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A. Prerequisite Knowledge and Notations
In this section, we first introduce prerequisite knowledge and technical lemmas for proving the main results. Then we
provide the detailed notations for the Feature space and Distribution Evolvable Stream Learning (FDESL) problem.

A.1. Rademacher Complexity

In this work, we use the Rademacher complexity (Bartlett & Mendelson, 2002) in proving generalization error bounds.

To simplify the presentation, we first introduce some notations. Let S = {(x1, y1), . . . , (xm, ym)} be a sample of m points
drawn independently and identically distributed according to the distribution D, and then the risk and empirical risk of
hypothesis g are defined as

RD(g) = E(x,y)∼D[`(g(x), y)], R̂S(g) =
1

m

m∑
i=1

`(g(xi), yi).

In order to prove the generalization error bounds proposed in the main paper, we use the notion of Rademacher complex-
ity (Bartlett & Mendelson, 2002) to measure the complexity of the hypothesis set (family of decision functions) and use it to
upper bound the generalization error.

Definition 1 (Rademacher Complexity). Let G be a family of functions and a fixed sample of size m as S = (z1, · · · , zm).
Then, the empirical Rademacher complexity of G with respect to the sample S is defined as

R̂S(G) = Eσ

[
sup
g∈G

1

m

m∑
i=1

σig(zi)

]
.

Besides, the Rademacher complexity of G is the expectation of the empirical Rademacher complexity over all samples of
size m drawn according to D,

Rm(G) = ES∼Dm [R̂S(G)].

Now we can establish a general margin-based generalization error bound for binary classification based on Rademacher
complexity (Mohri et al., 2018).

Lemma 1 (Generalization Error Bound). Let L be the family of loss function associated to G, i.e., L = {x 7→ `(g(x, y), g ∈
G}. Suppose the loss function is L-Lipschitz, then, for any δ > 0, with probability at least 1− δ, the following inequality
holds for all g ∈ G:

RD(g) ≤ R̂S(g) + 2LRm(L) +

√
log(1/δ)

2m
,

where Rm(L) is Rademacher complexity of loss function class L associated to G, which can be bounded by using the
celebrated Talagrand’s lemma (Ledoux & Talagrand, 2013).
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A.2. Admissible Loss Function

In this part, we review the basic properties of the σ-admissible loss function family. Throughout this work, our analysis will
assume that the loss function is convex and that it further verifies the following Lipschitz-like smoothness condition (Bousquet
& Elisseeff, 2002; Mohri et al., 2018).
Definition 2 (σ-admissibility). A loss function ` is σ-admissible with respect to the hypothesis class G if there exists
σ ∈ R+ such that for any two hypotheses g, g′ ∈ G and for all (x, y) ∈ X × Y ,

|`(g(x), y)− `(g′(x), y)| ≤ σ |g(x)− g′(x)| .

The admissibility property holds for most of common loss functions, including the quadratic loss and most other loss functions
where the hypothesis set and the set of output labels are bounded by some M ∈ R+ : ∀g ∈ G,∀x ∈ X , |g(x)| ≤ M and
∀y ∈ Y, |y| ≤M .
Example 1. We provide some examples of σ-admissible loss functions below (Mohri et al., 2018).

• Hinge loss Lhinge(y′, y) = max(0, 1− y′y) is σ-admissible with σ = 1.

• Least squares loss function L2(y′, y) = (y′ − y)2 that is bounded by M is σ-admissible with σ = 2
√
M .

• ε-insensitive loss Lε(y′, y) = |y′ − y| − ε and otherwise 0 if |y′ − y| ≤ ε is σ-admissible with σ = 1.

Proof. We show that the bounded least squares loss function is admissible, and other loss functions can be verified by an
analogous argument. For and (x, y) ∈ X × Y , and g, g′ ∈ G,

|L2(g(x), y)− L2(g′(x), y)

= |(g(x)− y)2 − (g′(x)− y)2|
= |[(g(x)− y) + (g′(x)− y)][g(x)− g′(x)]|
≤ (|g(x)− y|+ |g′(x)− y|)|g(x)− g′(x)|

≤ 2
√
M |g(x)− g′(x)|.

In the second inequality, we use the M -boundedness property of the loss function. Therefore, we prove that the bounded
least squares loss function is σ-admissible with σ = 2

√
M .

By exploiting the admissibility of loss functions, we could align the hypothesis classes that lie in different feature spaces,
when the data essentially share the same labels.

A.3. Discrepancy Minimization

In this part, we review the technical lemmas for the discrepancy minimization approaches. The discrepancy minimization
approaches define the discrepancy of two distributions in a fixed feature space. A series of pioneering works propose
different discrepancy measures to estimate the discrepancy between two distributions, including the A-discrepancy (Kifer
et al., 2004),H∆H-discrepancy (Ben-David et al., 2010), and Y-discrepancy (Mohri & Medina, 2012), etc.

We propose the evolving discrepancy to measure the discrepancy of two consecutive batches with different feature spaces
and data distributions. Our definition of the evolving discrepancy is a generalization to the feature and distribution evolving
stream context of the Y-discrepancy (Mohri & Medina, 2012),
Definition 3 (Y-discrepancy). Let DP ,DQ be two distributions over X and denote by fP , fQ the labeling functions over
DP and DQ, respectively. Given a hypothesis class G and the corresponding loss function `, the Y-discrepancy between
(DP , fP ) and (DQ, fQ) is defined as

discY(DP ,DQ) = sup
g∈G

∣∣RDP
(g, fP )−RDQ

(g, fQ)
∣∣ .

As we only have the empirical data on hand, by introducing weights α over the empirical data SP sampled from DP , the
weighted empirical Y-discrepancy is denoted by

discY(SPα , SQ) = sup
g∈G

∣∣∣R̂SPα
(g, fP )− R̂SQ

(g, fQ)
∣∣∣ .
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With the definition of weighted empirical Y-discrepancy, the generalization error on (DQ, fQ) can be bounded in terms of
the risk over (DPα , fP ) and their Y-discrepancy.
Lemma 2 (Proposition 5 of Cortes et al. (2019)). Let G be a family of functions. Suppose the loss function associated to G
is L-Lipschitz, then, for any δ > 0, with probability at least 1− δ over a sample SQ of size n, the following inequality holds
for all g ∈ G and any weighted empirical distribution Pα over the sample SP ,

RDQ
(g, fQ) ≤ R̂SPα

(g, fP ) + discY(SPα , SQ) + 2LRn(G) +MQ

√
log(1/δ)

2n
,

where MQ = supx∈X ,g∈G `(g(x), fQ).

Proof. Starting with a standard Rademacher complexity bound for G, for any δ > 0, with probability at least 1 − δ, the
following holds for all g ∈ G,

RDQ
(g, fQ)

≤ R̂SQ
(g, fQ) + 2LRn(G) +MQ

√
log(1/δ)

2n
(1)

= R̂SPα
(g, fP ) + R̂SQ

(g, fQ)− R̂SPα
(g, fP ) + 2LRn(G) +MQ

√
log(1/δ)

2n
(2)

≤ R̂SPα
(g, fP ) + discY(SPα , SQ) + 2LRn(G) +MQ

√
log(1/δ)

2n
, (3)

where the inequality (1) holds due to Lemma 1, a standard generalization error analysis based on the Rademacher complexity
argument. Then we introduce the weighted empirical risk R̂SPα

(g, fP ) in (2). The inequality (3) follows from the fact that
R̂SQ

(g, fQ)− R̂SPα
(g, fP ) ≤ discY(SPα , SQ) holds for any SPα by Definition 3.

A.4. Notations

Before proving our main results, we review the notations for the Feature space and Distribution Evolvable Stream Learning
(FDESL) problems.

In streaming data learning, at each time, a batch of data is received where only their features are available. We require
to predict their labels before receiving the true labels. In our scenario, both feature space and data distribution of the
consecutive data batches might be changing. We state the specific setting in the following.

Consider the two consecutive batches in the data stream. Let XP ⊆ Rd1 be the feature space of the previous batch of size
m and XC ⊆ Rd2 be the feature space of the current batch of size n, where d1 6= d2. We denote by YP = {−1,+1} the
label space for the previous batch. Following the pioneering work (Hou et al., 2017), we assume the existence of evolving
data across two consecutive batches. By exploiting these evolving data, we can bridge the gap of two batches with different
feature spaces. We split the two batches into three stages: the previous stage, the evolving stage, and the current stage.

• Previous stage: in the previous stage, we have labeled data SP = {(xP1 , yP1), . . . , (xPm−k
, yPm−k

)}, where
(xPi

, yPi
) ∈ XP × YP .

• Evolving stage: in the evolving stage, the data samples across two consecutive data batches have both feature
representations in XP and XC . We denote by SP̃ = {xP̃m−k+1

, . . . ,xP̃m
} the evolving data on previous data batch

and SC̃ = {xC̃1
, . . . ,xC̃k

} on the current data batch, where xP̃i
∈ XP and xC̃j

∈ XC .

• Current stage: in the current stage, we have unlabeled data SC = {xCk+1
, . . . ,xCn

}, where xCj
∈ XC .

Notice that the evolving stage does not last for a long time, namely, we have k � m and k � n. In our formulation, we do
not use the labels of SP̃ in the evolving stage, to avoid the potential problems caused by the non-stationary environment.
That is, we exploit the aligned unlabeled data as a bridge to link the two batches with different feature spaces.

Moreover, besides the evolvable feature space, the data distribution could also change in the data stream, particularly
when the data are collected from open and dynamic environments. The data distribution within each stage is supposed
stationary, while distribution can change across the stages. Specifically, the distribution of SP̃ differs from that of SP , and
the distribution of SC̃ differs from that of SC . Table 1 summarizes the main notations and corresponding definitions.
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Table 1. Main Notations and Corresponding Definitions

Notation Definition

α Weights of data in the previous stage
β Weights of data in the evolving stage

SPα = {(xPα , yP )} ∈ R(m−k)×d1 Previous data in previous batch with weights α
SP̃β

= {xP̃β
} ∈ Rk×d1 Evolving data in previous batch with weights β

SC̃β
= {xC̃β

} ∈ Rk×d2 Evolving data in current batch with weights β
SC = {xC} ∈ R(n−k)×d2 Current data in current batch

g ∈ G Classifier in previous feature space
h ∈ H Classifier in current feature space

B. Proofs of Main Results
In this section, we provide detailed proofs of main theoretical results in the paper, including Theorem 1 and Proposition 1.

B.1. Proof of Theorem 1

Theorem 1 (Restatement of Theorem 1). Let G andH be two families of classifiers, which might be associated with different
feature spaces. Suppose that loss function ` is L-Lipschitz and σ-admissible. Then, for any δ > 0, with probability at least
1− δ, we have

RDC
(h, fC) ≤ R̂SPα

(g, yP ) + discE(SP , SC) + 2LRn(H) +MC

√
log(1/δ)

2n
,

where MC = supxC∈X ,h∈H `(h(xC), yC) and Rn(H) is the Rademacher complexity of the function familyH.

Proof. We begin with standard generalization error bound on Rademacher complexity. We introduce the empirical weights
α over previous data SP , β over evolving data SP̃ and SC̃ . For any δ > 0, with probability at least 1− δ, the following
inequality holds for all g ∈ G and h ∈ H,

RDC
(h, fC)

≤ R̂SC
(h, yC) + 2LRn(H) +MC

√
log(1/δ)

2n
(4)

= R̂SC
(h, yC) + R̂SP̃β

(g, yP̃ )− R̂SP̃β
(g, yP̃ ) + R̂SC̃β

(h, yC̃)− R̂SC̃β
(h, yC̃) + 2LRn(H) +MC

√
log(1/δ)

2n
(5)

≤ R̂SP̃β
(g, yP̃ ) +

∣∣∣R̂SP̃β
(g, yP̃ )− R̂SC̃β

(h, yC̃)
∣∣∣+ sup

h∈H

∣∣∣R̂SC̃β
(h, yC̃)− R̂SC

(h, yC)
∣∣∣+ 2LRn(H) +MC

√
log(1/δ)

2n
.

(6)

In inequality (4), we use Lemma 1, that is, a standard Rademacher complexity based generalization error bound. Then, we
introduce the weighted empirical risk in the evolving stage in (5). The last inequality holds due to taking the absolute value
and supremum over the hypothesis set.

We first upper bound the first term in (6). As we only have the labeled data in the previous stage, we rewrite the weighted
empirical risk in the evolving stage in terms of the weighted empirical risk in the previous stage and their discrepancy,

R̂SP̃β
(g, yP̃ ) ≤ R̂SPα

(g, yP ) + sup
g∈G

∣∣∣R̂SPα
(g, yP )− R̂SP̃β

(g, yP̃ )
∣∣∣ . (7)

Then, we upper bound the second term in (6). In the evolving stage, data essentially share the same label, i.e., yP̃i
=

yC̃i
, i = 1, . . . , k. By exploiting the σ-admissibility property of the loss functions defined in Definition 2, we have the
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following inequality, ∣∣∣R̂SP̃β
(g, yP̃ )− R̂SC̃β

(h, yC̃)
∣∣∣

=

∣∣∣∣∣
k∑
i=1

βi`(g(xP̃i
), yP̃i

)−
k∑
i=1

βi`(h(xC̃i
), yC̃i

)

∣∣∣∣∣
≤ σ

k∑
i=1

βi

∣∣∣g(xP̃i
)− h(xC̃i

)
∣∣∣ .

(8)

Equation (8) shows that by exploiting the σ-admissible loss, we can align the classifiers in different feature spaces. Therefore,
we can use historical data to learn a classifier in the current stage.

By combining (6), (7) and (8), then, for any δ > 0, with probability at least 1 − δ, the following inequality holds for all
g ∈ G and h ∈ H,

RDC
(h, fC) ≤ R̂SPα

(g, yP ) + discE(SP , SC) + 2LRn(H) +MC

√
log(1/δ)

2n
,

where discE(SP , SC) is the evolving discrepancy of the two consecutive batches, defined as

discE(SP , SC) = sup
g∈G,h∈H

{∣∣∣R̂SPα
(g, yP )− R̂SP̃β

(g, yP̃ )
∣∣∣+ σ

k∑
i=1

βi

∣∣∣g(xP̃i
)− h(xC̃i

)
∣∣∣+
∣∣∣R̂SC̃β

(h, yC̃)− R̂SC
(h, yC)

∣∣∣} .
Now, we complete the proof of Theorem 1, which shows that the expected risk in the current stage can be bounded by the
weighted empirical risk in the previous stage and their evolving discrepancy.

B.2. Proof of Proposition 1

Proposition 1 (Restatement of Proposition 1). For any hypotheses sets G andH, the evolving discrepancy discE(SP , SC)
is upper bounded by

disc′E(SP , SC) + σ(d1(g, fP̃ ,β) + d1(G, fP̃ ,β) + d1(H, fC)),

where d1(G, fP̃ ,β) = ming∈G ESP̃β
[|g(x) − fP̃ (x)|] with fP̃ being the concept function on the evolving stage, and

d1(H, fC) follows a similar definition.

Proof. As the evolving discrepancy involves the unknown labeling function in the evolving stage and the current state, we
upper bound the empirical evolving discrepancy by the introduced hypothesis classes. We first review the definition of the
evolving discrepancy. For any hypotheses sets G andH, the evolving discrepancy discE(SP , SC) is defined as

discE(SP , SC)

= sup
g∈G,h∈H

∣∣∣R̂SPα
(g, yP )− R̂SP̃β

(g, yP̃ )
∣∣∣+ σ

k∑
i=1

βi

∣∣∣g(xP̃i
)− h(xC̃i

)
∣∣∣+
∣∣∣R̂SC̃β

(h, yC̃)− R̂SC
(h, yC)

∣∣∣ . (9)

In order to upper bound the evolving discrepancy, we introduce the notation of d1 discrepancy. We denote by d1(G, fP̃ ,β)
the L1 distance of hypothesis class G and fP̃ with weights β over the evolving data SP̃ , and d1(H, fC) follows a similar
definition of the L1 distance ofH and fC :

d1(G, fP̃ ,β) = min
g∈G

ESP̃β

∣∣g(x)− fP̃ (x)
∣∣ , d1(H, fC) = min

h∈H
ESC
|h(x)− fC(x)| .

We also denote by d1(g, h,β) the L1 distance of g ∈ G and h ∈ H with weights β over the evolving data SP̃ and SC̃ :

d1(g, h,β) =

k∑
i=1

βi

∣∣∣g(xP̃i
)− h(xC̃i

)
∣∣∣
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For the first term in (9), by the triangle inequality and the σ-admissible loss function, we can write

sup
g∈G

∣∣∣R̂SPα
(g, yP )− R̂SP̃β

(g, yP̃ )
∣∣∣

≤ sup
g∈G

∣∣∣R̂SPα
(g, yP )− R̂SP̃β

(g, yg0)
∣∣∣+
∣∣∣R̂SP̃β

(g, yg0)− R̂SP̃β
(g, yP̃ )

∣∣∣ (10)

≤ sup
g,g′∈G

∣∣∣R̂SPα
(g, yP )− R̂SP̃β

(g, yg′)
∣∣∣+
∣∣∣R̂SP̃β

(g, yg0)− R̂SP̃β
(g, yP̃ )

∣∣∣ (11)

≤ sup
g,g′∈G

∣∣∣R̂SPα
(g, yP )− R̂SP̃β

(g, yg′)
∣∣∣+ σESP̃β

∣∣yg0 − yP̃ ∣∣ (12)

≤ sup
g,g′∈G

∣∣∣R̂SPα
(g, yP )− R̂SP̃β

(g, yg′)
∣∣∣+ σd1(G, fP̃ ,β). (13)

In inequality (10), we introduce the auxiliary hypothesis g0 ∈ G. By taking the supremum and using the admissibility of the
loss function, we obtain (11) and (12). The hypothesis g0 are later chosen to minimize the distance of fP̃ to G with weights
β over the evolving empirical data, and we thus obtain (13).

A similar result can be obtained for the third term in (9). By the triangle inequality and σ-admissibility, we have

sup
h∈H

∣∣∣R̂SC̃β
(h, yC̃)− R̂SC

(h, yC)
∣∣∣

≤ sup
h∈H

∣∣∣R̂SC̃β
(h, yC̃)− R̂SC̃β

(h, yg)
∣∣∣+
∣∣∣R̂SC̃β

(h, yg)− R̂SC
(h, yh0

)
∣∣∣+
∣∣∣R̂SC

(h, yh0
)− R̂SC

(h, yC)
∣∣∣

≤ sup
h,h′∈H

∣∣∣R̂SC̃β
(h, yg)− R̂SC

(h, yh′)
∣∣∣+ σESC̃β

∣∣yg − yC̃∣∣+ σESC
|yh0 − yC |

≤ sup
h,h′∈H

∣∣∣R̂SC̃β
(h, yg)− R̂SC

(h, yh′)
∣∣∣+ σd1(g, fP̃ ,β) + σd1(H, fC), (14)

where yg is the pseudo labels of the evolving data provided by the hypothesis g. Here the hypothesis h0 is later chosen
to minimize the distance of fC to H. Term d1(g, fP̃ ,β) is the L1 distance between g to the labeling function fP̃ with
the weights β over the evolving empirical data. By minimizing the empirical risk in the previous stage and the evolving
discrepancy, we can obtain a well-generalized classifier g in the evolving stage, and thus d1(g, fC̃ ,β) is relatively small.

Combining (9), (13) and (14), then, we can upper bound the evolving discrepancy as follows

discE(SP , SC)

≤ sup
g,g′∈G

∣∣∣R̂SPα
(g, yP )− R̂SP̃β

(g, yg′)
∣∣∣+ σd1(g, h,β) + sup

h,h′∈H

∣∣∣R̂SC̃β
(h, yg)− R̂SC

(h, yh′)
∣∣∣

+ σ(d1(g, fP̃ ,β) + d1(G, fP̃ ,β) + d1(H, fC))

= disc′E(SP , SC) + σ(d1(g, fP̃ ,β) + d1(G, fP̃ ,β) + d1(H, fC)),

where disc′E(SP , SC) is defined as

sup
g,g′∈G,h,h′∈H

∣∣∣R̂SPα
(g, yP )− R̂SP̃β

(g, yg′)
∣∣∣+ σd1(g, h,β) +

∣∣∣R̂SC̃β
(h, yg)− R̂SC

(h, yh′)
∣∣∣ .

We now complete the proof of Proposition 1. Proposition 1 shows that we can optimize the upper bound of the evolving
discrepancy by the empirical data on hand with hypothesis classes.

C. Experiment Details
In this section, we present the implementation details of the experiments. We first review the detailed information of the four
datasets in our empirical study. Then, we provide the details for the implementation of the proposed EDM algorithm.

For the FDESL tasks in the real-world applications, we perform the empirical studies on the following two datasets,
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• RFID Dataset (Hou et al., 2017). The RFID dataset1 contains the real-time data stream collected by the RFID technique.
The RFID aerials record the signal as features, and we aim to predict the ground-truth location of the moving goods.
We split all the position index into four categories and thus generate their labels. Before the aerials expired, we will
arrange new aerials beside the old ones, which change the feature space and formulate the evolving data. We also
record the time stamp when collecting the corresponding feature of each coming data. We chronologically generate the
feature space and distribution evolvable streams with the batch data size of 800 and the evolving data size of 200.

• Amazon Dataset (McAuley et al., 2015). The Amazon dataset2 contains the product’s quality (label) from 2006 to
2008 according to the ratings of its users (feature). For each subset in our empirical study, e.g., Books, Movies, CDs,
each product’s label is its quality, which is calculated by the weighted combination of each user’s rating. The weight of
each rating is calculated by the quality of its user, and the quality of each user is calculated by the "helpfulness" (one of
the attributes of the dataset) of the user’s reviews. As time goes on, some users sign out while the new users are signing
up. Thus, the feature space evolves, by the old features disappear and new features emerge. We find some periods in
which both old and new features exist to formulate the evolving data. We split the user ratings into two categories and
thus generate the binary streaming classification task. We generate the FDESL tasks with the batch data size of 1000
and the evolving data size of 200.

We further examine the performance of the EDM algorithm on more extensive scenarios, where the evolving stream is
characterized by the textual information simulated by the real-world datasets. We conduct the empirical studies on the
following two datasets,

• Reuters Multilingual Dataset (Amini et al., 2009). The Reuters multilingual dataset3 contains about 11K articles from
6 classes in 5 languages so that we could simulate the evolving stream by different languages. As each document is
translated into other languages, thus we simulate the evolving stage. For the evolving data across two batches, we
simulate them by two different languages so that they share the different feature space. As the data distribution does
not change naturally, we also simulate the distribution change issue by biased sampling with different class-prior
probability. Namely, the class-prior in previous/current data and the one in the evolving data are different. We suppose
that the data come in a batch-style streaming way and set the batch size as 3000, in which the size of the evolving data
is 600. All documents are represented by using the TF-IDF feature.

• Cross-Language Dataset (Ng et al., 2012). The Cross-Language dataset4 is a binary classification dataset contains
documents from Google with English, Chinese, and French pages, so that we can simulate the evolving batches from
any two of these three languages as they share the different feature spaces. We additionally supplement the two
consecutive batches by crawled data from Wikipedia to simulate the evolving data, as each article in Wikipedia has
multiple language versions. Thus, the distribution of evolving data also differs from the previous and current data,
which simulates the issue of distribution change. We suppose that the data come in a batch-style streaming way and set
the batch size as 3000, in which the size of the evolving data is 600.

In the following, we provide the details for the implementation of the proposed EDM algorithm. We use a full connection
layer as the feature extractor with width 1024. We also set the main classifiers (min-player) and auxiliary classifiers
(max-player) in the adversarial network as two full connection layers neural networks. For the optimization, we use the
mini-batch SGD with initial learning rate 0.004 and the Nesterov momentum 0.9.

1http://www.lamda.nju.edu.cn/data_RFID.ashx
2http://jmcauley.ucsd.edu/data/amazon/links.html
3https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual,+Multiview+Text+

Categorization+Test+collection
4https://hkumath.hku.hk/~mng/mng_files/cross-language.rar

http://www.lamda.nju.edu.cn/data_RFID.ashx
http://jmcauley.ucsd.edu/data/amazon/links.html
https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual,+Multiview+Text+Categorization+Test+collection
https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual,+Multiview+Text+Categorization+Test+collection
https://hkumath.hku.hk/~mng/mng_files/cross-language.rar
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