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A. Appendix
A.1. Semantics of specifications

We define the semantics of a specification S =
{(T1, δ1), . . . , (Tn, δn)} (such that Ti = (ϕi, fi)) as fol-
lows. Given a string x = x1 . . . xm, a string y is in the
perturbations space S(x) if:

1. there exists matches 〈(l1, r1), j1〉 . . . 〈(lk, rk), jk〉 (we
assume that matches are sorted in ascending order of
li) such that for every i 6 k we have that (li, ri) is a
valid match of ϕji in x;

2. the matches are not overlapping: for every two distinct
i1 and i2, ri1 < li2 or ri2 < li1 ;

3. the matches respect the δ constraints: for every j′ 6 n,
|{〈(li, ri), ji〉 | ji = j′}| 6 δj′ .

4. the string y is the result of applying an appropriate
transformation to each match: if for every i 6 k we
have si ∈ fji(xli . . . xri), then

y = x1 . . . xl1−1 s1 xr1+1 . . . xlk−1 sk xrk+1 . . . xm.

A.2. Proof of Theorem 1

We give the following definition of a convex set:

Definition 1. Convex set: A set C is convex if, for all x
and y in C, the line segment connecting x and y is included
in C.

Proof. We first state and prove the following lemma.

Lemma 2. Given a set of points {p0, p1, . . . , pt} and a
convex set C such that {p0, p1, . . . , pt} ⊂ C. These points
define a set of vectors −−→p0p1,

−−→p0p2, . . . ,
−−→p0pt. If a vector −→p0p

can be represented as a sum weighed by αi:

−→p0p =

t∑
i=1

αi · −−→p0pi, (4)

where αi respect to constraints:

t∑
i=1

αi ≤ 1 ∧ ∀1 ≤ i ≤ t. αi ≥ 0, (5)

then the point p is also in the convex set C.

Proof. We prove this lemma by induction on t,

• Base case: t = 1, if −→p0p = α1 · −−→p0p1 and 0 ≤ α1 ≤ 1,
then p is on the segment p0p1. By the definition of the
convex set (Definition 1), the segment p0p1 is inside
the convex, which implies p is inside the convex: p ∈
p0p1 ⊆ C.

• Inductive step: Suppose the lemma holds for t = r. If
a vector −→p0p can be represented as a sum weighed by
αi:

−→p0p =

r+1∑
i=1

αi · −−→p0pi (6)

where αi respect to constraints:

r+1∑
i=1

αi ≤ 1, (7)

∀1 ≤ i ≤ r + 1. αi ≥ 0. (8)

We divide the sum in Eq 6 into two parts:

−→p0p =

r+1∑
i=1

αi · −−→p0pi (9)

= (

r∑
i=1

αi · −−→p0pi) + αr+1 · −−−−→p0pr+1 (10)

= (1− αr+1)
−−→
p0p
′ + αr+1 · −−−−→p0pr+1 , and

(11)

−−→
p0p
′ =

r∑
i=1

αi
1− αr+1

· −−→p0pi (12)

Because from Inequality 7, we know that

r∑
i=1

αi ≤ 1− αr+1,

which is equivalent to

r∑
i=1

αi
1− αr+1

≤ 1.

This inequality enables the inductive hypothesis, and
we know point p′ is in the convex set C. From Eq 11,
we know that the point p is on the segment of p′pr+1,
since both two points p′ and pr+1 are in the convex set
C, then the point p is also inside the convex set C.

To prove Theorem 1, we need to show that every per-
turbed sample y ∈ S(x) lies inside the convex hull of
abstract(S,x).

We first describe the perturbed sample y. The perturbed
sample y as a string is defined in the semantics of specifi-
cation S (see the Appendix A.1). In the rest of this proof,
we use a function E : Σm 7→ Rm×d mapping from a string
with length m to a point in m× d-dimensional space, e.g.,
E(y) represents the point of the perturbed sample y in the
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embedding space. We use x〈(l,r),j,s〉 to represent the string
perturbed by a transformation Tj = (ϕj , fj) such that (l, r)
is a valid match of ϕj and s ∈ fj(xl, . . . , xr). Then

x〈(l,r),j,s〉 = x1 . . . xl−1 sxr+1 . . . xm.

We further define ∆〈(l,r),j,s〉 as the vector E(x〈(l,r),j,s〉)−
E(x) =

−−−−−−−−−−−−−→
E(x)E(x〈(l,r),j,s〉):

∆〈(l,r),j,s〉 = (0, . . . , 0︸ ︷︷ ︸
(l−1)×d

, E(s)− E(xl . . . xr), 0, . . . , 0︸ ︷︷ ︸
(m−r)×d

).

A perturbed sample y defined by matches
〈(l1, r1), j1〉 . . . 〈(lk, rk), jk〉 and for every i 6 k we
have si ∈ fji(xli . . . xri), then

y = x1 . . . xl1−1 s1 xr1+1 . . . xlk−1 sk xrk+1 . . . xm.

The matches respect the δ constraints: for every j′ ≤ n,
|{〈(li, ri), ji, si〉 | ji = j′}| 6 δj′ . Thus, the size of the
matches k also respect the δ constraints:

k =

n∑
j′=1

|{〈(li, ri), ji, si〉 | ji = j′}| ≤
n∑

j′=1

δj′ . (13)

In the embedding space,

−−−−−−−→
E(x)E(y) = (0, . . . , 0︸ ︷︷ ︸

(l1−1)×d

, E(s1)− E(xl1 . . . xr1),

0, . . . , 0, E(sk)− E(xlk . . . xrk), 0, . . . , 0︸ ︷︷ ︸
(m−rk)×d

).

Thus, we can represent
−−−−−−−→
E(x)E(y) using ∆〈(l,r),j,s〉:

−−−−−−−→
E(x)E(y) =

k∑
i=1

∆〈(li,ri),ji,si〉. (14)

We then describe the convex hull of abstract(S,x). The
convex hull of abstract(S,x) is constructed by a set of
points E(x) and E(v〈(l,r),i,s〉), where points E(v〈(l,r),i,s〉)
are computed by:

E(v〈(l,r),j,s〉) , E(x) + (

n∑
i=1

δi)(E(x〈(l,r),j,s〉)− E(x)).

Alternatively, using the definition of ∆〈(l,r),j,s〉, we get

−−−−−−−−−−−−−→
E(x)E(v〈(l,r),j,s〉) = (

n∑
i=1

δi)∆〈(l,r),j,s〉. (15)

We then prove the Theorem 1. To prove E(y) lies in the
convex hull of abstract(S,x), we need to apply Lemma 2.

Notice that a convex hull by definition is also a convex set.
Because from Eq 14, we have

−−−−−−−→
E(x)E(y) =

k∑
i=1

∆〈(li,ri),ji,si〉

=
1∑n
i=1 δi

k∑
i=1

(

n∑
i′=1

δi′)∆〈(li,ri),ji,si〉.

We can use Eq 15 into the above equation, and have

=
1∑n
i=1 δi

k∑
i=1

−−−−−−−−−−−−−−−→
E(x)E(v〈(li,ri),ji,si〉)

=

k∑
i=1

(
1∑n
i=1 δi

) ·
−−−−−−−−−−−−−−−→
E(x)E(v〈(li,ri),ji,si〉).

To apply Lemma 2, we set

αi =
1∑n
j=1 δj

.

Using Inequality 13 on

αi =
1∑n
j=1 δj

≥ 0, (16)

we get

k∑
i=1

αi =

k∑
i=1

1∑n
j=1 δj

=
k∑n
j=1 δj

≤ 1. (17)

The constraints in Inequality 16 and Inequality 17 enable
Lemma 2, and by applying Lemma 2, we know that point
E(y) is inside the convex hull of abstract(S,x).

A.3. Details of Experiment Setup

For AG dataset, we trained a smaller character-level model
than the one used in Huang et al. (2019). We followed
the setup of the previous work: use lower-case letters only
and truncate the inputs to have at most 300 characters. The
model consists of an embedding layer of dimension 64, a
1-D convolution layer with 64 kernels of size 10, a ReLU
layer, a 1-D average pooling layer of size 10, and two fully-
connected layers with ReLUs of size 64, and a linear layer.
We randomly initialized the character embedding and up-
dated it during training.

For SST2 dataset, we trained the same word-level model as
the one used in Huang et al. (2019). The model consists of
an embedding layer of dimension 300, a 1-D convolution
layer with 100 kernels of size 5, a ReLU layer, a 1-D average
pooling layer of size 5, and a linear layer. We used the pre-
trained Glove embedding (Pennington et al., 2014) with
dimension 300 and fixed it during training.
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For SST2 dataset, we trained the same character-level model
as the one used in Huang et al. (2019). The model consists
of an embedding layer of dimension 150, a 1-D convolution
layer with 100 kernels of size 5, a ReLU layer, a 1-D average
pooling layer of size 5, and a linear layer. We randomly
initialized the character embedding and updated it during
training.

For all models, we used Adam (Kingma & Ba, 2015) with
a learning rate of 0.001 for optimization and applied early
stopping policy with patience 5.

A.3.1. PERTURBATIONS

We provide the details of the string transformations we used:

• TSubAdj, TInsAdj: We allow each character substituting
to one of its adjacent characters on the QWERTY key-
board.

• TDelStop: We choose {and, the, a, to, of} as our stop
words set.

• TSubSyn: We use the synonyms provided by
PPDB (Pavlick et al., 2015). We allow each word
substituting to its closest synonym when their part-of-
speech tags are also matched.

A.3.2. BASELINE

Random augmentation performs adversarial training us-
ing a weak adversary that simply picks a random perturbed
sample from the perturbation space. For a specification
S = {(T1, δ1), . . . , (Tn, δn)}, we produce z by uniformly
sampling one string z1 from a string transformation (T1, δ1)
and passing it to the next transformation (T2, δ2), where
we then sample a new string z2, and so on until we have
exhausted all transformations. The objective function is the
following:

argmin
θ

E
(x,y)∼D

(L(x, y, θ) + max
z∈R(x)

L(z, y, θ)) (18)

HotFlip augmentation performs adversarial training using
the HotFlip (Ebrahimi et al., 2018) attack to find z and solve
the inner maximization problem. The objective function is
the same as Eq 18.

A3T adopts a curriculum-based training method (Huang
et al., 2019; Gowal et al., 2019) that uses a hyperparameter
λ to weigh between normal loss and maximization objective
in Eq. (2). We linearly increase the hyperparameter λ during
training.

argmin
θ

E
(x,y)∼D

((1− λ)L(x, y, θ)+

λ max
z∈augmentk(Saug,x)

L(abstract(Sabsz), y, θ)).

Also, we set k in augmentk to 2, which means we select 2
perturbed samples to abstract.

A.3.3. EVALUATION RESULTS

RQ2: Effects of size of the perturbation space In Fig-
ure 4, we fix the word-level model A3T (search) trained
on {(TDup, 2), (TSubSyn, 2)}. Then, we test this model’s ex-
haustive accuracy on {(TDup, δ1), (TSubSyn, 2)} (Figure 4(a))
and {(TDup, 2), (TSubSyn, δ2)} (Figure 4(b)), where we vary
the parameters δ1 and δ2 between 1 and 4, increasing the
size of the perturbation space. The exhaustive accuracy of
A3T(HotFlip) and A3T(search) decreases by 17.4% and
11.4%, respectively, when increasing δ1 from 1 to 4, and de-
creases by 2.3% and 1.9%, respectively, when increasing δ2
from 1 to 4. All other techniques result in larger decreases in
exhaustive accuracy (≥17.5% in {(TDup, δ1), (TSubSyn, 2)}
and ≥3.1% in {(TDup, 2), (TSubSyn, δ2)}).

In Figure 5, we fix the word-level model A3T
(search) trained on {(TDelStop, 2), (TDup, 2), (TSubSyn, 2)}.
Then, we test this model’s exhaustive accuracy on
{(TDelStop, δ1), (TDup, 2), (TSubSyn, 2)} (Figure 5(a)),
{(TDelStop, 2), (TDup, δ2), (TSubSyn, 2)} (Figure 5(b)), and
{(TDelStop, 2), (TDup, 2), (TSubSyn, δ3)} (Figure 5(c)), where
we vary the parameters δ1, δ2 and δ3 between 1 and 3,
increasing the size of the perturbation space. The exhaustive
accuracy of A3T(HotFlip) and A3T(search) decreases by
1.1% and 0.9%, respectively, when increasing δ1 from 1
to 3, decreases by 12.9% and 6.9%, respectively, when
increasing δ2 from 1 to 3, and decreases by 1.4% and 0.9%,
respectively, when increasing δ3 from 1 to 3. All other
techniques result in larger decreases in exhaustive accuracy
(≥2.2% in {(TDelStop, δ1), (TDup, 2), (TSubSyn, 2)}, ≥13.0%
in {(TDelStop, 2), (TDup, δ2), (TSubSyn, 2)}, and ≥2.8% in
{(TDelStop, 2), (TDup, 2), (TSubSyn, δ3)}).
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Figure 4. The exhaustive accuracy of {(TDup, δ1), (TSubSyn, δ2)}, varying the parameters δ1 (left) and δ2 (right) between 1 and 4.
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(a) {(TDelStop, δ1), (TDup, 2), (TSubSyn, 2)}
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Figure 5. The exhaustive accuracy of {(TDelStop, δ1), (TDup, δ2), (TSubSyn, δ3)}, varying the parameters δ1 (left), δ2 (middle), and δ3 (right)
between 1 and 3.


