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Abstract

Stochastic particle-optimization sampling (SPOS)
is a recently-developed scalable Bayesian sam-
pling framework unifying stochastic gradient
MCMC (SG-MCMC) and Stein variational gradi-
ent descent (SVGD) algorithms based on Wasser-
stein gradient flows. With a rigorous non-
asymptotic convergence theory developed, SPOS
can avoid the particle-collapsing pitfall of SVGD.
However, the variance-reduction effect in SPOS
has not been clear. In this paper, we ad-
dress this gap by presenting several variance-
reduction techniques for SPOS. Specifically,
we propose three variants of variance-reduced
SPOS, called SAGA particle-optimization sam-
pling (SAGA-POS), SVRG particle-optimization
sampling (SVRG-POS) and a variant of SVRG-
POS which avoids full gradient computations, de-
noted as SVRG-POS+. Importantly, we provide
non-asymptotic convergence guarantees for these
algorithms in terms of the 2-Wasserstein metric
and analyze their complexities. The results show
our algorithms yield better convergence rates than
existing variance-reduced variants of stochastic
Langevin dynamics, though more space is re-
quired to store the particles in training. Our theory
aligns well with experimental results on both syn-
thetic and real datasets.

1. Introduction

Sampling has been an effective tool for approximate
Bayesian inference, which is becoming increasingly im-
portant in modern machine learning. In the setting of big
data, recent research has developed scalable Bayesian sam-
pling algorithms such as stochastic gradient Markov Chain
Monte Carlo (SG-MCMC) (Welling & Teh, 2011) and Stein
variational gradient descent (SVGD) (Liu & Wang, 2016).
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These methods have facilitated important real-world appli-
cations and achieved impressive results, such as in topic
modeling (Gan et al., 2015; Liu et al., 2016), matrix fac-
torization (Chen et al., 2014; Ding et al., 2014; Şimşekli
et al., 2016), differential privacy (Wang et al., 2015; Li et al.,
2017), Bayesian optimization (Springenberg et al., 2016),
reinforcement learning (Haarnoja et al., 2018; Zhang et al.,
2018a;b; 2019) and deep neural networks (Li et al., 2016).
Generally speaking, these methods use gradient informa-
tion of a target distribution to generate samples, leading
to more effective algorithms compared to traditional sam-
pling methods. Recently, (Chen et al., 2018) proposed a
particle-optimization Bayesian sampling framework based
on Wasserstein gradient flows, which unified SG-MCMC
and SVGD in a new sampling framework called particle-
optimization sampling (POS). Furthermore, Zhang et al.
(2020) discovered that SVGD endows some unintended
pitfalls, i.e., particles tend to collapse under some condi-
tions. As a result, a remedy was proposed to inject random
noise into SVGD update equations in the POS framework,
leading to stochastic particle-optimization sampling (SPOS)
algorithms (Zhang et al., 2020). Remarkably, for the first
time, non-asymptotic convergence theory was developed for
SPOS (SVGD-type algorithms) in (Zhang et al., 2020).

In order to deal with large-scale datasets, many gradient-
based methods for optimization and sampling use stochastic
gradients calculated on a mini-batch of a dataset, for com-
putational feasibility. Unfortunately, this has the potential
of adding extra variance into the algorithms, which may
potentially degrade model performance. To address this
issue, variance control has been an important and interesting
direction of research. Efficient solutions such as SAGA
(Defazio et al., 2014) and SVRG (Johnson & Zhang, 2013)
were proposed to reduce variance in stochastic optimization.
Subsequently, (Dubey et al., 2016) introduced these tech-
niques in SG-MCMC for Bayesian sampling, which also
has achieved great success in practice.

Since SPOS has enjoyed the best of both worlds by com-
bining SG-MCMC and SVGD, it is of great value to further
reduce its gradient variance. While both the algorithm and
theory have been developed for SPOS, no work has been
done to investigate its variance-reduction techniques. Com-
pared with research on SG-MCMC, where variance reduc-
tion has been well explored by recent work such as (Dubey
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et al., 2016; Chatterji et al., 2018; Zou et al., 2018; Chen
et al., 2019; Zou et al., 2019), it is much more challenging
for SPOS to control the variance of stochastic gradients.
This is because from a theoretical perspective, SPOS corre-
sponds to nonlinear stochastic differential equations (SDE),
where fewer existing mathematical tools can be applied for
theoretical analysis. Furthermore, the fact that many parti-
cles are used in the algorithm makes it difficult to improve
its performance by adding modifications to the way they
interact with each other.

In this paper, we take a first attempt to study variance-
reduction techniques in SPOS and develop corresponding
convergence theory. We adopt recent ideas on variance
reduction in SG-MCMC and stochastic-optimization al-
gorithms, and propose three variance-reduced SPOS al-
gorithms, denoted as SAGA particle-optimization sam-
pling (SAGA-POS), SVRG particle-optimization sampling
(SVRG-POS) and a variant of SVRG-POS without full-
gradient computations, denoted as SVRG-POS+. For all
these variants, we prove rigorous theoretical results on their
non-asymptotic convergence rates in terms of 2-Wasserstein
metrics. Importantly, our theoretical results demonstrate sig-
nificant improvements in convergence rates over standard
SPOS. Remarkably, when comparing our convergence rates
with those of variance-reduced stochastic gradient Langevin
dynamics (SGLD), our theory indicates faster convergence
of variance-reduced SPOS when the number of particles
is large enough. Our theoretical results are verified by a
number of experiments on both synthetic and real datasets.

2. Preliminaries

2.1. Stochastic gradient MCMC

In Bayesian sampling, one aims at sampling from a pos-
terior distribution p(✓|x) / p(x|✓)p(✓), where ✓ 2 Rd

represents the model parameter, and X , {xj}Nj=1 is the
dataset. Let p(✓|X) = (1/Z) exp(�U(✓)), where

U(✓) =� log p(X|✓)� log p(✓)

, �
NX

i=1

log p(xi|✓)� log p(✓)

is referred to as the potential energy function, and Z is the
normalizing constant. We further define the full gradient F
and individual gradient Fj used in this paper:

Fj(✓) , �r✓ log p(xj |✓)�
1

N
r✓ log p(✓)

and F (✓) , r✓U(✓) =
NX

j=1

Fj(✓)

We can define a stochastic differential equation, an instance
of Itó diffusion, whose stationary distribution equals the

target posterior distribution p(✓|X). For example, consider
the following 1st-order Langevin dynamic:

d✓t = ���1
F (✓t)dt+

p
2��1dWt , (1)

where t is the time index, Wt 2 Rd is d-dimensional Brow-
nian motion, and � a scaling factor. By the Fokker-Planck
equation (Kolmogoroff, 1931; Risken, 1989), the stationary
distribution of (1) equals p(✓|X).

SG-MCMC algorithms are discretized numerical approxima-
tions of the Itó diffusions (1). To make algorithms feasible
in a big-data setting, the computationally-expensive term F

is replaced with its unbiased stochastic approximation via a
random subset of the dataset in each iteration, e.g. F can be
approximated by a stochastic gradient:

Gk , N

B

X

j2Ik

Fj(✓k)

= �r log p(✓k)�
N

B

X

j2Ik

r✓k log p(xj |✓k) ,

where Ik is a random subset of {1, 2, · · · , N} with size B.
The above definition of Gk reflects the fact that we only
have information from B ⌧ N data points in each iteration.
This is the source of the variance we seek to reduce. We also
note that Gk is used in standard SVGD and SPOS. As an
example, SGLD is a numerical solution of (1), with update
equation: ✓k+1 = ✓k � �

�1
Gkh +

p
2��1h⇠k, where h

means the step size and ⇠k ⇠ N (0, I).

2.2. Stein variational gradient descent

Different from SG-MCMC, SVGD initializes a set of parti-
cles, which are updated iteratively to approximate a poste-
rior distribution. Specifically, we consider a set of particles
{✓(i)}M

i=1 drawn from some distribution q. SVGD tries
to update these particles by doing gradient descent on the
interactive particle system via

✓(i)  ✓(i) + h�(✓(i)), � = argmax
�2F

{ @
@h

KL(q[h�]||p)}{h=0}

where � is a function perturbation direction chosen to mini-
mize the KL divergence between the updated density q[h�]

induced by the particles and the posterior p(✓|X). The
standard SVGD algorithm considers F as the unit ball of a
vector-valued reproducing kernel Hilbert space (RKHS) H
associated with a kernel (✓,✓0). In such a setting, (Liu &
Wang, 2016) shows that

�(✓) = E✓0⇠q[(✓,✓
0)F (✓0) +r✓0(✓,✓0)]. (2)

When approximating the expectation E✓0⇠q[·] with an empir-
ical distribution formed by a set of particles {✓(i)}M

i=1 and
adopting stochastic gradients G

(i)
k

, N

B

P
j2Ik

Fj(✓
(i)
k
),
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we arrive at the following update for the particles:

✓(i)k+1 = ✓(i)k +
h
M

MX

q=1

h
(✓(q)k , ✓(i)k )G(i)

k +r
✓
(q)
k

(✓(q)k , ✓(i)k )
i

(3)

SVGD applies (3) repeatedly for all the particles.

2.3. Stochastic particle-optimization sampling

In this paper, we focus on the RBF kernel (✓,✓0) =

exp(�k✓�✓0k2

2⌘2 ) due to its wide use in both theoretical analy-
sis and practical applications. Hence, we can rewrite the ker-
nel (✓,✓0) with a simpler function K(✓) = exp(�k✓k2

2⌘2 ).
According to the work of Chen et al. (2018); Zhang et al.
(2020), the stationary distribution of the ⇢t in the following
partial differential equation equals p(✓|X):

@t⇢t =r✓ · (⇢t��1
F (✓) + ⇢tEY⇠⇢tK(✓ � Y )F (Y )

� ⇢t(rK ⇤ ⇢t) + �
�1r✓⇢t) . (4)

When approximating the ⇢t in (4) with an empirical distri-
bution formed by a set of particles {✓(i)}M

i=1, Zhang et al.
(2020) derive the following diffusion process characterizing
the SPOS algorithm.

d✓(i)
t = ���1F (✓(i)

t )dt� 1
M

MX

q=1

K(✓(i)
t � ✓(q)

t )F (✓(q)
t )dt

+
1
M

MX

q=1

rK(✓(i)
t � ✓(q)

t )dt+
p

2��1dW(i)
t 8i (5)

Note that if we set the initial distribution of all the particles
✓(i)
0 to be identical, the system of these M particles is ex-

changeable. As a result, the distributions of all the ✓(i)
t

are
identical and can be denoted as ⇢t. When solving the above
diffusion process with a numerical method and adopting
stochastic gradients G(i)

k
, one arrives at the SPOS algorithm

of Zhang et al. (2020), with the following update equation:

✓
(i)
k+1 = ✓

(i)
k
� h�

�1
G

(i)
k
� h

M

MX

j=1

K(✓(i)
k
� ✓

(j)
k

)G(j)
k

+
h

M

MX

j=1

rK(✓(i)
k
� ✓

(j)
k

) +
p
2��1h⇠

(i)
k

(6)

where ⇠
(i)
k
⇠ N (0, I). SPOS applies an update of (6) re-

peatedly for all the particles ✓(i)
k

. Detailed theoretical results
for SPOS are reviewed in the Supplementary Material (SM).

3. Variance Reduction in SPOS

In standard SPOS, each particle is updated by adopting
G

(i)
k

, N

B

P
j2Ik

Fj(✓
(i)
k
). Because one can only access

B ⌧ N data points in each step, the increased variance
of the “noisy gradient” G

(i)
k

causes a slower convergence
rate. A simple way to alleviate this is to increase B by
using larger minibatches. Unfortunately, this brings more
computational costs, an undesired side effect. Thus more
effective variance-reduction methods are needed for SPOS.
Inspired by recent work on variance reduction in SGLD, e.g.,
(Dubey et al., 2016; Chatterji et al., 2018; Zou et al., 2018),
we develop three different variance-reduction algorithms for
SPOS based on SAGA (Defazio et al., 2014) and SVRG
(Johnson & Zhang, 2013) from stochastic optimization.

3.1. SAGA-POS

SAGA-POS generalizes the idea of SAGA (Defazio et al.,
2014) to an interactive particle-optimization system. For
each particle ✓

(i)
k

, we use {g(i)
k,j

}N
j=1 as an approximation

for each individual gradient Fj(✓
(i)
k
). An unbiased estimate

of the full gradient F (✓(i)
k
) is calculated as:

G
(i)
k

=
NX

j=1

g
(i)
k,j

+
N

B

X

j2Ik

(Fj(✓
(i)
k
)� g

(i)
k,j

), 8i (7)

where Ik represents the set of data in mini-batch k. In
each iteration, {g(i)

k,j
}N
j=1 will be partially updated under the

following rule: g(i)
k+1,j = Fj(✓

(i)
k
) if j 2 Ik, and g

(i)
k+1,j =

g
(i)
k,j

otherwise. The algorithm is described in Algorithm
3.1.

Compared with standard SPOS, SAGA-POS also enjoys
high computational efficiency, as it does not require calcu-
lation of each Fj(✓

(i)
k
) to get the full gradient F (✓(i)

k
) in

each iteration. Hence, the computation time of SAGA-POS
is almost the same as that of POS. However, our analysis
in Section 4 shows that SAGA-POS enjoys a better conver-
gence rate.

From another perspective, SAGA-POS has the same draw-
back as SAGA-based algorithms, which requires memory
scaling at a rate of O(MNd) in the worst case. For each
particle ✓

(i)
k

, one needs to store N gradient approximations
{g(i)

k,j
}N
j=1. Fortunately, as pointed out by Dubey et al.

(2016); Chatterji et al. (2018), in some applications the
memory cost scales only as O(N) for SAGA-LD, which
corresponds to O(MN) for SAGA-POS as M particles are
used.

Remark 1 When compared with SAGA-LD, we note M par-
ticles are used in both SPOS and SAGA-POS. This makes
the memory complexity is M times worse than SAGA-LD in
training, thus SAGA-POS does not seem to bring any advan-
tages over SAGA-LD. However, this intuition is misleading.
As indicated by our theoretical results in Section 4, when
the number of particles M is large enough, the convergence
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Algorithm 1 SAGA-POS

Input: A set of initial particles {✓(i)0 }M
i=1, each ✓

(i)
0 2 Rd,

step size hk, batch size B.
Initialize {g(i)0,j}Nj=1 = {Fj(✓

(i)
0 )}N

j=1 for all i 2
{1, ...,M};

1: for iteration k= 0,1,...,T do

2: Uniformly sample Ik from {1, 2, ..., N} randomly
with replacement such that |Ik| = B;

3: Sample ⇠
(i)
k
⇠ N(0, Id⇥d), 8i ;

4: Update G
(i)
k
 

NP
j=1

g
(i)
k,j

+ N

B

P
j2Ik

(Fj(✓
(i)
k
) �

g
(i)
k,j

), 8i ;
5: Update each ✓

(i)
k

with Eq.(6);
6: Update {g(i)

k,j
}N
j=1, 8i : if j 2 Ik, set g(i)

k+1,j  
Fj(✓

(i)
k
); else, set g(i)

k+1,j  g
(i)
k,j

7: end for

Output:{✓(i)
T
}M
i=1

rates of our algorithms are actually better than those of
variance-reduced SGLD counterparts.

3.2. SVRG-POS

Under limited memory, we propose SVRG-POS, which is
based on the SVRG method of Johnson & Zhang (2013).
For each particle ✓

(i)
k

, one needs to store a stale parameter
e✓(i), and update it occasionally every ⌧ iterations. At each
update, we need to further conduct a global evaluation of
full gradients at e✓(i), i.e., eG(i)  F (✓(i)

k
) = F (e✓(i)). An

unbiased gradient estimate is then calculated by leveraging
both eG(i) and e✓(i) as:

G
(i)
k
 eG(i) +

N

B

X

j2Ik

[Fj(✓
(i)
k
)� Fj(e✓(i))] (8)

The algorithm is depicted in Algorithm 3.2, where one only
needs to store e✓(i) and eG(i), instead of gradient estimates
of all the individual Fj . Hence the memory cost scales as
O(Md), almost the same as that of standard SPOS.

Although SVRG-POS alleviates the storage requirements
of SAGA-POS significantly, it also has the downside that
the full gradients, F (e✓(i)) =

P
N

j=1 F (e✓(i)), need to be re-
computed every ⌧ iterations, leading to high computation
cost in a big-data scenario.

Remark 2 i) Similar to SAGA-POS, according to our the-
ory in Section 4, SVRG-POS enjoys a faster convergence
rate than SVRD-LD – its SGLD counterpart, although M

times more space is required for the particles. This provides
a trade-off between convergence rates and space complexity.
ii) Previous work has shown that SAGA typically outper-

Algorithm 2 SVRG-POS

Input: A set of initial particles {✓(i)0 }M
i=1, each ✓

(i)
0 2 Rd,

step size h, epoch length ⌧ , batch size B.
Initialize {e✓(i)}  {✓(i)0 }, eG(i)  
F (✓(i)0 ), 8i ;

1: for iteration k= 0,1,...,T do

2: if k mod ⌧ =0 then

3: Option I i)Sample l ⇠ unif(0, 1, .., ⌧ � 1)

ii)Update e✓(i)  ✓
(i)
k�l

Update ✓
(i)
k
 e✓(i), 8i

iii)Update eG(i)  F (✓(i)
k
), 8i

4: Option II i) Update e✓(i)  ✓
(i)
k

ii)Update eG(i)  F (✓(i)
k
), 8i

5: end if

6: Uniformly sample Ik from {1, 2, ..., N} randomly
with replacement such that |Ik| = B;

7: Sample ⇠
(i)
k
⇠ N(0, Id⇥d), 8i ;

8: Update G
(i)
k

 eG(i) + N

B

P
j2Ik

[Fj(✓
(i)
k
) �

Fj(e✓(i))], 8i ;
9: Update each ✓

(i)
k

with Eq.(6)
10: end for

Output:{✓(i)
T
}M
i=1

forms SVRG (Dubey et al., 2016; Chatterji et al., 2018) in
terms of convergence speed. This conclusion applies to our
case, which will be verified both by theoretical analysis in
Section 4 and experiments in Section 5.

3.3. SVRG-POS
+

The need for full gradient computation in SVRG-POS moti-
vates the development of SVRG-POS+. Our algorithm is
also inspired by the recent work of SVRG-LD+ on reducing
the computational cost in SVRG-LD (Zou et al., 2018). The
main idea in SVRG-POS+ is to replace the full gradient
computation every ⌧ iterations with a subsampled gradient,
i.e., to uniformly sample |Jk| = b data points where Jk

are random samples from {1, 2, ..., N} with replacement.
Given the sub-sampled data, e✓(i) and eG(i) are updated as:
e✓(i) = ✓

(i)
k
, eG(i) = N

b

P
j2Jk

Fj(✓
(i)
k
). The full algorithm

is shown in Algorithm 3.3.

4. Convergence Analysis

We prove non-asymptotic convergence rates for the SAGA-
POS, SVRG-POS and SVRG-POS+ algorithms under the
2-Wasserstein metric, defined as

W2(µ, ⌫) =

✓
inf

⇣2�(µ,⌫)

Z

Rd⇥Rd

kXµ �X⌫k2d⇣(Xµ, X⌫)

◆ 1
2
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Algorithm 3 SVRG-POS+

Input : A set of initial particles {✓(i)0 }M
i=1, each ✓

(i)
0 2 Rd,

step size h, epoch length ⌧ , batch size B.
Initialize {e✓(i)}  {✓(i)0 }, eG(i)  
F (✓(i)0 ), 8i ;

1: for iteration k= 0,1,...,T do

2: if k mod ⌧ =0 then

3: i) Uniformly sample Jk from {1, 2, ..., N} with
replacement such that |Jk| = b;
ii) Update e✓(i)  ✓

(i)
k

eG(i)  
N

b

P
j2Jk

Fj(✓
(i)
k
), 8i ;

4: end if

5: Uniformly sample Ik from {1, 2, ..., N} with replace-
ment such that |Ik| = B;

6: Sample ⇠
(i)
k
⇠ N(0, Id⇥d), 8i ;

7: Update G
(i)
k

 eG(i) + N

B

P
j2Ik

[Fj(✓
(i)
k
) �

Fj(e✓(i))], 8i ;
8: Update each ✓

(i)
k

with Eq.(6)
9: end for

Output:{✓(i)
T
}M
i=1

where �(µ, ⌫) is the set of all coupling of µ and ⌫ on
Rd ⇥ Rd, with marginal distributions matching µ and ⌫.
Let µ⇤ denote our target distribution, and µT the distribu-
tion of 1

M

P
M

i=1 ✓
(i)
T

derived via (5) after T iterations. Our
analysis aims to bound W2(µT , µ

⇤). We first introduce our
assumptions.

Assumption 1 F and K satisfy the following conditions:

• There exists a positive constant mF such that hF (✓)�
F (✓0),✓ � ✓0i � mF k✓ � ✓0k2; F is LF -Lipschitz
continuous, i.e., kF (✓)� F (✓0)k  LF k✓ � ✓0k;

• K is LK-Lipschitz continuous for some LK � 0,
i.e., kK(✓) � K(✓0)k  LKk✓ � ✓0k; and rK is
LrK-Lipschitz continuous for some LrK � 0, i.e.,
krK(✓)�rK(✓0)k  LrKk✓ � ✓0k;

• K is an even function, i.e., K(�✓) = K(✓);

• The initial probability law of each particle has a
bounded and strictly positive density ⌫0 with re-
spect to the Lebesgue measure on Rd, and �0 ,
log

R
Rd e

k✓k2

⌫0(✓)d✓ <1

Assumption 2 There exists a constant DF > 0 such that
krF (✓)�rF (✓0)k  DF k✓ � ✓0k.

Assumption 3 There exits a constant � such that for all
j 2 {1, 2, ..., N},

E[kFj(✓)�
1

N

NX

j=1

Fj(✓)k2]  d�
2
/N

2

Assumption 4 There exist some positive constants H1, H2

such that kF (✓2)K(✓0
1 � ✓1) � F (✓2)K(✓0

2 � ✓2)k 
H1LKk✓0

1�✓1� (✓0
2�✓2))k and kF (✓2)rK(✓0

1�✓1)�
F (✓2)rK(✓0

2 � ✓2)k  H2LrKk✓0
1 � ✓1 � (✓0

2 � ✓2))k

Remark 3 i) Assumption 1 is adopted from (Zhang et al.,
2020). The first bullet of Assumption 1 suggests U(·) is a
strongly convex function, which is the general assumption in
analyzing SGLD (Dalalyan & Karagulyan, 2017; Durmus
& Moulines, 2016) and its variance-reduced variants (Zou
et al., 2018; Chatterji et al., 2018). Although some work has
been done on investigating the non-convex case, the con-
vex case is a more common case, which is more instructive
and meaningful for addressing practical issues (Dalalyan
& Karagulyan, 2017; Durmus & Moulines, 2016; Zou et al.,
2018; Chatterji et al., 2018). ii) All of the mF , LF and DF

can scale linearly with N . iii) K(✓) = exp(�k✓k2

2⌘2 ) can
satisfy the above assumptions by setting the bandwidth large
enough. K can also be expressed as Hessian Lipschitz with
some positive constant Dr2K , and krKk can be bounded
by some positive constant HrK . iv) Assumption 4 can be
viewed as an extension to the Lipschitz continuity mentioned
in Assumption 1, and it is used to bridge the work of (Chat-
terji et al., 2018) and (Zhang et al., 2020). We allow H1, H2

to be related to F , which can scale linearly with N .

Now we present a convergence analysis for our algorithms,
where ↵ is some positive constant independent of T .

Theorem 1 Let µT denote the distribution of the particles
after T iterations with SAGA-POS, and consider step size
h <

B

8C2N
and batch size B � 9. Under Assumptions 1

and 2, the convergence rate of SAGA-POS is bounded as

W2(µT ,µ
⇤)  C1p

M
+ 5 exp(�C3h

4
T )W2(µ0, µ

⇤)

+
2hC4dM

1/2�↵

C3
+

2hC2
3
2
p
d

C3M
↵

+
24hC2

p
dN

M↵
p
C3B

,

(9)

where (C1, C2, C3, C4) are some positive constant pre-
sented in the appendix.

Theorem 2 Let µT denote the distribution of the particles
after T iterations with SVRG-POS in Algorithm 3.2. Under
Assumptions 1 and 2, if we choose Option I and set the
step size h <

1
8C2

, the batch size B � 2 and the epoch
length ⌧ = 4

hC3(1�2hC2(1+2/B)) , the convergence rate of
SVRG-POS is bounded, for all T such that T mod ⌧ equal



Variance Reduction in Stochastic Particle-Optimization Sampling

0, as

W2(µT , µ
⇤)  C1p

M
+ exp(�C3h

56
T )

p
C2p
C3

W2(µ0, µ
⇤) (10)

+
2hC4dM

1/2�↵

C3
+

2hC2
3
2
p
d

C3M↵
+

64C2
3
2
p
hd

M↵
p
BC3

.

If we choose Option II and set the step size h <

p
B

4⌧C2
, the

convergence rate of SVRG-POS is bounded for all T as

W2(µT , µ
⇤)  C1p

M
+ exp(�C3h

4
T )W2(µ0, µ

⇤) (11)

+

p
2hC4dM

1/2�↵

C3
+

5hC2
3
2
p
d

C3M
↵

+
9hC2⌧

p
d

M↵
p
BC3

.

Theorem 3 Let µT denote the distribution of parti-
cles after T iterations with SVRG-POS+. Under As-
sumptions 1, 2 and 3, if we set the step size h 
min{( BC3

24C2
4⌧2 )

1
3 ,

1
6⌧(C5

2/b+C2)
}, the convergence rate of

SVRG-POS+ is bounded for all T as

W2(µT ,µ
⇤)  C1p

M
+ (1� hC3/4)

TW2(µ0, µ
⇤) (12)

+
3C5d

1/2

M↵C3b
1/2

1(b  N) +
2h(C4dM

1/2�↵)

C3

+
2hC3/2

2 d
1/2

C3M
↵

+
4hC2(⌧d)1/2 ^ 3h1/2

d
1/2

C5

M↵
p
BC3

.

Since the complexity has been discussed in Section 3, we
mainly focus on discussing the convergence rates here. Due
to space limits, we move the comparison between conver-
gence rates of the standard SPOS and its variance-reduced
counterparts (such as SAGA-POS) into the SM. Specifically,
adopting the standard framework of comparing different
variance-reduction techniques in SGLD (Dubey et al., 2016;
Chatterji et al., 2018; Zou et al., 2018), we focus on the
scenario where mf , LF , HF and DF all scale linearly with
N where N � d. In this case, the last term in Theo-
rem 1 dominates for SAGA-POS, O(hC2

p
d

M↵B
) ⇡ O(hN

p
d

M↵B
).

Thus, to achieve an accuracy of ", we need a stepsize of
hag = O( "M

↵
B

N

p
d
). For SVRG-POS, the dominate term in

Theorem 2 is O(
p
hNd

M↵
p
B
) for Option I and O( ⌧hN

p
d

M↵
p
B
) for

Option II. Hence, for an accuracy of ", the corresponding
step sizes are hvr1 = O( "

2
M

2↵
B

Nd
) and hvr2 = O( "M

↵
p
B

⌧N

p
d
),

respectively. Due to the fact that the mixing time T for these
methods is roughly proportional to the reciprocal of step
size (Chatterji et al., 2018), it is seen that when " is small
enough, one can have hvr1 ⌧ hag, which causes SAGA-
POS to converge faster than SVRG-POS (Option I). Similar
results hold for Option II since the factor 1p

B⌧
in hvr2 would

make the step size even smaller. More theoretical results are
given in the SM.

Figure 1. Log-MSE of the mean parameter versus the number of
dataset pass.

Remark 4 We have provided a theoretical analysis to sup-
port the statement of i) in Remark 2. Moreover, we should
also notice in SAGA-POS, stepsize hag = O( "M

↵
B

N

p
d
) has

an extra factor, M↵, compared with the step size O( "B

N

p
d
)

used in SAGA-LD (Chatterji et al., 2018)1. This means
SAGA-POS with more particles (M is large) could outper-
form SAGA-LD. SVRG-POS and SVRG-POS+ yield similar
conclusions. This provides theoretical support for the state-
ments of Remark 1 and i) in Remark 2. Furthermore, an
interesting result from the above discussion is that when
hvr1 = O( "

2
M

2↵
B

Nd
) in SVRG-POS, there is an extra factor

M compared to the stepsize O( "
2
B

Nd
) in SVRG-LD (Chat-

terji et al., 2018). Since the order of M2↵ is higher than
M

↵, one expects that the improvement of SVRG-POS over
SVRG-LD is more significant than that of SAGA-POS over
SAGA-LD. This conclusion is verified in our experiments.

5. Experiments

We conduct experiments to verify our theory, and com-
pare SAGA-POS, SVRG-POS and SVRG-POS+ with exist-
ing representative Bayesian sampling methods with/without
variance-reduction techniques, e.g. SGLD and SPOS with-
out variance reduction; SAGA-LD, SVRG-LD and SVRG-
LD+ with variance reduction. For SVRG-POS, we focus on
Option I in Algorithm 3.2 to verify our theory.

5.1. Synthetic log-normal distribution

We first evaluate our proposed algorithms on log-normal
synthetic data, drawn from p(x|µ) = 1

x
p
2⇡

exp(� (lnx�µ)2

2 ),
where x,µ 2 R10. Like other variance-reduction algo-
rithms (Chatterji et al., 2018), we calculate log-MSE of
the sampled “mean” w.r.t. the true value, and plot the log-

1For fair comparisons with our algorithms, we consider
variance-reduced versions of SGLD with M independent chains.
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MSE versus number of passes through data. The results
are plotted in Figure 1, which shows that SAGA-POS and
SVRG-POS converge the fastest among all algorithms. It is
also interesting to see SPOS even outperforms both SAGA-
LD and SVRG-LD.

5.2. Bayesian logistic regression

Following related work in (Dubey et al., 2016), we test the
proposed algorithms for Bayesian-logistic-regression (BLR)
on four publicly available datasets from the UCI machine
learning repository: Australian (690-14), Pima (768-8),
Diabetic (1151-20) and Susy (100000-18), where (N � d)
means a dataset of N data points with dimensionality d.
The first three datasets are relatively small, and the last
one is large and is suitable for evaluating scalable Bayesian
sampling algorithms.

Consider a dataset {xi, yi}Ni=1 with N samples, where
xi 2 Rd and yi 2 {0, 1}. The likelihood of a BLR model is
written as p(yi = 1|Xi,↵) = sigmoid(↵T

Xi) with regres-
sion coefficient ↵ 2 Rd, which for simplicity is assumed
to be sampled from a standard multivariate Gaussian prior
N (0, I). The datasets are split into 80% training data and
20% testing data. Optimized constant stepsizes are applied
for each algorithm via grid search. Following existing work,
we report testing accuracy and log-likelihood versus the
number of data passes for each dataset, averaging over 10
runs with 50 particles. The minibatch size is set to 15 for
all experiments.

5.2.1. VARIANCE-REDUCED SPOS VERSUS SPOS

We first compare SAGA-POS, SVRG-POS and SVRG-
POS+ with SPOS without the variance reduction proposed
in (Zhang et al., 2020). The testing accuracies and log-
likelihoods versus number of passes through data on the
four datasets are plotted in Figure 2. It is observed that
SAGA-POS converges faster than both SVRG-POS and
SVRG-POS+, all of which significantly outperform SPOS.
On the largest dataset SUSY, SAGA-POS starts only after
one pass through the data, which then converges quickly,
outperforming the other algorithms. SVRG-POS+ outper-
forms SVRG-POS because the dataset SUSY is large that
SVRG-POS+ only requires minibatch calculations. All of
these phenomena are supported by our theory.

5.2.2. VARIANCE-REDUCED SPOS VERSUS
VARIANCE-REDUCED SGLD

Next we compare the three variance-reduced SPOS algo-
rithms with SGLD counterparts, i.e., SAGA-LD, SVRG-
LD and SVRG-LD+. The results are plotted in Figure 3.
Similar phenomena are observed, where both SAGA-POS
and SVRG-POS outperform SAGA-LD and SVRG-LD, re-
spectively, consistent with our theoretical results discussed

((a)) Australian

((b)) Pima

((c)) Diabetic

((d)) Susy

Figure 2. Testing accuracy and log-likelihood vs. the number of
data pass for SPOS and its variance-reduction variants.

in Remarks 1 and 2. Interestingly, for the PIMA dataset,
SVRG-LD is observed to perform even worse (converges
slower) than standard SGLD. Furthermore, as discussed in
Remark 4, our theory indicates that the improvement of
SVRG-POS over SVRG-LD is more significant than that
of SAGA-POS over SAGA-LD. This is indeed verified by
inspecting the plots in Figure 3.

5.2.3. IMPACT OF NUMBER OF PARTICLES

Finally, we examine the impact of the number of particles on
the convergence rates. As indicated by Theorems 1-3, for a
fixed number of iterations T , the convergence error in terms
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((a)) Australian ((b)) Pima

((c)) Diabetic ((d)) Susy
Figure 3. Testing accuracy and log-likelihood versus the number of dataset pass for variance-reduced SPOS and SGLD.

of 2-Wasserstein distance decreases with increasing number
of particles. To verify this, we run SAGA-POS and SVRG-
POS for BLR with the number of particles ranging among
{1, 2, 4, 8, 16}. The test log-likelihoods versus iteration
numbers are plotted in Figure 4. The results indeed are
consistent with our theory.

6. Additional Theoretical Discussion for

SAGA-POS, SVRG-POS and SVRG-POS
+

We discuss the mixing time and gradient complexity of our
algorithms. The mixing time is the number of iterations
needed to provably have error less than ", measured
in W2 distance (Chatterji et al., 2018). The gradient
complexity (Zou et al., 2018), which is almost the same as
the computational complexity in (Chatterji et al., 2018),
is defined as the required number of stochastic gradient
evaluations to achieve a target accuracy ". In Table 1
we present the mixing time and gradient complexity of
several related algorithms. We focus on Option I of
SVRG-POS. Our results for SVRG-LD+ and SVRG-
POS+ may be a little different from those reported in
(Zou et al., 2018) since we adopt different definitions for Fj .

Note that the result for SVRG-POS+ is derived by adopt-
ing B = 1 and b = O(d�2

/µ
2
"
2) from (Zou et al., 2018),

which also sheds light on the optimal choice of b and B

in our SVRG-POS+. For fair comparisons with our algo-
rithms, we consider variance-reduced versions of SGLD
with M independent chains, which can be shown to have
the same convergence rate in terms of total number of up-

dates (Chen et al., 2015). Hence, the gradient complexities
of the SAGA-LD, SVRG-LD and SVRG-LD+ need to be
scaled by M , consistent with the discussion in Section 3 and
our experiment results. Since the convergence guarantees
in Theorems 1, 2 and 3 are developed with respect to both
iteration T and the number M , we define the “threshold-
particle,” which means the number of particles needed to
provably have error less than " measured in W2 distance.
We use “threshold-particle” for our algorithms.

Note that the M in the mixing time from Table 1 also should
satisfy the result that M � C

2
1/"

2. In practice, since C1 =
2(HrK+H✓)p

M(��1� 5
2H✓LK�LF�2LrK)

, we set � to be small enough
to avoid the threshold-particle to be too large. However, in
our experiments, since HF ,LK and LF are not large, this
issue seems to be less of a problem.

Finally, we give explanations concerning the SAGA-POS
algorithm. From Algorithm 3.1, it may be noted that one
must store all elements like G

(i)
k

in each iteration. It is
known that {G(i)

k
}M
i=1 only scales as O(Md). Taking the

dataset Susy as an example, we have N = 10000 and d =
18. In practice, we only use M  40 particles, resulting in
a not-so-large G

(i)
k

term. Hence, we do not take {G(i)
k
}M
i=1

into consideration.

7. Conclusions

We propose several variance-reduction techniques for
stochastic particle-optimization sampling. For the first time,
we develop nonasymptotic convergence theory for the algo-
rithms in terms of 2-Wasserstein metrics. Our theoretical
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((a)) Australian ((b)) Pima
Figure 4. Testing log-likelihood versus number of iterations with different number of particles for variance-reduced SPOS.

Table 1. Mixing Time and Gradient Complexity

Algorithm Mixing time Gradient complexity

SAGA-LD O( (LF /mF )3/2
p
d

B"
) O(N + (LF /mF )3/2

p
d

"
)

SAGA-POS O( (C2/C3)
3/2

p
d

BM↵"
) O(NM + (C2/C3)

3/2
p
dM

1�↵

"
)

SVRG-LD O( (LF /mF )3d
B"2

) O(N + (LF /mF )3
p
d

"2
)

SVRG-POS O( (C2/C3)
3
d

BM2↵"2
) O(NM + (C2/C3)

3
p
dM

1�2↵

"2
)

SVRG-LD+ O( �
2
d

mF
2"2

) O( �
2
d

mF
2"2
^ (N + (LF /mF )3/2

p
d

"
))

SVRG-POS+ O( C
2
4d

M2↵C3
2"2

) O( C
2
4d

C3
2"2
^ (NM + (C2/C3)

3/2
p
dM

1�2↵

"
))

Table 2. Threshold-particle

Algorithm Threshold-particle
SAGA-POS C

2
1/"

2

SVRG-POS C
2
1/"

2

SVRG-POS+
C

2
1/"

2

results indicate the improvement of convergence rates for
the proposed variance-reduced SPOS compared to both stan-
dard SPOS and the variance-reduced SGLD algorithms. Our
theory is verified by a number of experiments on both syn-
thetic data and real data for Bayesian logistic regression.
Leveraging both our theory and empirical findings, we rec-
ommend the following algorithm choices in practice: i)
SAGA-POS is preferable when storage is not a concern; ii)
SVRG-POS is a better choice when storage is a concern and
full gradients are feasible to calculate; and iii) SVRG-POS+

is a good choice and works well in practice when one faces
with both computation and storage limitations.
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