any (s, a) 2 S ⇥ A, which
allows us to set M0 = 0 and v = +1 in Assumption 4.2 (a).
Also, it holds that 0 = u0(s, a) 2 R� , which implies that
DR� (⇡1,⇡2) � 0 for any ⇡1 and ⇡2. The proof of our results
with the random initialization in (4.2) is identical.

Finally, we impose the following assumption on the reg-
ularizer (�) and the variances of the estimators bI(✓),
br✓L(✓,�), and br�L(✓,�) defined in (3.16), (3.17), and
(3.18), respectively.

Assumption 4.3. We assume that the following properties
hold.

(a) We assume for an absolute constant � > 0 that

Ek

���bI(✓k)W � Ek

⇥bI(✓k)W
⇤���

2

2

�
⌧4k�2/N,

8W 2 SB✓ , (4.3)

Ek

���br✓L(✓k,�k)� Ek

⇥br✓L(✓k,�k)
⇤���

2

2

�
⌧2k�2/N,

(4.4)

Ek

���br�L(✓k,�k)� Ek

⇥br�L(✓k,�k)
⇤���

2

2

�
�2/N,

(4.5)

where ⌧k is the inverse temperature parameter in (3.5),
N 2 N+ is the batch size, and SB✓ is the parameter
domain of ✓ defined in (3.4) with the domain radius
B✓. Here the expectation Ek is taken with respect to
the k-th batch, which is drawn from ⌫k given ✓k.

(b) We assume that the regularizer (�) in (2.4) is convex
and L -Lipschitz continuous over the compact param-
eter domain SB� .

Assumption 4.3 (a) holds when bQ!k(si, ai) · ◆✓k(si, ai),
◆✓k(si, ai)◆✓k(si, ai)

>, and ��k(si, ai) have uniformly up-
per bounded variances across i 2 [m] and k, and the Markov
chain that generates {(si, ai)}i2[N] mixes sufficiently fast
(Zhang et al., 2019a). Similar assumptions are also used
in the analysis of policy optimization (Xu et al., 2019a;b).
Also, Assumption 4.3 (b) holds for most commonly used
regularizers (Ho & Ermon, 2016).

4.2. Global Optimality and Convergence

In this section, we establish the global optimality and con-
vergence of Algorithm 1. The following proposition adapted
from (Cai et al., 2019c) characterizes the global optimal-
ity and convergence of neural TD, which is presented in
Algorithm 2.

Proposition 4.4 (Global Optimality and Convergence of
Neural TD). In Algorithm 2, we set TTD = ⌦(m), ↵ =

Submission and Formatting Instructions for ICML 2020

min{(1� �)/8,m�1/2}, and B! = c · (B� +BP · (M0 +
B�)) for an absolute constant c > 0. Let ⇡k, rk be the input
and !k be the output of Algorithm 2. Under Assumptions
4.1 and 4.2, it holds for an absolute constant Cv > 0 that

Einit

h��Q!k(s, a)�Q⇡k
rk (s, a)

��2
2,⇢k

i
(4.6)

= O
�
B3
! ·m�1/2 +B5/2

! ·m�1/4 +B2
! · exp(�Cv ·B2

!)
�
.

Here the expectation Einit is taken with respect to the random
initialization in (3.3).

Proof. See §B.1 for a detailed proof.

The term B2
! · exp(�Cv · B2

!) in (4.6) of Proposition 4.4
characterizes the hardness of estimating the state-action
value function Q⇡k

rk (s, a) by the neural network defined in
(3.1), which arises because kQ⇡k

rk (s, a)k1 is not uniformly
upper bounded across k. Note that if we employ the random
initialization in (4.2), we have that Cv = +1. And conse-
quently, such a term vanishes. We are now ready to establish
the global optimality and convergence of Algorithm 1.

Theorem 4.5 (Global Optimality and Convergence of
GAIL). We set ⌘ = 1/

p
T and B! = c · (B� + BP ·

(M0 +B�)) for an absolute constant c > 0, and B✓ = B!
in Algorithm 1. Let ⇡̄ be the output of Algorithm 1. Under
Assumptions 4.1-4.3, it holds that

E
⇥
DR� (⇡E, ⇡̄)

⇤
 (1� �)�1 · log |A|+ 13B̄2 +M2

0 + 8p
T| {z }

(i)

+ 2� · L · B̄
| {z }

(ii)

+
1

T

T�1X

k=0

"k

| {z }
(iii)

. (4.7)

Here B̄ = max{B✓, B!, B�}, DR� is the R�-distance de-
fined in (2.5) with R� = {r�(s, a) |� 2 SB�}, the expec-
tation is taken with respect to the random initialization in
(3.3) and the T batches, and the error term "k satisfies that

"k = 2
p
2 · Ch · B̄ · � ·N�1/2

| {z }
(iii.a)

+ ✏Q,k|{z}
(iii.b)

+O(k · B̄3/2 ·m�1/4 + B̄5/4 ·m�1/8)| {z }
(iii.c)

, (4.8)

where Ch is defined in Assumption 4.1, L and � are de-
fined in Assumption 4.3, and ✏Q,k = O(B3

! ·m�1/2+B5/2
! ·

m�1/4+B2
! ·exp(�Cv ·B2

!)) is the error induced by neural
TD (Algorithm 2).

Proof. See §5 for a detailed proof.

The optimality gap in (4.7) of Theorem 4.5 is measured
by the expected R�-distance DR� (⇡E, ⇡̄) between the ex-
pert policy ⇡E and the learned policy ⇡̄. Thus, by show-
ing that the optimality gap is upper bounded by O(1/

p
T),

we prove that ⇡̄ (approximately) outperforms the expert
policy ⇡E in expectation when the number of iterations T
goes to infinity. As shown in (4.7) of Theorem 4.5, the
optimality gap is upper bounded by the sum of the three
terms. Term (i) corresponds to the 1/

p
T rate of conver-

gence of Algorithm 1. Term (ii) corresponds to the bias
induced by the regularizer � · (�) in the objective func-
tion L(✓,�) defined in (2.4). Term (iii) is upper bounded
by the sum of the three terms in (4.8) of Theorem 4.5. In
detail, term (iii.a) corresponds to the error induced by the
variances of bI(✓), br✓L(✓,�), and br�L(✓,�) defined in
(4.3), (4.4), and (4.5) of Assumption 4.3, which vanishes
as the batch size N in Algorithm 1 goes to infinity. Term
(iii.b) is the error of estimating Q⇡

r (s, a) by bQ!(s, a) us-
ing neural TD (Algorithm 2). As shown in Proposition 4.4,
the estimation error ✏Q,k vanishes as m and B! go to in-
finity. Term (iii.c) corresponds to the linearization error
of the neural network defined in (3.1), which is character-
ized in Lemma A.2. Following from Theorem 4.5, it holds
for B! = ⌦((C�1

v · log T)1/2), m = ⌦(B̄10 · T 6), and
N = ⌦(B̄2 ·T ·�2) that E

⇥
DR� (⇡E, ⇡̄)

⇤
= O(T�1/2+�),

which implies the 1/
p
T rate of convergence of Algorithm

1 (up to the bias induced by the regularizer).

5. Proof of Main Results

In this section, we present the proof of Theorem 4.5, which
establishes the global optimality and convergence of Algo-
rithm 1. For notational simplicity, we write ⇡s(a) = ⇡(a | s)
for any policy ⇡, state s 2 S, and action a 2 A. For any
policies ⇡1,⇡2 and distribution µ over S , we denote the ex-
pected Kullback-Leibler (KL) divergence by KLµ, which
is defined as KLµ(⇡1 k⇡2) = Es⇠µ[KL(⇡s

1 k⇡s
2)]. For any

visitation measures d⇡ 2 P(S) and ⌫⇡ 2 P(S ⇥ A), we
denote by Ed⇡ and E⌫⇡ the expectations taken with respect
to s ⇠ d⇡ and (s, a) ⇠ ⌫⇡ , respectively.

Following from the property of the mixed policy ⇡̄ in (3.21),
we have that

E
⇥
DR� (⇡E, ⇡̄)

⇤
=E

⇥
max
�02SB�

J(⇡E; r�0)�J(⇡̄; r�0)
⇤

(5.1)

=E


max
�02SB�

1

T

T�1X

k=0

J(⇡E; r�0)�J(⇡k; r�0)

�
.

We now upper bound the optimality gap in (5.1) by upper
bounding the following difference of expected cumulative

Submission and Formatting Instructions for ICML 2020

rewards,

J(⇡E; r�0)� J(⇡k; r�0) = J(⇡E; rk)� J(⇡k; rk)| {z }
(i)

+ L(✓k,�
0)� L(✓k,�k)| {z }

(ii)

+� ·
�
 (�0)� (�k)

�
| {z }

(iii)

, (5.2)

where �0 2 SB� is chosen arbitrarily and L(✓,�) is the
objective function defined in (2.4). Following from Assump-
tion 4.3 and the fact that �k,�0 2 SB� , we have that

�
�
 (�0)� (�k)

�
�L k�0 � �kk22�L B� , (5.3)

which upper bounds term (iii) of (5.2). It remains to up-
per bound terms (i) and (ii) of (5.2), which hinges on the
one-point convexity of J(⇡; r) with respect to ⇡ and the
(approximate) convexity of L(✓,�) with respect to �.

Upper bound of term (i) in (5.2). In what follows, we up-
per bound term (i) of (5.2). We first introduce the following
cost difference lemma (Kakade & Langford, 2002), which
corresponds to the one-point convexity of J(⇡; r) with re-
spect to ⇡. Recall that dE 2 P(S) is the state visitation
measure induced by the expert policy ⇡E.

Lemma 5.1 (Cost Difference Lemma, Lemma 6.1 in
(Kakade & Langford, 2002)). For any policy ⇡ and reward
function r(s, a), it holds that

J(⇡E; r)�J(⇡; r)=(1� �)�1EdE

h⌦
Q⇡

r (s, ·),⇡s
E�⇡s

↵
A

i
,

(5.4)

where � is the discount factor.

Furthermore, we establish the following lemma, which upper
bounds the right-hand side of (5.4) in Lemma 5.1.

Lemma 5.2. Under Assumptions 4.1-4.3, we have that

EdE

h⌦
Q⇡k

rk (s, ·),⇡
s
E � ⇡s

k

↵
A

i

= ⌘�1 ·KLdE(⇡E k⇡k)� ⌘�1 ·KLdE(⇡E k⇡k+1) +�(i)
k ,

where

E
⇥
|�(i)

k |
⇤

(5.5)

= 2
p
2 · Ch ·B1/2

✓ · �1/2 ·N�1/4 + ⌘ · (M2
0 + 9B2

✓)

+ ✏Q,k +O(⌘�1 · ⌧k+1 ·B3/2
✓ ·m�1/4 +B5/4

✓ ·m�1/8).

Here M0 is defined in Assumption 4.2, � is defined in
Assumption 4.3, N is the batch size in (3.16)-(3.18), and
✏Q,k = O(B3

! ·m�1/2+B5/2
! ·m�1/4+B2

! ·exp(�Cv ·B2
!))

for an absolute constant Cv > 0, which depends on the ab-
solute constant v in Assumption 4.2.

Proof. See §C.2 for a detailed proof.

Combining Lemmas 5.1 and 5.2, we have that

J(⇡E; rk)� J(⇡k; rk)

 KLdE(⇡E k⇡k)�KLdE(⇡E k⇡k+1) + ⌘ ·�(i)
k

⌘ · (1� �) , (5.6)

which upper bounds term (i) of (5.2). Here �(i)
k is upper

bounded in (5.5) of Lemma 5.2.

Upper bound of term (ii) in (5.2). In what follows, we up-
per bound term (ii) of (5.2). We first establish the following
lemma, which characterizes the (approximate) convexity of
L(✓,�) with respect to �.

Lemma 5.3. Under Assumption 4.1, it holds for any �0 2
SB� that

Einit
⇥
L(✓k,�

0)� L(✓k,�k)
⇤

= Einit
⇥
r�L(✓k,�k)>(�0 � �k)

⇤
+O(B3/2

� ·m�1/4).

Proof. See §C.3 for a detailed proof.

The term O(B3/2
� ·m�1/4) in Lemma 5.3 arises from the

linearization error of the neural network, which is character-
ized in Lemma A.2. Based on Lemma 5.3, we establish the
following lemma, which upper bounds term (ii) of (5.2).

Lemma 5.4. Under Assumptions 4.1 and 4.3, we have that

L(✓k,�
0)� L(✓k,�k)  ⌘�1 · k�k � �0k22

� ⌘�1 · k�k+1 � �0k22 +�(ii)
k ,

where

E
⇥
|�(ii)

k |
⇤
= ⌘ ·

⇣
2
�
2(1� �)�1 + � · L

�2
+ �2 ·N�1

⌘

+ 2B� · � ·N�1/2 +O(B3/2
� ·m�1/4). (5.7)

Proof. See §C.4 for a detailed proof.

By Lemma 5.4, we have that

L(✓k,�
0)� L(✓k,�k)  �(ii)

k (5.8)

+ ⌘�1 ·
�
k�k � �0k22 � k�k+1 � �0k22

�
,

which upper bounds term (ii) of (5.2). Here �(ii)
k is upper

bounded in (5.7) of Lemma 5.4.

Plugging (5.3), (5.6), and (5.8) into (5.2), we obtain that

J(⇡E; r�0)� J(⇡k; r�0) (5.9)

 KLdE(⇡E k⇡k)�KLdE(⇡E k⇡k+1)

⌘ · (1� �)
+ ⌘�1k�k � �0k22 � ⌘�1k�k+1 � �0k22 + 2� · L ·B� +�k.

Submission and Formatting Instructions for ICML 2020

Here �k = �(i)
k + �(ii)

k , where �(i)
k and �(ii)

k are upper
bounded in (5.5) and (5.7) of Lemmas 5.2 and 5.4, respec-
tively. Note that the upper bound of �k does not depend on
✓ and �. Upon telescoping (5.9) with respect to k, we obtain
that

J(⇡E; r�0)� J(⇡̄; r�0) =
1

T

T�1X

k=0

⇥
J(⇡E; r�0)� J(⇡k; r�0)

⇤

 (1� �)�1 ·KLdE(⇡E k⇡0) + k�0 � �0k22
⌘ · T

+ 2� · L ·B� +
1

T

T�1X

k=0

|�k|. (5.10)

Following from the fact that ⌧0 = 0 and the parameterization
of ⇡✓ in (3.5), it holds that ⇡s

0 is the uniform distribution over
A for any s 2 S. Thus, we have KLdE(⇡E k⇡0)  log |A|.
Meanwhile, following from the fact that �0 2 SB� , it holds
that k�0 � �0k2  B� . Finally, by setting ⌘ = T�1/2,
⌧k = k · ⌘, and B̄ = max{B✓, B�} in (5.10), we have that

E
⇥
DR� (⇡E, ⇡̄)

⇤
= E

⇥
max
�02SB�

J(⇡E; r�0)� J(⇡̄; r�0)
⇤


(1� �)�1 · log |A|+ 4B2

�

⌘ · T + 2� · L ·B�

+
E
⇥
max�0

PT�1
k=0 |�k|

⇤

T

=
(1� �)�1 · log |A|+ 13B̄2 +M2

0 + 8p
T

+ 2� · L · B̄

+

PT�1
k=0 "k
T

.

Here "k is upper bounded as follows,

"k = 2
p
2 · Ch · B̄ · � ·N�1/2 + ✏Q,k

+O(k · B̄3/2 ·m�1/4 + B̄5/4 ·m�1/8),

where ✏Q,k = O(B3
! · m�1/2 + B5/2

! · m�1/4 + B2
! ·

exp(�Cv · B2
!)) for an absolute constant Cv > 0. Thus,

we complete the proof of Theorem 4.5.

References

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G.
Optimality and approximation with policy gradient meth-
ods in Markov decision processes. arXiv preprint
arXiv:1908.00261, 2019.

Altman, E. Constrained Markov decision processes, vol-
ume 7. CRC Press, 1999.

Anthony, M. and Bartlett, P. L. Neural network learning:
Theoretical foundations. Cambridge University Press,
2009.

Antos, A., Szepesvári, C., and Munos, R. Learning near-
optimal policies with Bellman-residual minimization
based fitted policy iteration and a single sample path.
Machine Learning, 71(1):89–129, 2008.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein GAN.
arXiv preprint arXiv:1701.07875, 2017.

Bhandari, J. and Russo, D. Global optimality guar-
antees for policy gradient methods. arXiv preprint
arXiv:1906.01786, 2019.

Cai, Q., Hong, M., Chen, Y., and Wang, Z. On the global con-
vergence of imitation learning: A case for linear quadratic
regulator. arXiv preprint arXiv:1901.03674, 2019a.

Cai, Q., Yang, Z., Jin, C., and Wang, Z. Provably effi-
cient exploration in policy optimization. arXiv preprint
arXiv:1912.05830, 2019b.

Cai, Q., Yang, Z., Lee, J. D., and Wang, Z. Neural temporal-
difference learning converges to global optima. arXiv
preprint arXiv:1905.10027, 2019c.

Chen, M., Wang, Y., Liu, T., Yang, Z., Li, X., Wang, Z., and
Zhao, T. On computation and generalization of gen-
erative adversarial imitation learning. arXiv preprint
arXiv:2001.02792, 2020.

Farahmand, A.-m., Szepesvári, C., and Munos, R. Error
propagation for approximate policy and value iteration.
In Advances in Neural Information Processing Systems,
pp. 568–576, 2010.

Farahmand, A.-m., Ghavamzadeh, M., Szepesvári, C., and
Mannor, S. Regularized policy iteration with nonparamet-
ric function spaces. The Journal of Machine Learning
Research, 17(1):4809–4874, 2016.

Finn, C., Levine, S., and Abbeel, P. Guided cost learning:
Deep inverse optimal control via policy optimization. In
International Conference on Machine Learning, pp. 49–
58, 2016.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., and Bengio, Y. Gener-
ative adversarial nets. In Advances in Neural Information
Processing Systems, pp. 2672–2680, 2014.

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. In Advances in Neural Information Processing Sys-
tems, pp. 4565–4573, 2016.

Hofmann, T., Schölkopf, B., and Smola, A. J. Kernel meth-
ods in machine learning. The Annals of Statistics, pp.
1171–1220, 2008.

Submission and Formatting Instructions for ICML 2020

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. Provably
efficient reinforcement learning with linear function ap-
proximation. arXiv preprint arXiv:1907.05388, 2019.

Kakade, S. and Langford, J. Approximately optimal approxi-
mate reinforcement learning. In International Conference
on Machine Learning, volume 2, pp. 267–274, 2002.

Kakade, S. M. A natural policy gradient. In Advances in
Neural Information Processing Systems, pp. 1531–1538,
2002.

Kuefler, A., Morton, J., Wheeler, T., and Kochenderfer, M.
Imitating driver behavior with generative adversarial net-
works. In IEEE Intelligent Vehicles Symposium, pp. 204–
211. IEEE, 2017.

Lazaric, A., Ghavamzadeh, M., and Munos, R. Analysis
of classification-based policy iteration algorithms. The
Journal of Machine Learning Research, 17(1):583–612,
2016.

Levine, S. and Koltun, V. Continuous inverse optimal
control with locally optimal examples. arXiv preprint
arXiv:1206.4617, 2012.

Liu, B., Cai, Q., Yang, Z., and Wang, Z. Neural proxi-
mal/trust region policy optimization attains globally opti-
mal policy. arXiv preprint arXiv:1906.10306, 2019.

Merel, J., Tassa, Y., TB, D., Srinivasan, S., Lemmon, J.,
Wang, Z., Wayne, G., and Heess, N. Learning human
behaviors from motion capture by adversarial imitation.
arXiv preprint arXiv:1707.02201, 2017.

Munos, R. and Szepesvári, C. Finite-time bounds for fit-
ted value iteration. The Journal of Machine Learning
Research, 9(May):815–857, 2008.

Nesterov, Y. Introductory lectures on convex optimization:
A basic course, volume 87. Springer Science & Business
Media, 2013.

Ng, A. Y. and Russell, S. J. Algorithms for inverse reinforce-
ment learning. In International Conference on Machine
Learning, pp. 663–670, 2000.

Peters, J. and Schaal, S. Natural actor-critic. Neurocomput-
ing, 71(7-9):1180–1190, 2008.

Pomerleau, D. A. Efficient training of artificial neural net-
works for autonomous navigation. Neural Computation,
3(1):88–97, 1991.

Rafique, H., Liu, M., Lin, Q., and Yang, T. Non-convex min-
max optimization: Provable algorithms and applications
in machine learning. arXiv:1810.02060, 2018.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. In Advances in Neural Information
Processing Systems, pp. 1177–1184, 2008.

Rahimi, A. and Recht, B. Weighted sums of random kitchen
sinks: Replacing minimization with randomization in
learning. Advances in Neural Information Processing
Systems, pp. 1313–1320, 2009.

Ross, S. and Bagnell, D. Efficient reductions for imitation
learning. In International Conference on Artificial Intelli-
gence and Statistics, pp. 661–668, 2010.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In International Conference on Artificial Intelli-
gence and Statistics, pp. 627–635, 2011.

Russell, S. Learning agents for uncertain environments. In
Conference on Learning Theory, pp. 101–103, 1998.

Scherrer, B., Ghavamzadeh, M., Gabillon, V., Lesner, B., and
Geist, M. Approximate modified policy iteration and its
application to the game of Tetris. The Journal of Machine
Learning Research, 16:1629–1676, 2015.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT Press, 2018.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour,
Y. Policy gradient methods for reinforcement learning
with function approximation. In Advances in Neural
Information Processing Systems, pp. 1057–1063, 2000.

Syed, U., Bowling, M., and Schapire, R. E. Apprentice-
ship learning using linear programming. In International
Conference on Machine Learning, pp. 1032–1039, 2008.

Szepesvári, C. and Munos, R. Finite time bounds for sam-
pling based fitted value iteration. In International Con-
ference on Machine Learning, pp. 880–887. ACM, 2005.

Tai, L., Zhang, J., Liu, M., and Burgard, W. Socially compli-
ant navigation through raw depth inputs with generative
adversarial imitation learning. In IEEE International
Conference on Robotics and Automation, pp. 1111–1117.
IEEE, 2018.

van de Geer, S. and Muro, A. On higher order isotropy
conditions and lower bounds for sparse quadratic forms.
Electronic Journal of Statistics, 8(2):3031–3061, 2014.
doi: 10.1214/15-EJS983.

Wang, L., Cai, Q., Yang, Z., and Wang, Z. Neural policy
gradient methods: Global optimality and rates of conver-
gence. arXiv preprint arXiv:1909.01150, 2019.

Submission and Formatting Instructions for ICML 2020

Xu, P., Gao, F., and Gu, Q. An improved convergence anal-
ysis of stochastic variance-reduced policy gradient. arXiv
preprint arXiv:1905.12615, 2019a.

Xu, P., Gao, F., and Gu, Q. Sample efficient policy gradient
methods with recursive variance reduction. arXiv preprint
arXiv:1909.08610, 2019b.

Yang, L. and Wang, M. Sample-optimal parametric Q-
learning using linearly additive features. In International
Conference on Machine Learning, pp. 6995–7004, 2019a.

Yang, L. F. and Wang, M. Reinforcement leaning in feature
space: Matrix bandit, kernels, and regret bound. arXiv
preprint arXiv:1905.10389, 2019b.

Yu, L., Zhang, W., Wang, J., and Yu, Y. SeqGAN: Sequence
generative adversarial nets with policy gradient. arXiv
preprint arXiv:1609.05473, 2016.

Zhang, K., Koppel, A., Zhu, H., and Başar, T. Global conver-
gence of policy gradient methods to (almost) locally opti-
mal policies. arXiv preprint arXiv:1906.08383, 2019a.

Zhang, K., Yang, Z., and Baar, T. Policy optimization
provably converges to Nash equilibria in zero-sum lin-
ear quadratic games. arXiv preprint arXiv:1906.00729,
2019b.

