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Abstract

Efficiently computing equilibria for multiplayer
games is still an open challenge in computational
game theory. This paper focuses on computing
Team-Maxmin Equilibria (TMEs), which is an im-
portant solution concept for zero-sum multiplayer
games where players in a team having the same
utility function play against an adversary indepen-
dently. Existing algorithms are inefficient to com-
pute TME:s in large games, especially when the
strategy space is too large to be represented due to
limited memory. In two-player games, the Incre-
mental Strategy Generation (ISG) algorithm is an
efficient approach to avoid enumerating all pure
strategies. However, the study of ISG for com-
puting TME:s is completely unexplored. To fill
this gap, we first study the properties of ISG for
multiplayer games, showing that ISG converges
to a Nash Equilibrium (NE) but may not converge
to a TME. Second, we design an ISG variant for
TMEs (ISGT) by exploiting that a TME is an
NE maximizing the team’s utility and show that
ISGT converges to a TME and the impossibility of
relaxing conditions in ISGT. Third, to further im-
prove the scalability, we design an ISGT variant
(CISGT) by using the strategy space for comput-
ing an equilibrium that is close to a TME but is
easier to be computed as the initial strategy space
of ISGT. Finally, extensive experimental results
show that CISGT is orders of magnitude faster
than ISGT and the state-of-the-art algorithm to
compute TME:s in large games.

1. Introduction

Game theory is an important tool to model the interaction
between agents. Now researchers have achieved many re-
sults for two-player games, e.g., computing Nash Equilibria
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(NEs) for zero-sum games (Nash, 1951) via linear programs
(Von Neumann & Morgenstern, 1953; Von Stengel, 1996;
Shoham & Leyton-Brown, 2008) and many scalable algo-
rithms, e.g., the double oracle algorithm (McMahan et al.,
2003) and the counterfactual regret minimization algorithm
(Zinkevich et al., 2008), and computing Stackelberg equi-
libria (Conitzer & Sandholm, 2006). Based on these results,
researchers have successfully applied game theory to many
domains, e.g., improving the security for people and wildlife
in security games (Sinha et al., 2018) and defeating top hu-
man professionals in poker games (Brown & Sandholm,
2018). However, researchers have achieved fewer results
for multiplayer games except for games having very special
structures, e.g., polymatrix games (Cai & Daskalakis, 2011)
and congestion games (Shoham & Leyton-Brown, 2008)
or algorithms having no theoretical guarantee (Brown &
Sandholm, 2019). In fact, the hardness to compute NEs (it
is PPAD-complete even for zero-sum three-player games
(Chen & Deng, 2005)) and the equilibrium selection prob-
lem (Brown & Sandholm, 2019) (it is hard for players in-
dependently choosing strategies and then forming an NE
because NEs are not exchangeable) make them remain open
challenges for computing and applying NEs in multiplayer
games.

This paper focuses on computing Team-Maxmin Equilibria
(TMEs) (von Stengel & Koller, 1997; Basilico et al., 2017b;
Celli & Gatti, 2018; Zhang & An, 2020), which is an im-
portant solution concept for zero-sum multiplayer games
where players in a team having the same utility function
play against an adversary independently. A TME is an NE
maximizing the team’s utility and always exists. More im-
portantly, the TME is unique in general, and then it avoids
the equilibrium selection problem. Moreover, TMEs can
be used to model many real-world scenarios. For example,
to keep the safety of New York, the Patrol Services Bureau
in the New York City Police Department (NYPD) has 77
police precincts (NYPD, 2020b), and each precinct is di-
vided into four or five fully-staffed sectors by Neighborhood
Policing recently (NYPD, 2020a). They maintain “sector
integrity”: officers in different sectors work independently
to keep the safety of their sectors, except in precinct-wide
emergencies (NYPD, 2020a).

However, it is still challenging to compute a TME, which is
FNP-hard (Hansen et al., 2008). Moreover, a TME is only
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solved via a non-convex program (von Stengel & Koller,
1997) with global optimization techniques (Zhang & An,
2020), which makes it hard to solve large games. In addi-
tion, it is impossible to apply this approach when we cannot
represent the problem via the game matrix due to the large
strategy space. For example, in a network security game on
a fully connected network with 190 edges and 20 nodes, the
number of possible adversary pure strategies (paths) without
any cycle is about 6.6'® (Jain et al., 2011), which means that
the memory cost for enumerating all pure strategies would
be prohibitive. In two-player games, the Incremental Strat-
egy Generation (ISG) algorithm (including the double oracle
algorithm, column generation) (McMahan et al., 2003; Jain
et al., 2011; Sinha et al., 2018) is an efficient approach to
avoid enumerating all pure strategies: It computes an equi-
librium in a game with restricted strategy spaces for players,
and then iteratively expands players’ strategy spaces. ISG
can converge to an NE in zero-sum two-player games. How-
ever, the study of ISG for computing TMEs is completely
unexplored. We know that ISG terminates when oracles in
ISG cannot find better strategies than the equilibrium strate-
gies in the restricted game, which is consistent with the
definition of NEs. Unfortunately, NEs in multiplayer games,
unlike those in two-player games, are not exchangeable and
may give different utilities to the team. Therefore, if ISG is
used to compute TMEs, even it can converge to an NE, it
may cause a loss to the team.

To fill this gap, we first study the properties of ISG for multi-
player games, showing that ISG converges to an NE but may
not converge to a TME, and it can cause an arbitrarily large
loss to the team. Second, we design an ISG variant (ISGT)
by exploiting that a TME is an NE maximizing the team’s
utility and show that ISGT converges to a TME and the im-
possibility of relaxing conditions in ISGT. Third, to further
improve the scalability, we design an ISGT variant (CISGT)
by using the strategy space for computing an equilibrium
that is close to a TME but is easier to be computed as the ini-
tial strategy space of ISGT. Finally, extensive experimental
results show that CISGT is orders of magnitude faster than
ISGT and the state-of-the-art algorithm to compute TMEs
in large games.

2. Related Work

McMahan et al. (2003) propose the first ISG (also called the
double oracle algorithm) for zero-sum two-player games,
where the robot chooses a path to a goal location while
avoiding being detected by an adversary on the road. Given
the adversary strategy, the robot’s best response oracle (to
compute a best response against the adversary strategy)
is modelled as a Markov Decision Process (MDP). Then
solving the best response oracle is equivalent to solving the
corresponding MDP. After that, ISG is used to solve many

similar problems, including the classic network security
games (Jain et al., 2011; Iwashita et al., 2016; Zhang et al.,
2019) and extensive-form games (Bosansky et al., 2014).
The MDP feature of the best response oracle in ISG makes it
possible to deploy deep reinforcement learning (Wang et al.,
2019) and be extended to multiagent learning (Lanctot et al.,
2017; Muller et al., 2020). In this paper, we study the
problem of extending ISG for converging to TMEs, which
will be a base for developing learning algorithms for TMEs
in multiplayer games.

However, the extension is not straightforward. It is well-
known that ISG converges to an NE in zero-sum two-player
games (McMahan et al., 2003), but, which is unclear (to
our best knowledge) in multiplayer games. Then we theo-
retically show that ISG (Vanilla-ISG) converges to an NE
in multiplayer games in Theorem 1. However, as we illus-
trate in Section 4.1, the existing ISG cannot guarantee to
converge to a TME. Then we try to extend it to ISGT for
converging to a TME. As we illustrate in Section 4.2, it is
difficult to converge to a TME, e.g., we cannot simply add
the team’s best response to the restricted game to converge
to a TME. Then we add our new operations to ISG to guaran-
tee to converge to a TME by exploiting that a TME is an NE
maximizing the team’s utility. Section 4.2 also implies that
the conditions in our operations cannot be further relaxed.
Finally, we theoretically show that our new ISG (i.e., ISGT)
can guarantee to converge to a TME in Theorem 2—4.

The Correlated TME (CTME) (Basilico et al., 2017b) is
a solution concept close to the TME, where team players
with the same utility function can synchronize their actions
against the adversary. That is, team players can jointly plan
and execute their strategies, which means that the team is
equivalent to a single player with actions as the joint team
action profiles. Then, a CTME can be found through a
linear program similar to finding an NE in zero-sum two-
player games. However, team players in a TME cannot
correlate their actions (Celli & Gatti, 2018), and then can-
not directly use the strategies in a CTME. To compute a
TME, one approach is that the team can compute a CTME
first and then transform the team’s correlated strategy into
the team’s mixed strategy profile, where a transformation
algorithm was proposed (Basilico et al., 2017b). However,
this transformation cannot theoretically guarantee to obtain
a team-maxmin strategy profile (in a TME) for the team
and may cause a huge loss for the team, as shown in the
previous experiments (Basilico et al., 2017b). In Section
5.1, we study the limitations of computing TMEs based on
CTMESs. We first theoretically show that using the strategy
transformed from a CTEM may cause an arbitrarily large
loss to the team. Second, we show that a TME in a restricted
game with the strategies for computing a CTME may not
be an NE in the full game, and it may not be a TME in the
full game even it is an NE in the full game. These results
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show that it is not straightforward to compute a TME via
computing a CTME. Therefore, we develop our novel op-
erations to improve the scalability of our algorithm ISGT
by computing a CTME to initialize the strategy space and
exploiting the team’s utility in a CTME to terminate earlier.
Finally, we theoretically show that our new CTME based
ISG (e.g., CISGT) can guarantee to converge to a TME in
Theorem 5-7.

3. Preliminaries

A normal-form game G (Shoham & Leyton-Brown, 2008)
is a tuple (N, A,u) where: N = {1,...,n} is a set of
players, A = X;cnA4; is a set of joint actions with that
A, is a finite set of player i’s actions (pure strategies) with
a; € A;, and u = (ug,...,u,) is a set of players’ utility
functions with that u; : A — R is player 4’s utility function.
X = X;enX; is the set of mixed strategy profiles with that
X; = A(A;) is the set of player ¢’s mixed strategy. For
each z; € X; and a; € A;, x;(a;) is the probability that
action a; is played, A; .. = {a; | zi(a;) > 0,a; € A;} is
the support of ;. For each z € X, player ’s expected util-
ity is ui(z) = > cqwi(a) [[; 2;(a;) and wi(a;, x—;) =
Yoo sea; ilai, a—i) [T;en iy ©j(a;). Generally, —i de-
notes the set of all players except player i. The Nash Equi-
librium (NE) is an important solution concept for a game,
which is a strategy profile x* such that, for each player
i, x} is a best response to z*; (i.e., z} = BR(z*,) with
wi(xf,x* ) > ui(xg, ), Ve, € X;).

The Team-Maxmin Equilibrium (TME, and TMEs for
the plural equilibria) (von Stengel & Koller, 1997; Basil-
ico et al., 2017b) is a solution concept for zero-sum multi-
player games with that a team of players T = {1,...,n—1}
with u;(a) = u;(a)(Vi,j € T,a € A)and ), u;(a) =
ur(a) = —up(a)(Va € A) play against an adversary n,
and each team player takes actions independently. We call
G with such a scenario Gr. A TME is an NE with the prop-
erties that it is unique except for degenerate cases' and a
best NE for the team. The utility of the team under the TME
is called the TME value. In an ¢-TME, the team and the
adversary both cannot gain more than e by the unilateral de-
viation of players, and the gap between the TME value and
the e-TME value is not greater than e. The team-maxmin
strategy profile zr(i.e., X;ecr ;) in a TME (27, x,,) can be
computed by the following nonlinear program:

maXg, .z, .U (1a)
U< areasur(ar,an)]Licrzilar(i)) Va, €A, (1b)
ZaieAi xi(ai) = l,xi(ai) >0 VieT (1c)

!The situation of multiple TMEs can only occur in degenerate
cases with special entries in the payoff matrix (von Stengel &
Koller, 1997) because a TME gives the team the highest utility
among all NEs.

where ar is a joint action of the team (i.e., X;e7a;), ar (i)
is the action of player i in ap, and Ap = X;erA; is
the set of these joint actions. The adversary strategy z,,
in a TME (27, z,) is computed by a linear program af-
ter zr is computed (see Appendix A). For simplicity, we
say that a TME is computed by solving Problem (1). The
Correlated TME (CTME) (Basilico et al., 2017b) cap-
tures the situation where team players can synchronize
actions in G. That is, the team has the set of actions
Ar, and the set of mixed strategies (Zr € A(Ar), and
Ai7ET ={a; | a; € A;,Jar = (ai,aT\{i}),fT(aT) > 0}.
The CTME remains the property of the NE in zero-sum
two-player games. For example, CTMEs are exchangeable
and a CTME can be computed by a linear program, i.e., the
multilinear term [ [, ., #{ar(4)) in Eq.(1b) is replaced by
a single variable T (ar).

The Incremental Strategy Generation (ISG) algorithm
(McMahan et al., 2003; Jain et al., 2011; Bosansky et al.,
2014) has shown the advantage for improving the scalability
for computing an NE in two-player zero-sum games. The
algorithm includes the following steps, repeating until con-
vergence: 1) creating a restricted game G’ by limiting the
set of actions for each player ¢, i.e., Ag C A;; 2) computing
the equilibrium strategy profile z* in this restricted game G’;
and 3) computing a best response a; against z* ; in the orig-
inal unrestricted game G for each player 4, and add a; to A
if u;(a;, * ;) > w;(z*). The algorithm terminates when no
actions are added to the restricted game for all players (i.e.,
ui(a;, x* ;) < wu;(z*),Va; € A;,i € N). For convenience,
we call this algorithm Vanilla-ISG. For CTMESs having the
property of NEs in zero-sum two-player games, Vanilla-ISG
can converge to a CTME. Without loss of generality, we
assume that G/, with A’ = A, x A/ is a restricted game
of Gr with A; C A;(Vi € N), and z;(a;) = 0(VA; \ A})
if z; is a strategy in G/ and is used in G.

4. ISG in Multiplayer Games

In this section, we show that Vanilla-ISG converges to an NE
in multiplayer games. However, we show that Vanilla-ISG
cannot guarantee to converge to a TME. Then, we provide a
method (ISGT) to amend it by exploiting the property that a
TME is an NE maximizing the team’s utility.

4.1. Limitations of Vanilla-ISG

We first show that Vanilla-ISG can converge to an NE but
cannot guarantee to converge to a TME (even cannot guar-
antee to approximate a TME).

Theorem 1. Vanilla-ISG converges to an NE in G.

Proof. First, Vanilla-ISG will converge because the action
set for each player is finite in G. Second, when Vanilla-
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ISG converges to strategy profile z*, u;(a;, z* ;) < u;(x*)
(Va; € A;,i € N), which means that u,;(z},z*,) >
ui(xg, x* ;) Vo, € X;,i € N). Therefore, z* is an
NE. O]

In multiplayer games, there are many different NEs, which
are not exchangeable and give different utilities to players.
However, a TME is an NE giving the best utility for the team,
which is not considered by Vanilla-ISG. Indeed, Vanilla-ISG
may not converge to a TME.

Proposition 1. Vanilla-ISG may not converge to a TME in
Gr.

Proof. By Theorem 1, Vanilla-ISG converges to an NE in
Gr. Now we only need to show that this NE may not be a
best NE for the team because a TME is a best NE for the
team.

Consider G with three players (two teammates), two ac-
tions ({1,2}) per player, and the following utility function:

Zm%a%:{1o fa=(1,2.2)or21,1)

0 otherwise

Suppose that the restricted game G’ in Vanilla-ISG is initial-
ized with action sets A} = {1}, A5, = {2}, A5 = {2}. In
G/, the single equilibrium is a pure strategy profile (1,2, 2).
Then, A% is expanded to {1, 2} because u3(1,2,1) =0 >
—10 = u3(1, 2, 2), while A} and A}, are not expanded. Now
the pure strategy profile (1,2, 1) is the new equilibrium in
the new G/ with ur (1,2, 1) = 0. For each player, A} will
not be expanded because players 1 and 2 will gain O from
the unilateral deviation, while player 3 will lose utility 10
from the unilateral deviation. That is, pure strategy profile
(1,2,1) is an NE in G, i.e., Vanilla-ISG converges to an
NE.

Consider the mixed strategy profile x = (x1, z2, x3) with
x; = (0.5,0.5), which is an NE with utility 2.5 for the
team because each player is indifferent between playing
their actions with their utility under z, e.g., ur(1,2_1) =
ur(2,2_1) = 2.5. Therefore, pure strategy profile (1,2, 1)
is not a best NE for the team, which means that pure strategy
profile (1,2, 1) is not a TME, concluding the proof. O

Vanilla-ISG cannot guarantee to converge to a TME and
also may not approximate a TME by the following result.

Proposition 2. Vanilla-ISG can cause an arbitrarily large
loss to the team in Gr.

Proof. Consider G with utilities shown in Eq.(2). As
shown in the proof for Theorem 1, Vanilla-ISG can converge
to the NE (1, 2, 1) (pure strategy profile) with utility O for
the team while © = (21, z2,23) with ; = (0.5,0.5) is

another NE with utility 2.5 for the team. Therefore, Vanilla-
ISG can cause an arbitrarily large loss to the team because
2.5

4.2. The Difficulty of Converging to a TME

Vanilla-ISG cannot guarantee to converge to a TME, so we
need to extend the current ISG to converge to a TME. This
section shows the difficulty of converging to a TME.

Vanilla-ISG’s failure to converge to a TME shows that we
cannot simply add each player’s best response to obtain a
TME. One straightforward extension of this idea is that we
add the team’s best response to the restricted game. How-
ever, the following result shows that this extension cannot
guarantee to converge to a TME.

Proposition 3. = may not be a TME in Gt if v is a TME
in G%» and an NE in G, and far € (A7 \ A%) such that
ur(ar, xn) > up(z).

Proof. Consider G with three players (two teammates),
Ay = {1,2,3}, A1 = A3z = {1,2}, and the following
utility function:

10 ifa=(1,1,1)0r(2,2,2)
ur(a)=<5 ifa=(2,3,1) 3)
0 otherwise

In GI., A} = A, = AL = {1,2}. Let player i’s mixed
strategy be x; = (z;(1),2;(2)). Given z1, xo, and the
adversary’s action 1, the team’s utility is:

ur(z1, T2,1) = 1021 (1)x2(1)

Given x1, x2, and the adversary’s action 2, the team’s utility
is:

UT(Z‘1,JJ2, 2) = 10(1 — 1‘1(1))(1 — mg(l))
= 10(1 — 331(1) - ,’Eg(l) + {)31(1)1'2(1))

To achieve the TME value, we need to maximize the the min-
imum of up(z1, z2,1) and ur(x1, 2, 2) (see Eq.(1)). The
case that ur(z1,22,1) = ur(z1,22,2) gives the largest
minimum to the team. Let ur(z1,22,1) = ur(z1, 22,2),
we have 21 (1) = 1 — z3(1). Then we have:

ur(x1,x2,1) = 1021 (1)22(1)
= 10(—(x2(1) — 0.5)% + 0.25)

which has its maximum 2.5 at (z2(1) = 0.5. Then we have
(z1(1) = 0.5. Now we have the team-maxmin strategy
profile zp = (z1,22) = ((0.5,0.5),(0.5,0.5)) with the
team utility 2.5 in G’T. Given this x7, we can achieve
x3 = (0.5,0.5) by the following equation (see Appendix
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A):

ur(x1,1,23) = ur(z1,2, 23)
=0.5 % 10 x 23(1) = 0.5 x 10 x (1 — 23(1))

Then © = (x1,22,23) is a TME in G/.. Note that
ur(z1,3,23) = 0.5 x 0.5 x 5 = 1.25 < 0.5. There-
fore, strategy profile z = (x1,(0.5,0.5,0),x3) is an NE
in Gp. In addition, we have ur(2,3,23) = 2.5, which
is not larger than ur(z) = 2.5. However, strategy profile

= ((0,1),(0, %, 2),(3, %)) is an NE in G7 with utility

(> 2.5) for the team. The reason 1s that up (1, x5, x5) =

0 < 2 and up(z),1,25) = 0 < L = up(2,2,24) =
up (2,3, 28) = up (2, z5,1) = uT(xl,x’Q, 2). Therefore,
z is not a TME in G . O

The reason for the above failure is that the adversary
tries to avoid the strategy that gives a high utility for the
team, which gives a low utility for himself in zero-sum
games. Then we need to add more actions to the restricted
game, instead of only adding the team’s best response (i.e.,
adding ar such that ar € arg maxa; ca, ur(ar,z,) and
ur(ar,x,) > ur(x), where z is a TME in G7) or all
of the team’s better responses (i.e., adding ar such that
ur(ar,xy,) > ur(zx)). To do that, we can add the team’s
joint actions with outcomes that are better than the util-
ity of the equilibrium in the restricted game (i.e., adding
ap such that ur(ar,a,) > ur(z)). However, there may
be too many joint actions satisfying this condition in the
full game, and adding too many actions to the restricted
games will make it hard to compute a TME. In ISG, we
compute the team’s best response against the adversary
strategy and add it (only one joint action) to the restricted
game at each iteration. To speed up, two straightforward
extensions of this idea are that: 1) we only add joint ac-
tions related to the support set of the adversary strategy,
ie., adding (ar,a,) € (Ar \ A7) x A, . such that
ur(ar,a,) > ur(z) to G7; and 2) we only add one joint
action that can affect the TME value at each iteration. The
following two results show that both extensions cannot guar-
antee to converge to a TME.

Proposition 4. = may not be a TME in G if v is a TME in
G'p and an NE in G, and Har, an) € (Ap\AL) x A, ..
such that ur(ar, an) > up(z).

Proof. Consider G with three players (two teammates),

Ay = Ay = {1,2,3}, A3 = {1,2}, and the following
utility function:
3 ifa=(1,1,1)0r(1,1,2)
21 ifa=(221)
ur(a)={3 ifa= (2,3 1),(3,2,1), or (3,3,1) (4
10 ifa=(2,3,2),(3,2,2), or (3,3,2

0  otherwise

In G/, A} = A, = A% = {1, 2}. Obviously, pure strategy
profile a = (1,1,1) is an NE in G/ and Gy. Now we
check that x is a TME in G/.. Let player i’s mixed strategy
be z; = (2;(1),x;(2)). Given 1, 2, and the adversary’s
action 1, the team’s utility is:

’UJT(IhJL‘Q, 1) = 3$1(1)I2(1) + 21(1 - il?l(l))(l — Ig(l))

Given z1, x5, and the adversary’s action 2, the team’s utility
is:

ur(x1, x2,2) = 3x1(1)aa(1)

We can see that, if z1(1) < 1 and z5(1) < 1, action 1 is
strictly dominated by action 2 for the adversary. However,
given the adversary action 2 in G7, the team cannot achieve
the utility that is higher than uy(a) = 3. Now, given any
strategy of the adversary, if player 1’s strategy is z1(1) = 1,
player 2’s best response is 21(1) = 1, and vice versa. In
this case, a = (1,1,1) (i.e., z = ((1,0), (1,0),(1,0))) is
a TME in G7.. Given z, Har,a,) € (Ar\ AL) X A, ..
such that ur(ap,a,) > ur(x). However, strategy pro-
file 2/ = ((0,0.5,0.5),(0,0.5,0.5), (2, 2)) is an NE in
G with utility 7.5(> 3) for the team. The reason is that
ur(l, 25, 2%) =0 < 7.5 = up(2, 2%, 25) = ur(3, b, z}),

and ur(z),1,2%) = 0 < 75 = wup(a),2,2%) =
up(x), 3, a%) = ur(a, zh, 1) = up(z), x4, 2). Therefore,
z is not a TME in G . O]

Proposition 5. = may not be a TME in G if x is a TME in
G!r and an NE in G, and B(ar, a,) € (Ar \ Al) x AL,
with ur(ar, an) > ur(x) such that the TME value in G,
changes after adding ar to A’y

Proof. Consider G with three players (two teammates),

A = Ay = {1,2,3}, A5 = {1,2}, and the following
utility function:
3 ifa=(1,1,1)0r (1,1,2)
ur(a)={100 ifa=(2,2,1)0r(3,3,2) (5
0 otherwise
In G, A} = A, = {1}, A5 = {1,2}. Obviously,

z = ((1),(1),(0.5,0.5)) is an NE in G/» and G with
utility 3 for the team, which is also a TME in G/.. If we add
ar = (2,2) or (3, 3), according to the analysis on the case
in Eq.(4), z with 21 (1) = 1 = 22(1) and z3(1) = 25(2) =
0.5 is still a TME in G/ with the TME value 3. That is,
the TME value in G/ does not change. However, strategy
profile ' = ((0,0.5,0.5), (0,0.5,0.5), (0.5,0.5) is an NE
in G with utility 25(> 3) for the team. The reason is that
ur(l,zh,2%) =0 < 25 = up(2, 24, %) = ur(3, 24, z%),
and up(zi,1,25) = 0 < 25 = wup(a),2,25) =
up (2,3, 28) = up (2], x4, 1) = up(x), 25, 2). Therefore,
z is not a TME in G . O
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Algorithm 1 ISG for a TME (ISGT)
1: Initialize G/ with A’ < A% x Al ur(z*) < —o00,2* + ()

2: repeat

3:  Iteration < 1

4:  repeat

5: x <+ CoreTME(G7)

6: if ur(z) = ur(x*)& Iteration = 1 then
7: return z*

8: end if

9: fori € N do

10: Aj «+ AjU{a; + BR(z—:)}
11: end for

12: Iteration < Iteration +1

13:  until convergence (A’ does not change)
14 2"« =x

15: 7« {ar | ur(ar,an) > ur(z), (ar,a,) € (Ar \
Ar) x AL}
16: e AU Al

17: until convergence (A’ does not change)
18: return x.

4.3. Converging to a TME

Based on the discussion in the previous section, this sec-
tion proposes our ISG algorithm for converging to a TME
(ISGT). In fact, it exploits that a TME is an NE maximizing
the team’s utility. Basically, ISGT makes sure that its output
x satisfies three conditions: 1) z is a TME in G/; 2) z is an
NE in Gr; and 3) A(ar,a,) € (A \ A%) x Al such that
ur(ar, an) > ur(z).

Our ISGT is shown in Algorithm 1.2 Line 5 computes a
TME for G’ by solving Problem (1), and Line 10 expands
Al for each player ¢ by solving the best response oracle. If
1) x is a TME in G’-; and 2) x is an NE in G (by Theorem
1), the inner loop will terminate. Line 15 looks for a7 that
gives a better utility to the team outside of G/ and updates
A’ (Line 16). If no such ar, the outer loop will terminate.
Moreover, after obtaining an NE, ISGT records it as z* in
Line 14, and immediately returns it if there are not better
NEs in Line 7.

Now ISGT definitely reduces the strategy space to Ay x A,
to find a TME. To show that the output = of ISGT is a TME,
we first show that if a TME in a restricted game is an NE
in the full game, then it is also a TME in a larger restricted
game including all adversary strategies.

Lemma 1. [f z is a TME in G’ and an NE in G, then x
is a TME in G/ with A" = Al x A,,.

2 Another algorithm framework we can develop is only using
one loop. That is, we directly use the operations in Lines 15 and
16 of Algorithm 1 to replace the best response oracle for the team
in Line 10 of Algorithm 1. However, experimental results show
that this framework can be significantly slower than the current
framework shown in Algorithm 1, which may be partially due to
that this framework will add too many actions to the restricted game
at early iterations. Therefore, we adopt the current framework.

Proof. Suppose that there is an NE 2/ (i.e., (z/p, 2],)) in

n

T such that ur(2’) > wur(x) and 4, ., € Aj.
Then, un,(z') > un(zfy, 2y) (Vo with A, ., C A)),
ie, mings 4, car ur(ep,x,) > ur(x'). There-

fore, in G7,, we have max,, ming, ur(zr,v;) >
ming: up(z7p, ;) > ur(z’) > ur(x), which means that,
ur(z) is not the TME value in G7., i.e., x is not a TME in
the game G’, concluding the proof. O

Based on the above result, now we show that if a TME in
a restricted game is an NE in the full game and there is
no pure strategy profile outside the restricted game giving
larger utility than this TME value, then it is also a TME in
the full game.

Lemma 2. = isa TME in Gt ifa) x is a TME in G/, b) ©
is an NE in G, and c) }(ar, a,) such that ur(ar, a,) >
urp(z) with ar € Ap \ Al

Proof. By Lemma 1, = is a TME of G7. with A”

Al x A,. Suppose that there is a TME 2’ = (27, ),)
in Gr such that ur(z') > ur(z) and Ay, € A7 That
is, there is a; ¢ A.(i € T) such that z}(a;) > 0. By
the condition c), we have ur(ar,a,) < ur(z) for each
ar € Ap\ Al Then, ur(a;, ;) < up(x) < ur(z’), and
then there exists some a; such that up(a}, ;) > ur(z')
(otherwise, up(z’) will not be larger than ur(a;, z";)).
Then we construct a new strategy z” which is identical
to 2/, but x/(a;) = 0 and «/ (a};) = z}(a;) + x}(a}). Then
ur(a") — up(a’) = al(a;) (urlaly @' ) — up(ai, ') >
0, which causes a contradiction, concluding the proof. [

Theorem 2. x is a TME in G if: 1) x is a TME in G/.; 2)
x is an NE in Gr; and 3) }(ar,a,) € (Ar \ Al) x Al
such that up(ar, a,) > ur(x).

Proof. By Lemma 2, x is a TME in G’ with A} =
(Ar, Al). Then, with the condition 2), z is a TME in Gr
with A = (Ar, A,,) by Lemma 1. O

In addition, ISGT (Line 7) indeed can terminate if the TME
value does not change after adding all joint actions that are
better than the equilibrium strategy by the following result.

Theorem 3. z is a TME in G if x is a TME in G/ and an
NE in G, ur(z) is the TME value in G with Har,a,) €
(Ar \ A%) x Al such that ur(ar, an) > ur(z), and G/,
is a restricted game of G'}. that is a restricted game of Gr.

Proof. xis an NE in G7, because x is a TME in G7.. Then,
x is an NE in G7 because z is an NE in Gy, and G/ is
a restricted game of G7. that is a restricted game of Grp.
Moreover, z is a TME in G because up(x) is the TME
value in G%.. By Theorem 2, x is a TME in G. O
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More importantly, Propositions 3-5 have shown the impos-
sibility of relaxing these conditions in Theorems 2 and 3.
Now we can have our following conclusion.

Theorem 4. ISGT converges to a TME in Gr.

Proof. A is finite, so ISGT will terminate. ISGT terminates
with output x satisfying conditions in Theorem 2 or 3, so x
isa TME in G. O]

S. The CTME Based ISGT (CISGT)

Even though ISGT can guarantee to converge to a TME, it is
not efficient enough as ISGT needs to solve the non-convex
Problem (1) in G/, at each iteration. To speed up, we try to
reduce the number of iterations by effectively initializing
the restricted game G’ through computing CTMEs. Now
we first discuss the limitations of computing TMEs based
on CTME:s.

5.1. Limitations of Computing TMEs by CTMEs

A CTME is close to a TME, and CTMEs are used to approx-
imate TMEs (Basilico et al., 2017b) by Transforming the
correlated strategy in a CTME into the team’s Mixed Strat-
egy Profile (TMSP). In this section, we show the limitations
of computing TMEs based on CTMEs. We first show that
using TMSPs may cause an arbitrarily large loss to the team.
Second, we show that a TME in G’T with the strategies for
computing a CTME may not be an NE in G, and it may
not be a TME in G'1 even it is an NE in G1. Moreover, we
show that using the strategy profile in this TME of such G/,
may cause an arbitrarily large loss to the team as well.

To our best knowledge, the best algorithm (Basilico et al.,
2017b) to obtain a TMSP is: Given the team’s strategy
in a CTME: ZTr € A(Ar), player 1’s mixed strategy
z1(ay) = Za'eAT\{l} Tr(ar,a’)(Va1 € Ap); player i’s
mixed strategy x;(a;) = milf\ if [A; 7| > 0, otherwise
xi(a;) =0 i e T\ {1},a; € A;). This algorithm returns
the team’s best TMSP among TMSPs obtained by exchang-
ing player 1 with each team member. We call it TMSP-Alg.
To measure the inefficiency of transforming the correlated
strategies in a CTME into a TMSP, we adopt the concept of
Price of Correlated strategies (PoC) (Zhang & An, 2020).
Formally, PoC = %, where v,,, is the TME value and v, is
the team utility obtained from a TMSP. Unfortunately, PoC
can be arbitrarily large in G7.?

Proposition 6. PoC can be arbitrarily large in G.

Proof. Consider G with three players (two teammates),
Ay = As = A3z = {1,2,3}, and the following utility
function:

*Omitted proofs in this section are in Appendix B.

1 ifa1 = a2 = asg

1 .

= ifa; =1,a9 =2
ur(ar,az,a3)=< %, T T (6)

—3 ifa1=2,a2=1

0 otherwise

A CTME 7 is Tr(1,1) = 77(2,2) = 77(3,3) = %
(note that, given any adversary strategy, one of these three
pure strategies dominates other strategies, and any of them
should be played with nonzero probability otherwise the
adversary best response gives utility O to the team) and
Tn(l) = Tn(2) = Tn(3) = 1. Now, by TMSP-Alg,
Z’s unique TMSP prescribes that z; = (3,3,1) and
x2 = (3, %, 3), while the adversary (player 3) is indiffer-
ent between playing any strategies given this TMSP. Then,
ve = 0.

An NE is a pure strategy profile (1,2, 3), where player 1
plays action 1, player 2 plays action 2, while player 3 plays
action 3. The team’s utility is uz (1,2, 3) = 0.25. The rea-
son is that the team will obtain utility O if any team member
unilaterally deviates to other actions, and the adversary is
indifferent among all strategies.

Therefore, PoC = %= > 925 — o0, ]

Another idea is to compute a TME in G/ with strategies for
computing a CTME. There are two cases: 1) G' including
all support sets of all players in a CTME; and 2) G/ includ-
ing all strategies for computing a CTME. However, in each
case, this TME may not be an NE in G'7, and it may not be
a TME in G'r even it is an NE in G by following results.

Proposition 7. x may not be an NE in G if T is a CTME
in Gr, and x is a TME in G7p with A" = (X;er4; 7,) X

2N, Ty

Proof. Consider G with three players (two teammates),
Ay = Ay = {1,2}, A3 = {1,2,3}, and the following
utility function:

10 ifa=(1,1,1)o0r(2,2,2)
@=]10  fa=(13)0r223
ur\a)=
T ~10 ifa=(2,1,3)0r(1,2,3)

0 otherwise

A CTME 7 is Tp(1,1) = Tr(2,2) = 0.5 and ZT3(1) =
T3(2) = 0.5 with utility 5 for the team (it is easy to verify
that no players would like to deviate to other strategies, e.g.,
action 3 for the adversary with up(ZTr,3) = 10 > 5 is
not better than T3). Then we have G/. with with A] =
Al = AL = {1,2}. According to the analysis on the case
in Eq.(3), z with z;(1) = x;(2) = 0.5 is a TME in G’ with
utility 2.5 for the team. However, for the adversary action
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Algorithm 2 The CTME Based ISGT (CISGT)

1: Initialize G/ with A" = A% x Al ur(z*) = —oo, 2™ + 0
2: repeat

3: T+ CoreCTME(GY)

4: Ay« AL U{ar <+ BR(Z,)}

5. A, « A, U{a, + BR(Zr)}

6: until convergence (A’ does not change)
7: zr < TMSP-Alg(zr)

8: if U,T(J}T7 BR(ZBT)) > uT(f) then

9:  return (z7,T,)

10: end if

11: repeat

12:  Lines 4-13 in ISGT

13:  ifur(z) > ur(T) then

14: return x

15:  endif

16:  Lines 14-16 in ISGT

17: until convergence (A’ does not change)
18: return x.

3, ur(xr,3) = 0.5 x 0.5(10 + 10 — 10 — 10) = 0 < 2.5.
Therefore, z is not an NE in the original game Gr. O

Corollary 1. x may not be an NE in G if T is a CTME in
Gr and is computed in G, and x is a TME in G'p..
Proposition 8. = may not be a TME in G if T is a CTME in
Gr, andxisa TME in Gl with A’ = (X;er A XA,z
and an NE in G.

Corollary 2. x may not be a TME in G if T is a CTME in

Gr and is computed in G'y, and x is a TME in G/ and an
NE in G.

i,ET)

Computing a TME in G/ with strategies for computing a
CTME not only cannot guarantee to obtain a TME in G,
but also can cause an arbitrarily large loss to the team.

Proposition 9. If 7 is a CTME in G, and x is a TME in
Gl with A’ = (XieTAi,zT) x A, 7, then playing xr may
cause an arbitrarily large loss to the team.

Corollary 3. If 7 is a CTME in Gr, and x is a TME in
G/ where T is computed, then playing 1 may cause an
arbitrarily large loss to the team.

5.2. CISGT: Efficiently Converging to a TME

Based on our discussion in the previous section, this section
proposes our CISGT. In addition to the operations in ISGT,
CISGT has two new operations: 1) it initializes the restricted
game through computing a CTME to reduce the number of
iterations for solving Prolbem (1); and 2) it exploits that the
team’s utility in a CTME is an upper bound of the TME
value (Basilico et al., 2017b) to terminate earlier.

Our CISGT is shown in Algorithm 2.# CISGT uses Vanilla-

“When we compute an e-TME, we only need to set
ur(xr, BR(x1)) > ur(T)—eatLine 8 and ur(x) > ur(x)—e
at Line 13, and all properties still hold.

ISG to compute a CTME at Lines 2—6. Then, CISGT com-
putes a TMSP at Line 7 and then checks whether we have
obtained a TME to return it at Lines 8-9. After that, CISGT
repeats the operations in ISGT to compute a TME in G/ and
makes sure that it is also an NE in G at Line 12. CISGT
then checks whether we have obtained a TME to return it at
Lines 13-14. At Line 16, CISGT adds actions by repeating
the operations in ISGT.

To show the convergence of CISGT, we first show that, a
TMSP is part of a TME if the utility obtained by it is not
less than to the team’s utility in a CTME.

Theorem 5. In Grp, given a CTME T = (T1,T,)
and a mixed strategy profile for the team xr such that
uT(:cT, BR(’IT)) > ’U,T(f), then (SCT,fn) isa TME.

Proof. Let v* be the TME value of Gr. Then v* < up(T)
(Basilico et al., 2017b). Now we have v* < up(T) =
maxg, ming: ur(Ty,T,) = maxg, ur(Typ,T,). Then,
we have ur(zr, BR(xr)) = ming ur(zr,z;,) <
ur(xr, Tp) < max,: ur (T7\ (i}, T}, Tn) <
maxg ur(Tp,Tn) = ur(T). Consequently, given
a7, for any adversary strategy z,,, we have u, (zr,x},) —
un (27, ZTn) = —ur(er,x),) — (—ur(zr,@,)) =
ur(zr, Tn) —ur(xr, 2),) < up(T) —ur(zr, BR(zy)) <
0. Similarly, given T,, and zr\ {4}, for any player i’s strat-
egy xj, we have ur(zp\ (i}, 75, Tn) — ur(or,Tp) <
UT(f) — UT(JIT, BR(JJT)) < 0. Then, (LET,fn)
is an NE. In addition, due to ur(zp, BR(zr)) =
ming, ur(z7, ;) < max,, ming, ur(rp, ;) = v*, we
have ur (z7,%,) — v* < ur(Z) — ur(zr, BR(z1)) <0
and v* — ur(zr,%p) < up(T) — ur(xr, BR(xr)) < 0.
Therefore, (7,7, ) is a TME. O

Similarly, a TME in G/ is a TME in G if the utility ob-
tained by it is not less than to the team’s utility in a CTME.

Theorem 6. x is a TME in G if x is a TME in G/ and an
NE in Gr, T is a CTME in Gt with ur(x) > ur(T).

Proof. Let v* be the TME value of Gp. Then v* < up (T
(Basilico et al., 2017b). Now we have up(z) < v* <
ur(T). Obviously, z is a TME in Gr.

~

O

Finally, based on the above results, we have the following
conclusion.

Theorem 7. CISGT converges to a TME.

Proof. First, CISGT will converge because the action set
for each player is finite in Gp. Second, the output x is a
TME by Theorems 4—6. O
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LxW 5%5 5x5 5%5 5x5 5%5 4x4 6x6 8&x8 10x 10
(p.q) (0.8,0.6) (0.7,0.5) (0.6,04) (0.5,0.3) (04,02) (04,0.2) (0402 (04,0.2) (0.4,0.2)
FullTME ) 448s 50.4s 17.8s 0.3s 00
ISGT >1000s 4s >1000s
CISGT 9.8s 5.9s 4.7s 3.7s 2.3s 2.2s 8.3s 24s 57s
Table 1. Computing TMEs: oo represents out of memory.
LxW 4x4 4x4 4x4 4x4 4x4 5x5 6x6 Tx7 8x8
(p.q) (04,0.2) (0.3,02) (0.3,0.1) (0.2,0.1) (0.1,0,1) (0.1,0.1) (0.1,0.1) (0.1,0.1) (0.1,0.1)
Vanilla-ISG 35% 38% 38% 30% 26% 53% 47% 56% 55%
TMSP-Alg 61% 50% 51% 44% 38% 75% 54% 79% 87%

Table 2. Gaps relative to CISGT.

6. Experiment Evaluation

We experimentally evaluate CISGT, comparing the perfor-
mance of CISGT with that of ISGT and the state-of-the-art
algorithm (Zhang & An, 2020) (FullTME) for computing
TMEs (i.e., e-TME with ¢ = 0.05). FullTME enumerates
all pure strategies and uses global optimization techniques
to approximate multilinear terms in Problem (1) by a mixed-
integer linear program. We use CPLEX solver (version 12.9)
for solving all linear programs. All experiments are run on
a machine with 6-core 3.6GHz CPU and 32GB memory.

We conduct experiments on the classic network security
games 3 (Washburn & Wood, 1995; Jain et al., 2011;
Iwashita et al., 2016) to evaluate our approach. In a net-
work security game, the adversary starts at a source node
(he may have many possible source nodes) and travels along
the path he chooses to one of his targets. That is, an action
(a pure strategy) of the adversary is a path from a source to a
target, and then the action space includes all possible paths.
The police officers form a team, and each police occupies
one of the possible edges on the network to try to catch the
adversary before the target is reached. That is, an action (a
pure strategy) of each team member is an edge. Similar to
police officers in the NYPD, who maintain “sector integrity’
(NYPD, 2020a), the action space of each police officer is
disjoint with others in our setting. The adversary may have
different values for different targets, and the adversary will
succeed if his choosing path does not overlap with the edges
chosen by the team; otherwise, the adversary will obtain
nothing. All networks are generated by the grid model with
random edges (Peng et al., 2014), which models the real
urban network with some parameters. That is, it samples a
square network with L x W nodes, and it generates horizon-
tal/vertical edges between neighbors with probability p, and

i

>Network security games can be easily extended to other games,
including the robot planning problem in the adversary environment
(McMahan et al., 2003), hider-seeker games (Halvorson et al.,
2009), patrolling games with alarm systems (Basilico et al., 2017a),
and green security games (Wang et al., 2019). Then our results
will also hold in these games.

diagonal ones with probability q. By default, n = 3, and
results are all averaged over 30 instances that are randomly
generated.

Vanilla-ISG to compute CTME:s is the double oracle algo-
rithm proposed by Jain et al. (2011), including the linear
program for computing a maximin strategy for the team,
and mixed-integer linear programs of best response oracles
for the team and the adversary, respectively. These best re-
sponse oracles can be easily extended to CISGT. TMEs for
restricted games are computed by the algorithm proposed
by Zhang & An (2020), i.e., FullTME computes TMEs in
restricted games.

Results in Table 1 show that CISGT is orders of magnitude
faster than ISGT and FullTME.® Specially, when FullTME,
enumerating all pure strategies to compute a TME in a full
game, runs out of the memory, CISGT still runs efficiently.

In addition, we compare the solution quality of CISGT with
that of Vanilla-ISG and TMSP-Alg. Table 2 shows the
possible gaps, which are the relative distance between the
team utility (v,,,) obtained by CISGT and the team utility v
obtained by Vanilla-ISG or TMSP-Alg, i.c., ‘U\Z:Tl x 100%.
The team will lose more utility if the gap is larger. We can
see that the team may lose a large utility if Vanilla-ISG or
TMSP-Alg is deployed.

7. Conclusion and Future Work

This paper proposes an efficient ISG algorithm (CISGT) to
compute TMEs for zero-sum multiplayer games. Our algo-
rithm is the first incremental strategy generation algorithm
guaranteeing to converge to a TME, which significantly
overcomes the limitation of state-of-the-art algorithms. Es-
pecially, our algorithm can efficiently solve the cases that
the baselines cannot solve. In the future, we can extend our
CISGT to extensive-form games (Bosansky et al., 2014) and
use it to develop learning algorithms (Lanctot et al., 2017).

®In addition, ISGT’s another framework we mentioned in Sec-
tion 4.3 needs 898s on the smallest network with 4 x4 and (0.4,0.2).
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