
Variance Reduction in Stochastic Particle-Optimization Sampling

A. More Details about the Notation

• One may notice the different use of ✓ and ✓. ✓ is mostly used for the interpretation of the theory; and ✓ is only used for
the interpretation of algorithms, which means ✓ often appears with k (which stands for the kth interation ) like ✓k. The
rules also apply for the results in Appendix.

• The symbol 1(H1  H2) in Theorem 3 means

1(H1  H2) =

(
1 H1  H2

0 H1 > H2
(13)

and the symbol H3 ^H4 means min{H3, H4}

• The relationship between RBF kernel (✓,✓0) = exp(�k✓�✓0k2

2⌘2 ) and the function K(✓) = exp(�k✓k2

2⌘2 ) can be
interpreted as (✓,✓0) = K(✓ � ✓0) in detail.

B. The Positive Constants in Theorem 1, Theorem 2 and Theorem 3

For the sake of clarity, we present the following constants which are used in our theorems.

C1 =
2(HrK +H✓)p

M(��1 � 5
2H✓LK � LF � 2LrK)

C2 =
p
2(��1LF + 2LKH1 +HKLF + LrK)2 + 2

C3 = �
�1

mF � 2LF � 3H1LK

C4 = �
�1

DF + 4Dr2K + 4H2LrK + 2LFHrK + 2H1LK + LFHK

C5 = 2��1
�
2 + 2H2

K
�
2

C. Convergence Guarantees for SAGA-LD, SVRG-LD and SVRG-LD
+

In this section, we present the convergence guarantees for SAGA-LD, SVRG-LD and SVRG-LD+ from (Chatterji et al.,
2018; Zou et al., 2018).

Assumption 5 • (Sum-decomposable) The F (✓) is decomposable, i.e., F (✓) =
P

N

j=1 Fj(✓).

• (Smoothness) F (✓) is Lipschitz continuous with some positive constant, i.e., for all ✓1,✓2 2 Rd, kF (✓1)� F (✓2)k 
LF k✓1 � ✓2k.

• (Strong convexity) F (✓) is a mF -strongly convex function, i.e., (F (✓1)� F (✓2)) (✓1 � ✓2) � mF k✓1 � ✓2k.

• (Hessian Lischitz) There exits such a positive constant such that krF (✓1)�rF (✓2)k  DF k✓1 � ✓2k.

Assumption 6 (Bound Variance)2 There exits a constant � � 0, such that for all j

E[kFj(✓)�
1

N

NX

j=1

Fj(✓)k2]  d�
2
/N

2

Theorem 4 Under Assumption 5, let the step size h <
B

8NLF
and the batch size B � 9, then we can have the following

bound for W2(µT , µ
⇤) for the SAGA-LD algorithm:

W2(µT , µ
⇤) 5 exp(�mFh

4
T )W2(µ0, µ

⇤)+

2hDF d

mF

+
2hLF

3
2
p
d

mF

+
24hLF

p
dN

p
mFB

2This assumption is a little different from that in (Zou et al., 2018) since we adopt different definition of Fj
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Theorem 5 Under Assumption 5, if we choose Option I and set the step size h <
1

8LF
, the batch size B � 2 and the epoch

length ⌧ � 8
mFh

, then we can have the following bound for all (T mod ⌧ =0) for the SVRG-LD algorithm:

W2(µT , µ
⇤)  exp(�mFh

56
T )

p
LFp
mF

W2(µ0, µ
⇤)+

2hDF d

mF

+
2hLF

3
2
p
d

mF

+
64L

3
2
F

p
hd

mF

p
B

If we choose Option II and set the step size h <

p
B

4⌧C2
, then we can have the following bound for all T for the SVRG-LD

algorithm:

W2(µT , µ
⇤)  exp(�mFh

4
T )W2(µ0, µ

⇤)+
p
2hDF d

mF

+
5hLF

3
2
p
d

mF

+
9hLF ⌧

p
dp

BmF

Theorem 6 Under Assumption 5 and Assumption 6, if we set the step size h  min{( BC3

24C2
4⌧2 )

1
3 ,

1
6⌧(C5

2/b+C2)
}, we can

have the following bound for all T for the SVRG-LD+ algorithm:

W2(µT , µ
⇤)  (1� hmF /4)

TW2(µ0, µ
⇤)+

3�d1/2

mF b
1/2

1(b  N) +
2hD4d

mF

+
2hLF

3/2
d
1/2

mF

+
4hLF (⌧d)1/2 ^ 3h1/2

d
1/2

�p
BmF

D. Proof of the theorems in Section 4

In this section, we prove the theorems in Section 4. We have simplified our proofs because we want to make it easier to
understand. Our proof is based on the idea of (Zhang et al., 2020) and borrow some results from (Chatterji et al., 2018; Zou
et al., 2018). We first have the following update equation for SPOS:

d✓(i)
t

=� �
�1

F (✓(i)
t
)dt� 1

M

MX

q=1

K(✓(i)
t

� ✓(q)
t

)F (✓(q)
t

)dt

+
1

M

MX

q=1

rK(✓(i)
t

� ✓(q)
t

)dt+
p
2��1dW(i)

t
8i (14)

As mention in Section 2.3, we denote the distribution of ✓(i)
t

in Eq.(14) as ⌫t. From the proof of Theorem 5 in (Zhang et al.,
2020), we can derive that

W2(⌫1, µ
⇤)  2(HrK +H✓)p

M(��1 � 5
2H✓LK � LF � 2LrK)

(15)

In order to bound W2(µT , µ
⇤), we need to bound W2(µT , ⌫1). We borrow the idea in (Zhang et al., 2020), by concatenating

the particles at each time into a single vector representation, We define a new parameter at time t as ⇥t , [✓(1)
t

, · · · ,✓(M)
t

] 2
RMd. Consequently, ⇥t is driven by the following linear SDE:

d✓t = �F
⇥(⇥t)dt+

p
2��1dW(Md)

t
, (16)

where F
⇥(⇥t) , [��1

F (✓(1)
t

) � 1
M

P
M

q=1 rK(✓(1)
t

� ✓(q)
t

) + 1
M

P
M

q=1 K(✓(1)
t

� ✓(q)
t

)F (✓(q)
t

), · · · ,��1
F (✓(M)

t
) �

1
M

P
M

q=1 rK(✓(M)
t

� ✓(q)
t

) + 1
M

P
M

q=1 K(✓(M)
t

� ✓(q)
t

)F (✓(q)
t

)] is a vector function RMd ! RMd, and W(Md)
t

is
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Brownian motion of dimension Md.

Define the F
⇥
j
(⇥t) , [��1

Fj(✓
(1)
t

) � 1
MN

P
M

q=1 rK(✓(1)
t

� ✓(q)
t

) + 1
M

P
M

q=1 K(✓(1)
t

�
✓(q)
t

)Fj(✓
(q)
t

), · · · ,��1
Fj(✓

(M)
t

) � 1
MN

P
M

q=1 rK(✓(M)
t

� ✓(q)
t

) + 1
M

P
M

q=1 K(✓(M)
t

� ✓(q)
t

)Fj(✓
(q)
t

)]. We can
find the F

⇥(⇥t) and F
⇥
j
(⇥t) defined above satisfy the following theorem.

Theorem 7 • (Sum-decomposable) The F
⇥(⇥) is decomposable, i.e., F⇥(⇥) =

P
N

j=1 F
⇥
j
(⇥).

• (Strong convexity) F⇥ is a (��1
mF��2LF�3H1LK)-strongly convex function, it i.e.,

�
F

⇥(⇥1)� F
⇥(⇥2)

�
(⇥1�

⇥2)  (��1
mF � 2LF � 3H1LK) k⇥1 �⇥2k.

• (Hessian Lischitz) The function F
⇥ is Hessian Lipschitz, i.e.,

��rF
⇥(⇥1)�rF

⇥(⇥2)
��  (��1

DF + 4Dr2K +
4H2LrK + 2LFHrK + 2H1LK + LFHK) k⇥1 �⇥2k.

• (Smoothness) F⇥ is Lipschitz continuous with some positive constant, i.e., for all ⇥1,⇥2 2 RMd,kF⇥(⇥1) �
F

⇥(⇥2)k 
p

2(��1LF + 2LKH1 +HKLF + LrK)2 + 2 k⇥1 �⇥2k.

• (Bound Variance) There exits a constant, � � 0, such that for all j,

E[kF⇥
j
(⇥)� 1

N

NX

j=1

F
⇥
j
(⇥)k2]  Md(2��1 + 2H2

K
)�2

/N
2

Proof

• The sum-decomposable property of F⇥(⇥) is easy to verify.

• (Strong convexity)

(F⇥(⇥1)� F
⇥(⇥2))(⇥1 �⇥2) =

1

M

MX

i,q

(⇠1
iq
+ ⇠

2
iq
+ ⇠

3
iq
+ ⇠

4
iq
) (17)

where

⇠
1
iq

= �
�1

⇣
F (⇥(i)

1 )� F (⇥(i)
2 )

⌘
·
⇣
⇥(i)

1 �⇥(i)
2

⌘

⇠
2
iq

= �
⇣
rK(✓(i)

1 � ✓(q)
1 )�rK(✓(i)

2 � ✓(q)
2 )

⌘
·
⇣
✓(i)
1 � ✓(i)

2

⌘

⇠
3
iq

=
⇣
F (✓(q)

1 )K(✓(i)
1 � ✓(q)

1 )� F (✓(q)
2 )K(✓(i)

1 � ✓(q)
1 )

⌘
·
⇣
✓(i)
1 � ✓(i)

2

⌘

⇠
4
iq

=
⇣
F (✓(q)

2 )K(✓(i)
1 � ✓(q)

1 )� F (✓(q)
2 )K(✓(i)

2 � ✓(q)
2 )

⌘
·
⇣
✓(i)
1 � ✓(i)

2

⌘

For the ⇠
1
iq

terms, applying the convex condition for F , we have

X

iq

⇠
1
iq

=
X

iq

�
�1

⇣
F (✓(i)

1 )� F (✓(i)
2

⌘
·
⇣
✓(i)
1 � ✓(i)

2

⌘

� �
�1

mFM

X

i

���✓(i)
1 � ✓(i)

2

���
2

(18)
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For the ⇠
2
iq

term, applying the concave condition for K and rK is odd, we have

X

iq

⇠
2
iq

= �
MX

iq

⇣
rK(✓(i)

1 � ✓(q)
1 )�rK(✓(i)

2 � ✓(q)
2 )

⌘
·
⇣
✓(i)
1 � ✓(i)

2

⌘

=� 1

2

MX

iq

MX

iq

⇣
rK(✓(i)

1 � ✓(q)
1 )�rK(✓(i)

2 � ✓(q)
2 )

⌘
·
⇣
✓(i)
1 � ✓(q)

1 � (✓(i)
2 � ✓(q)

2 )
⌘

=
1

2
LrK

X

ij

���✓(i)⌧
� ✓̄

(i)
⌧

� (✓(j)
⌧

� ✓̄
(j)
⌧

)
���
2
� �2LrKME

X

i

���✓(i)⌧
� ✓̄

(i)
⌧

���
2

(19)

For the ⇠
3
iq

terms, after applying the LF -Lipschitz property of F , we have
X

iq

⇠
3
iq

=
X

iq

(F (✓(q)
1 )K(✓(i)

1 � ✓(q)
1 )� F (✓(q)

2 )K(✓(i)
1 � ✓(q)

1 )) ·
⇣
✓(i)
1 � ✓(i)

2

⌘

� �
X

iq

LF

���✓(q)
1 � ✓(q)

2

���
���✓(i)

1 � ✓(i)
2

���

� �2LFM

X

i

���✓(i)
1 � ✓(i)

2

���
2

(20)

For the ⇠
4
iq

terms, we have
X

iq

⇠
4
iq

=
X

iq

(F (✓(q)
2 )K(✓(i)

1 � ✓(q)
1 )� F (✓(q)

2 )K(✓(i)
2 � ✓(q)

2 )) ·
⇣
✓(i)
1 � ✓(i)

2

⌘

� �H1LK

X

iq

���✓(i)
1 � ✓(q)

1 � (✓(i)
2 � ✓(q)

2 )
���
���✓(i)

1 � ✓(i)
2

���

� �3H1LKM

X

i

���✓(i)
1 � ✓(i)

2

���
2

(21)

Combining these bounds, we arrive at:
�
F

⇥(⇥1)� F
⇥(⇥2)

�
(⇥1 �⇥2)

� (��1
mF � 2LrK � 2LF � 3H1LK)

X

i

���✓(i)
1 � ✓(i)

2

���

� (��1
mF � 2LrK � 2LF � 3HFLK) k⇥1 �⇥2k (22)

• Next, we will prove the third result:
��rF

⇥(⇥1)�rF
⇥(⇥2)

��

 �
�1

MX

i=1

���rF (✓(i)
1 )�rF (✓(i)

2 )
���+

MX

i=1

2

M

MX

q=1

���r2
K(✓(i)

1 � ✓(q)
1 )�r2

K(✓(i)
2 � ✓(q)

2 )
���+

2

M

MX

i=1

MX

q=1

krK(✓(i)
1 � ✓(q)

1 )F (✓(q)
1 )�rK(✓(i)

2 � ✓(q)
2 )F (✓(q)

2 )k

+
MX

i=1

MX

q=1

1

M
kK(✓(i)

1 � ✓(q)
1 )rF (✓(q)

1 )�K(✓(i)
2 � ✓(q)

2 )rF (✓(q)
2 )k


MX

i=1

�
�1

DF k✓(i)
1 � ✓(i)

2 k+ 4Dr2K

MX

i=1

k✓(i)
1 � ✓(i)

2 k+
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2

M

MX

i=1

MX

q=1

krK(✓(i)
1 � ✓(q)

1 )F (✓(q)
1 )�rK(✓(i)

2 � ✓(q)
2 )F (✓(q)

1 )k+

2

M

MX

i=1

MX

q=1

krK(✓(i)
2 � ✓(q)

2 )F (✓(q)
1 )�rK(✓(i)

2 � ✓(q)
2 )F (✓(q)

2 )k

+
1

M

MX

i=1

MX

q=1

kK(✓(i)
1 � ✓(q)

1 )F (✓(q)
1 )�K(✓(i)

2 � ✓(q)
2 )F (✓(q)

1 )k+

1

M

MX

i=1

MX

q=1

kK(✓(i)
2 � ✓(q)

2 )F (✓(q)
1 )�K(✓(i)

2 � ✓(q)
2 )F (✓(q)

2 )k


MX

i=1

�
�1

DF

���✓(i)
1 � ✓(i)

2

���+ 4Dr2K

MX

i=1

���✓(i)
1 � ✓(i)

2

���+

4
MX

i=1

H2LrK

���✓(i)
1 � ✓(i)

2

���+ 2
MX

i=1

LFHrK

���✓(i)
1 � ✓(i)

2

���+

2
MX

i=1

H1LK

���✓(i)
1 � ✓(i)

2

���+
MX

i=1

LFHK

���✓(i)
1 � ✓(i)

2

���

 (��1
DF + 4Dr2K + 4H2LrK + 2LFHrK + 2H1LK + LFHK) k⇥1 �⇥2k (23)

Similarly, we can easily verify that

kF⇥(⇥1)� F
⇥(⇥2)k 

p
2(��1LF + 2LKH1 +HKLF + LrK)2 + 2 k⇥1 �⇥2k

• Finally, we prove the last result.

E[kF⇥
j
(⇥)� 1

N

NX

j=1

F
⇥
j
(⇥)k2] =

MX

i=1

E[k��1
Fj(⇥

(i))� �
�1 1

N

NX

j=1

Fj(✓
(i)) +

1

M

MX

q=1

K(✓(i) � ✓(q))Fj(✓
(q)
t

)� 1

MN

NX

j=1

MX

q=1

K(✓(i) � ✓(q))Fj(✓
(q)
t

)k2]


MX

i=1

[2Ek��1
Fj(✓

(i))� �
�1 1

N

NX

j=1

Fj(✓
(i))k2 + 2

H
2
K

M2
Ek

MX

q=1

0

@Fj(✓
(q) � 1

N

NX

j=1

Fj(✓
(q))

1

A k2]


MX

i=1

(2d�2 + 2H2
K
d�

2)/N2

 Md(2�2 + 2H2
K
�
2)/N2 (24)

We apply Euler-Maruyama discretization to Eq.(16) and substitute G
⇥
k

for F⇥(⇥k) to derive the following equation:

⇥k+1 = ⇥k �G
⇥
k
h+

p
2��1h⌅k, ⌅k ⇠ N (0,Md⇥Md )

Hence, different G⇥
k

correspond to different algorithms for ⇥k, e.g., the SAGA-LD, SVRG-LD and SVRG-LD+ algorithms.
It is worth noting that the SAGA-LD, SVRG-LD and SVRG-LD+ algorithms of ⇥k is actually the corresponding SAGA-
POS, SVRG-POS and SVRG-POS+ algorithm of {✓(i)

k
}.

This result is very important for our proof, which bridges the gap between the variance reduction in stochastic gradient
Langevin dynamics (SGLD) and variance reduction in stochastic particle-optimization sampling (SPOS). Thanks to the
Theorem 7, we can can verify F

⇥(⇥) satisfies the Assumption 5 and Assumption 6 (please notice the F
⇥(⇥) corresponds
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to the rF in (Chatterji et al., 2018)). Hence, we can borrow the results in (Chatterji et al., 2018; Zou et al., 2018) and derive
some new results for the variance reduction techniques in stochastic particle-optimization sampling (SPOS).

We denotes the distribution of ⇥ in Eq.(16) and the distribution of ⇥k in Eq.(25) as �t and and ⇤k. Now we can derive the
following theorems, with C1,C2,C3,C4 and C5 defined in Section 4.

Theorem 8 Let the step size h <
B

8NC1
and the batch size B � 9. We have the bound for W2(⇤T ,�1) in the SAGA-LD

algorithm of ⇥k as:

W2(⇤T ,�1) 5 exp(�C3h

4
T )W2(⇤0,�1)+

2hC4Md

C3
+

2hC2
3
2
p
Md

C3
+

24hC2

p
MdNp

C3B

Theorem 9 If we choose Option I and set the step size h <
1

8C2
, the batch size B � 2 and the epoch length ⌧ � 8

C3h
, we

can have the bound for all (T mod ⌧ =0) in the SVRG-LD algorithm of ⇥k as:

W2(⇤T ,�1)  exp(�C3h

56
T )

p
C2p
C3

W2(⇤0,�1)+

2hC4Md

C3
+

2hC2
3
2
p
Md

C3
+

64C
3
2
2

p
hMdp

BC3

If we choose Option II and set the step size h <

p
B

4⌧C2
, we can have the bound for all T in the SVRG-LD algorithm of ⇥k as:

W2(⇤T ,�1)  exp(�C3h

4
T )W2(⇤0,�1)+

p
2hC4Md

C3
+

5hC2
3
2
p
Md

C3
+

9hC2⌧
p
Mdp

BC3

Theorem 10 If we set the step size h  min{( BC3

24C2
4⌧2 )

1
3 ,

1
6⌧(C5

2/b+C2)
}, we can have the bound for all T in the algorithm

SVRG-LD+ of ⇥k as:

W2(⇤T ,�1)  (1� hC2/4)
TW2(µ0, µ

⇤)+

3C5(Md)1/2

C3b
1/2

1(b  N) +
2h(C4Md)

C3
+

2hC2
3/2(Md)1/2

C3

+
4hC2(⌧Md)1/2 ^ 3h1/2(Md)1/2C5p

BC3

Next, we derive a proposition, which will be useful to connecting the W2(⇤T ,�1) and W2(µT , ⌫1) mentioned above. For
simplicity of notations, we directly use ✓ and ⇥ themselves to denote their own distributions.

Proposition 11 Define ⇥1 and ⇥2 as ⇥1 , [✓(1)
1 , · · · ,✓(M)

1 ] 2 RMd and ✓2 , [✓(1)
2 , · · · ,✓(M)

2 ] 2 RMd. We have

MX

i=1

W2
2 (✓

(i)
1 ,✓(i)

2 )  W2
2 (⇥1,⇥2) (25)

Proof According to the Eq.(4.2) in (Soheil Feizi & Tse), we can write the W2(✓
(i)
1 ,✓(i)

2 ) in the following optimizaition:

W2
2 (✓

(i)
1 ,✓(i)

2 ) = Ek✓(i)
1 k2 + Ek✓(i)

2 k2

+2 sup
�:convex

{�E[�(✓(i)
1 )]� E[�⇤(✓(i)

2 )]} (26)
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where �⇤(✓) , sup
v
(vT ✓� �(✓)) is the convex-conjugate of the function �. Assume �i is the optimal function of Eq.26. It

is trivial to verify that  (⇥) , P
M

i=1 �i(✓(i)) is a convex function. Due to the property of conjugate functions, we have
 (⇥)⇤ =

P
M

i=1 �
⇤
i
(✓(i)). Now we can derive the following result:

MX

i=1

W2
2 (✓

(i)
1 ,✓(i)

2 ) =
MX

i=1

{Ek✓(i)
1 k2 + Ek✓(i)

2 k2 + 2(�E[�i(✓
(i)
1 )]� E[�⇤

i
(✓(i)

2 )])}

= Ek⇥1k2 + Ek⇥2k2 + 2(�E[ (⇥1)]� E[ ⇤(⇥2)])

 W2
2 (⇥1,⇥2) ,

which finishes our proof.

We should notice that due to the exchangeability of the M -particles system {✓(i)
k
} in our SPOS-type sampling, the distribution

of each particle ✓
(i)
T

at the same time is identical. Hence, using Proposition 11, we can derive

W2(µT , ⌫1)  1p
M

W2(⇤T ,�1) (27)

To further proceed, we need to make a mild assumption that W2(µT , ⌫1)  1
M1/2+↵W2(⇤T ,�1). We wish to make some

comments on the additional assumption. This assumption is reasonable. With this assumption, we can make the claim that the
improvement of SVRG-POS over SVRG-LD is more significant than that of SAGA-POS over SAGA-LD, which is actually
verified by our experiments, implying the reasonability of our assumption. Moreover, this assumption does not conflict
with our result, because W2(µT , ⌫1)  1

M1/(2+↵)W2(⇤T ,�1)  1p
M
W2(⇤T ,�1). Furthermore, this assumption can be

supported from a theoretical perspective. Consider the continuous function log
M

⇣
W2(⇥1,⇥2)M/

P
M

i=1 W2(✓
(i)
1 ,✓(i)

2 )
⌘
�

1/2. In a bounded space considered in practice, the above function is bounded from below. Since in practice we cannot use
infinite particles, the required ↵ does exist within the positive minima for every M mentioned above. Although we do not
aim at giving an explicit expression for it, the existence is enough to explain the experiment results in our paper. Last, this
assumption is supported in the algorithm itself. Please notice the fact that SPOS can be viewed as the combination of SVGD
and SGLD. The SVGD part can constrain our algorithm to maintain some good properties that SGLD does not endow.

Proof of Theorem 1, Theorem 2 and Theorem 3 Applying the results for W2(⇤T ,�1) in Theorem 8, Theorem 9 and
Theorem 10, we can get the corresponding results for W2(µT , ⌫1) in the SAGA-POS, SVRG-POS and SVRG-POS+. Then
we can bound W2(µT , µ

⇤),which is what we desire, with the following fact

W2(µT , µ
⇤)  W2(µT , ⌫1) +W2(⌫1, µ

⇤) (28)

Note that from the proof of Theorem 3 and Remark 1 in (Zhang et al., 2020), we can get that

W2(⌫1, µ
⇤)  C1p

M
(29)

Apply the results in Theorem 8, Theorem 9 and Theorem 10 above, we can prove Theorem 1, Theorem 2 and Theorem 3.

E. Comparison between SPOS and its Variance-Reduction Counterpart

In (Zhang et al., 2020), the authors use the distance B̃T defined as B̃T , sup |EµT [f(✓)]� Eµ⇤ [f(✓)]|. When kfklip  1,
B̃T is equivalent to W1(µT , µ

⇤). According the proof in (Zhang et al., 2020), the authors did give a bound in terms of
W1(µT , µ

⇤). With the results in (Zhang et al., 2020), we can get the following theorem:

Theorem 12 (Fixed Stepsize) Under Assumption 1, there exit some positive constants (c1, c2, c3, c4, c5, c6) such that the
bound for W1(µT , µ

⇤) in the SPOS algorithm satisfies:

W1(µT , µ
⇤)  c1p

M(��1 � c2)
+ c3 exp

�
�2

�
�
�1

mF � 2LK � LF

�
Th

 
+ c6Md

3
2 �

�3(c4�
2
B

�1 + c5h)
1
2T

1
2h

1
2 .
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Firstly, we should notice that the third term c3Md
3
2 �

�3(c4�2
B

�1 + c5h)
1
2T

1
2h

1
2 on the right side increases with T and

M . However, the bound for SAGA-POS, SVRG-POS and SVRG-POS+ in our paper decrease with both T and M , which
means that the bound for SAGA-POS, SVRG-POS and SVRG-POS+ are tighter than the bound of SPOS. Furthermore, the
convergence of SPOS is characterized in W1(µT , µ

⇤). But the convergence of SAGA-POS, SVRG-POS and SVRG-POS+

are characterized by W2(µT , µ
⇤). Due to the well-known fact that W1(µT , µ

⇤)  W1(µT , µ
⇤), we can verify that SAGA-

POS, SVRG-POS and SVRG-POS+ can outperform SPOS in theory. Although the result for SPOS in (Zhang et al., 2020)
may be improved in the future, we believe that SAGA-POS, SVRG-POS and SVRG-POS+ still can perform better, which
has been verified in experiments in our paper.

F. More Experiments Results

We further examine the impact of the number of particles to the convergence rates of variance-reduced SGLD and SPOS. As
indicated by Theorems 1-3 (discussed in Remark 1 and 2), when the number of particles are large enough, the convergence
rates of SAGA-POS and SVRG-POS would both outperform their SGLD counterparts. In addition, the performance gap
would increase with increasing M , as indicated in Remark 4. We conduct experiments on the Australian dataset by varying
the particle numbers among {1, 8, 16, 32}. The results are plotted in Figure 5, which are roughly aligned with our theory.
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((a)) 1 particle

((b)) 8 particles

((c)) 16 particles

((d)) 32 particles
Figure 5. Testing accuracy and log-likelihood vs the number of data pass for SPOS with varying number of particles.


