A. Appendix

A.1. Semantics of specifications

We define the semantics of a specification $S = \{(T_1, \delta_1), \ldots, (T_n, \delta_n)\}$ (such that $T_i = (\varphi_i, f_i)$) as follows. Given a string $\mathbf{x} = x_1 \ldots x_m$, a string \mathbf{y} is in the perturbations space $S(\mathbf{x})$ if:

- 1. there exists matches $\langle (l_1,r_1),j_1\rangle\ldots\langle (l_k,r_k),j_k\rangle$ (we assume that matches are sorted in ascending order of l_i) such that for every $i\leqslant k$ we have that (l_i,r_i) is a valid match of φ_{j_i} in \mathbf{x} ;
- 2. the matches are not overlapping: for every two distinct i_1 and i_2 , $r_{i_1} < l_{i_2}$ or $r_{i_2} < l_{i_1}$;
- 3. the matches respect the δ constraints: for every $j' \leq n$, $|\{\langle (l_i, r_i), j_i \rangle \mid j_i = j'\}| \leq \delta_{j'}$.
- 4. the string y is the result of applying an appropriate transformation to each match: if for every $i \leq k$ we have $\mathbf{s}_i \in f_{i_i}(x_{l_i} \dots x_{r_i})$, then

$$\mathbf{y} = x_1 \dots x_{l_1-1} \mathbf{s}_1 x_{r_1+1} \dots x_{l_k-1} \mathbf{s}_k x_{r_k+1} \dots x_m.$$

A.2. Proof of Theorem 1

We give the following definition of a convex set:

Definition 1. Convex set: A set C is **convex** if, for all x and y in C, the line segment connecting x and y is included in C.

Proof. We first state and prove the following lemma.

Lemma 2. Given a set of points $\{p_0, p_1, \ldots, p_t\}$ and a convex set \mathcal{C} such that $\{p_0, p_1, \ldots, p_t\} \subset \mathcal{C}$. These points define a set of vectors $\overrightarrow{p_0p_1}, \overrightarrow{p_0p_2}, \ldots, \overrightarrow{p_0p_t}$. If a vector $\overrightarrow{p_0p}$ can be represented as a sum weighed by α_i :

$$\overrightarrow{p_0p} = \sum_{i=1}^{t} \alpha_i \cdot \overrightarrow{p_0p_i}, \tag{4}$$

where α_i respect to constraints:

$$\sum_{i=1}^{t} \alpha_i \le 1 \land \forall 1 \le i \le t. \ \alpha_i \ge 0, \tag{5}$$

then the point p is also in the convex set C.

Proof. We prove this lemma by induction on t,

• Base case: t=1, if $\overrightarrow{p_0p}=\alpha_1\cdot \overrightarrow{p_0p_1}$ and $0\leq \alpha_1\leq 1$, then p is on the segment p_0p_1 . By the definition of the convex set (Definition 1), the segment p_0p_1 is inside the convex, which implies p is inside the convex: $p\in p_0p_1\subseteq \mathcal{C}$.

• Inductive step: Suppose the lemma holds for t = r. If a vector $\overrightarrow{p_0p}$ can be represented as a sum weighed by α_i :

$$\overrightarrow{p_0p} = \sum_{i=1}^{r+1} \alpha_i \cdot \overrightarrow{p_0p_i} \tag{6}$$

where α_i respect to constraints:

$$\sum_{i=1}^{r+1} \alpha_i \le 1,\tag{7}$$

$$\forall 1 \le i \le r + 1. \ \alpha_i \ge 0. \tag{8}$$

We divide the sum in Eq 6 into two parts:

$$\overrightarrow{p_0 p} = \sum_{i=1}^{r+1} \alpha_i \cdot \overrightarrow{p_0 p_i} \tag{9}$$

$$= (\sum_{i=1}^{r} \alpha_i \cdot \overrightarrow{p_0 p_i}) + \alpha_{r+1} \cdot \overrightarrow{p_0 p_{r+1}}$$
 (10)

$$=(1-\alpha_{r+1})\overrightarrow{p_0p'}+\alpha_{r+1}\cdot\overrightarrow{p_0p_{r+1}}\quad\text{, and}\quad$$

$$\overrightarrow{p_0 p'} = \sum_{i=1}^r \frac{\alpha_i}{1 - \alpha_{r+1}} \cdot \overrightarrow{p_0 p_i}$$
 (12)

Because from Inequality 7, we know that

$$\sum_{i=1}^{r} \alpha_i \le 1 - \alpha_{r+1},$$

which is equivalent to

$$\sum_{i=1}^{r} \frac{\alpha_i}{1 - \alpha_{r+1}} \le 1.$$

This inequality enables the inductive hypothesis, and we know point p' is in the convex set \mathcal{C} . From Eq 11, we know that the point p is on the segment of $p'p_{r+1}$, since both two points p' and p_{r+1} are in the convex set \mathcal{C} , then the point p is also inside the convex set \mathcal{C} .

To prove Theorem 1, we need to show that every perturbed sample $\mathbf{y} \in S(\mathbf{x})$ lies inside the convex hull of $abstract(S,\mathbf{x})$.

We first describe the perturbed sample y. The perturbed sample y as a string is defined in the semantics of specification S (see the Appendix A.1). In the rest of this proof, we use a function $E: \Sigma^m \mapsto \mathbb{R}^{m \times d}$ mapping from a string with length m to a point in $m \times d$ -dimensional space, e.g., E(y) represents the point of the perturbed sample y in the

embedding space. We use $\mathbf{x}_{\langle (l,r),j,\mathbf{s}\rangle}$ to represent the string perturbed by a transformation $T_j=(\varphi_j,f_j)$ such that (l,r) is a valid match of φ_j and $\mathbf{s}\in f_j(x_l,\ldots,x_r)$. Then

$$\mathbf{x}_{\langle (l,r),j,\mathbf{s}\rangle} = x_1 \dots x_{l-1} \mathbf{s} x_{r+1} \dots x_m.$$

We further define $\Delta_{\langle (l,r),j,\mathbf{s}\rangle}$ as the vector $E(\mathbf{x}_{\langle (l,r),j,\mathbf{s}\rangle}) - E(\mathbf{x}) = \overline{E(\mathbf{x})E(\mathbf{x}_{\langle (l,r),j,\mathbf{s}\rangle})}$:

$$\Delta_{\langle (l,r),j,\mathbf{s}\rangle} = (\underbrace{0,\ldots,0}_{(l-1)\times d}, E(\mathbf{s}) - E(x_l\ldots x_r), \underbrace{0,\ldots,0}_{(m-r)\times d}).$$

A perturbed sample \mathbf{y} defined by matches $\langle (l_1, r_1), j_1 \rangle \ldots \langle (l_k, r_k), j_k \rangle$ and for every $i \leq k$ we have $\mathbf{s}_i \in f_{j_i}(x_{l_i} \ldots x_{r_i})$, then

$$\mathbf{y} = x_1 \dots x_{l_1-1} \mathbf{s}_1 x_{r_1+1} \dots x_{l_k-1} \mathbf{s}_k x_{r_k+1} \dots x_m.$$

The matches respect the δ constraints: for every $j' \leq n$, $|\{\langle (l_i, r_i), j_i, \mathbf{s}_i \rangle \mid j_i = j'\}| \leq \delta_{j'}$. Thus, the size of the matches k also respect the δ constraints:

$$k = \sum_{j'=1}^{n} |\{\langle (l_i, r_i), j_i, \mathbf{s}_i \rangle \mid j_i = j'\}| \le \sum_{j'=1}^{n} \delta_{j'}. \quad (13)$$

In the embedding space,

$$\overrightarrow{E(\mathbf{x})E(\mathbf{y})} = (\underbrace{0, \dots, 0}_{(l_1-1)\times d}, E(\mathbf{s}_1) - E(x_{l_1} \dots x_{r_1}),$$

$$0, \dots, 0, E(\mathbf{s}_k) - E(x_{l_k} \dots x_{r_k}), \underbrace{0, \dots, 0}_{(m-r_k)\times d}).$$

Thus, we can represent $\overline{E(\mathbf{x})E(\mathbf{y})}$ using $\Delta_{\langle (l,r),j,\mathbf{s}\rangle}$:

$$\overrightarrow{E(\mathbf{x})E(\mathbf{y})} = \sum_{i=1}^{k} \Delta_{\langle (l_i, r_i), j_i, \mathbf{s}_i \rangle}.$$
 (14)

We then describe the convex hull of $abstract(S, \mathbf{x})$. The convex hull of $abstract(S, \mathbf{x})$ is constructed by a set of points $E(\mathbf{x})$ and $E(\mathbf{v}_{\langle (l,r),i,\mathbf{s}\rangle})$, where points $E(\mathbf{v}_{\langle (l,r),i,\mathbf{s}\rangle})$ are computed by:

$$E(\mathbf{v}_{\langle (l,r),j,\mathbf{s}\rangle}) \triangleq E(\mathbf{x}) + (\sum_{i=1}^{n} \delta_i)(E(\mathbf{x}_{\langle (l,r),j,\mathbf{s}\rangle}) - E(\mathbf{x})).$$

Alternatively, using the definition of $\Delta_{\langle (l,r),j,\mathbf{s}\rangle}$, we get

$$\overrightarrow{E(\mathbf{x})E(\mathbf{v}_{\langle (l,r),j,\mathbf{s}\rangle})} = (\sum_{i=1}^{n} \delta_i)\Delta_{\langle (l,r),j,\mathbf{s}\rangle}.$$
 (15)

We then prove the Theorem 1. To prove E(y) lies in the convex hull of abstract(S, x), we need to apply Lemma 2.

Notice that a convex hull by definition is also a convex set. Because from Eq 14, we have

$$\overline{E(\mathbf{x})E(\mathbf{y})} = \sum_{i=1}^{k} \Delta_{\langle (l_i, r_i), j_i, \mathbf{s}_i \rangle}$$

$$= \frac{1}{\sum_{i=1}^{n} \delta_i} \sum_{i=1}^{k} (\sum_{i'=1}^{n} \delta_{i'}) \Delta_{\langle (l_i, r_i), j_i, \mathbf{s}_i \rangle}.$$

We can use Eq 15 into the above equation, and have

$$= \frac{1}{\sum_{i=1}^{n} \delta_{i}} \sum_{i=1}^{k} \overline{E(\mathbf{x})} E(\mathbf{v}_{\langle (l_{i}, r_{i}), j_{i}, \mathbf{s}_{i} \rangle})$$

$$= \sum_{i=1}^{k} \left(\frac{1}{\sum_{i=1}^{n} \delta_{i}}\right) \cdot \overline{E(\mathbf{x})} E(\mathbf{v}_{\langle (l_{i}, r_{i}), j_{i}, \mathbf{s}_{i} \rangle}).$$

To apply Lemma 2, we set

$$\alpha_i = \frac{1}{\sum_{j=1}^n \delta_j}.$$

Using Inequality 13 on

$$\alpha_i = \frac{1}{\sum_{j=1}^n \delta_j} \ge 0,\tag{16}$$

we get

$$\sum_{i=1}^{k} \alpha_i = \sum_{i=1}^{k} \frac{1}{\sum_{j=1}^{n} \delta_j} = \frac{k}{\sum_{j=1}^{n} \delta_j} \le 1.$$
 (17)

The constraints in Inequality 16 and Inequality 17 enable Lemma 2, and by applying Lemma 2, we know that point $E(\mathbf{y})$ is inside the convex hull of $abstract(S, \mathbf{x})$.

A.3. Details of Experiment Setup

For AG dataset, we trained a smaller character-level model than the one used in Huang et al. (2019). We followed the setup of the previous work: use lower-case letters only and truncate the inputs to have at most 300 characters. The model consists of an embedding layer of dimension 64, a 1-D convolution layer with 64 kernels of size 10, a ReLU layer, a 1-D average pooling layer of size 10, and two fully-connected layers with ReLUs of size 64, and a linear layer. We randomly initialized the character embedding and updated it during training.

For SST2 dataset, we trained the same word-level model as the one used in Huang et al. (2019). The model consists of an embedding layer of dimension 300, a 1-D convolution layer with 100 kernels of size 5, a ReLU layer, a 1-D average pooling layer of size 5, and a linear layer. We used the pretrained Glove embedding (Pennington et al., 2014) with dimension 300 and fixed it during training.

For SST2 dataset, we trained the same character-level model as the one used in Huang et al. (2019). The model consists of an embedding layer of dimension 150, a 1-D convolution layer with 100 kernels of size 5, a ReLU layer, a 1-D average pooling layer of size 5, and a linear layer. We randomly initialized the character embedding and updated it during training.

For all models, we used Adam (Kingma & Ba, 2015) with a learning rate of 0.001 for optimization and applied early stopping policy with patience 5.

A.3.1. PERTURBATIONS

We provide the details of the string transformations we used:

- T_{SubAdj}, T_{InsAdj}: We allow each character substituting to one of its adjacent characters on the QWERTY keyboard.
- $T_{DelStop}$: We choose $\{and, the, a, to, of\}$ as our stop words set.
- T_{SubSyn}: We use the synonyms provided by PPDB (Pavlick et al., 2015). We allow each word substituting to its closest synonym when their part-ofspeech tags are also matched.

A.3.2. BASELINE

Random augmentation performs adversarial training using a weak adversary that simply picks a random perturbed sample from the perturbation space. For a specification $S = \{(T_1, \delta_1), \ldots, (T_n, \delta_n)\}$, we produce \mathbf{z} by uniformly sampling one string \mathbf{z}_1 from a string transformation (T_1, δ_1) and passing it to the next transformation (T_2, δ_2) , where we then sample a new string \mathbf{z}_2 , and so on until we have exhausted all transformations. The objective function is the following:

$$\underset{\theta}{\operatorname{argmin}} \underset{(\mathbf{x},y) \sim \mathcal{D}}{\mathbb{E}} \left(\mathcal{L}(x,y,\theta) + \underset{\mathbf{z} \in R(\mathbf{x})}{\operatorname{max}} \mathcal{L}(\mathbf{z},y,\theta) \right) \quad (18)$$

HotFlip augmentation performs adversarial training using the HotFlip (Ebrahimi et al., 2018) attack to find **z** and solve the inner maximization problem. The objective function is the same as Eq 18.

A3T adopts a curriculum-based training method (Huang et al., 2019; Gowal et al., 2019) that uses a hyperparameter λ to weigh between normal loss and maximization objective in Eq. (2). We linearly increase the hyperparameter λ during training.

$$\begin{aligned} & \underset{\theta}{\operatorname{argmin}} & \underset{(\mathbf{x},y) \sim \mathcal{D}}{\mathbb{E}} \left((1-\lambda)\mathcal{L}(x,y,\theta) + \\ & \lambda \max_{\mathbf{z} \in \textit{augment}_k(S_{\textit{aug}},\mathbf{x})} \mathcal{L}(\textit{abstract}(S_{\textit{abs}}\mathbf{z}),y,\theta) \right). \end{aligned}$$

Also, we set k in $augment_k$ to 2, which means we select 2 perturbed samples to abstract.

A.3.3. EVALUATION RESULTS

RQ2: Effects of size of the perturbation space In Figure 4, we fix the word-level model A3T (search) trained on $\{(T_{Dup}, 2), (T_{SubSyn}, 2)\}$. Then, we test this model's exhaustive accuracy on $\{(T_{Dup}, \delta_1), (T_{SubSyn}, 2)\}$ (Figure 4(a)) and $\{(T_{Dup}, 2), (T_{SubSyn}, \delta_2)\}$ (Figure 4(b)), where we vary the parameters δ_1 and δ_2 between 1 and 4, increasing the size of the perturbation space. The exhaustive accuracy of A3T(HotFlip) and A3T(search) decreases by 17.4% and 11.4%, respectively, when increasing δ_1 from 1 to 4, and decreases by 2.3% and 1.9%, respectively, when increasing δ_2 from 1 to 4. All other techniques result in larger decreases in exhaustive accuracy ($\geq 17.5\%$ in $\{(T_{Dup}, \delta_1), (T_{SubSyn}, 2)\}$ and $\geq 3.1\%$ in $\{(T_{Dup}, 2), (T_{SubSyn}, \delta_2)\}$).

In Figure 5, we fix the word-level model A3T (search) trained on $\{(T_{DelStop}, 2), (T_{Dup}, 2), (T_{SubSyn}, 2)\}.$ Then, we test this model's exhaustive accuracy on $\{(T_{DelStop}, \delta_1), (T_{Dup}, 2), (T_{SubSyn}, 2)\}$ (Figure 5(a)), $\{(T_{DelStop}, 2), (T_{Dup}, \delta_2), (T_{SubSyn}, 2)\}$ (Figure 5(b)), and $\{(T_{DelStop}, 2), (T_{Dup}, 2), (T_{SubSyn}, \delta_3)\}$ (Figure 5(c)), where we vary the parameters δ_1 , δ_2 and δ_3 between 1 and 3, increasing the size of the perturbation space. The exhaustive accuracy of A3T(HotFlip) and A3T(search) decreases by 1.1\% and 0.9\%, respectively, when increasing δ_1 from 1 to 3, decreases by 12.9\% and 6.9\%, respectively, when increasing δ_2 from 1 to 3, and decreases by 1.4% and 0.9%, respectively, when increasing δ_3 from 1 to 3. All other techniques result in larger decreases in exhaustive accuracy $(\geq 2.2\% \text{ in } \{(T_{DelStop}, \delta_1), (T_{Dup}, 2), (T_{SubSyn}, 2)\}, \geq 13.0\%$ in $\{(T_{DelStop}, 2), (T_{Dup}, \delta_2), (T_{SubSyn}, 2)\}$, and $\geq 2.8\%$ in $\{(T_{DelStop}, 2), (T_{Dup}, 2), (T_{SubSyn}, \delta_3)\}$).

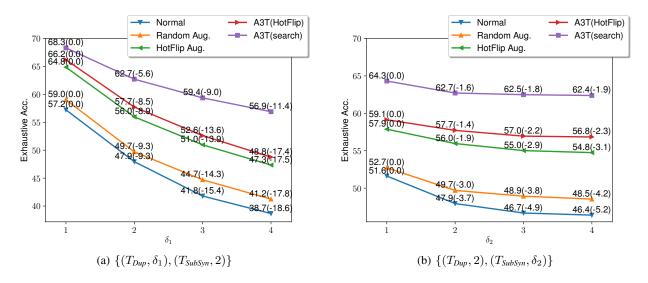


Figure 4. The exhaustive accuracy of $\{(T_{Dup}, \delta_1), (T_{SubSyn}, \delta_2)\}$, varying the parameters δ_1 (left) and δ_2 (right) between 1 and 4.

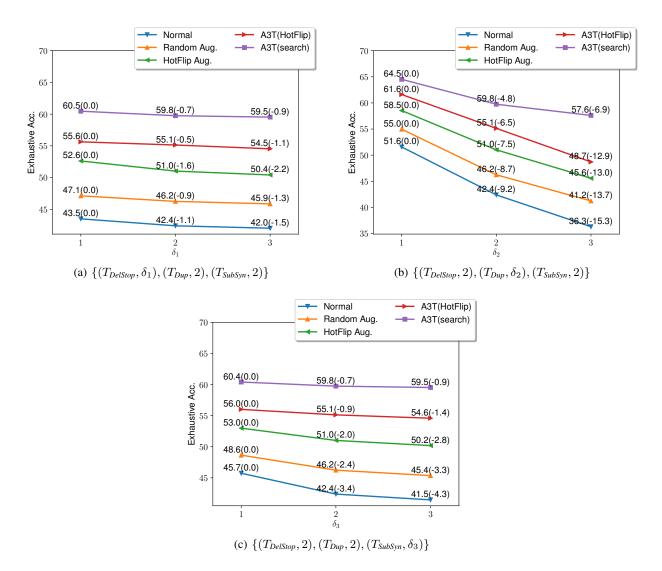


Figure 5. The exhaustive accuracy of $\{(T_{DelStop}, \delta_1), (T_{Dup}, \delta_2), (T_{SubSyn}, \delta_3)\}$, varying the parameters δ_1 (left), δ_2 (middle), and δ_3 (right) between 1 and 3.