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A. Notations

Table 1. Notations and definitions
fφ/gθ encoder/decoder of an autoencoder
h h = fφ ◦ gθ
φ/θ parameters of the encoder/decoder
D/H dimensionality of the data/latent space
D distribution of data samples denoted by x
H distribution of fφ (x) for x ∼ D
D̂ distribution of x̂ = gθ (fφ (x)) for x ∼ D
Ĥ distribution of ẑ = h (z) for z ∼ H
D̃ distribution of gθ (z) for z ∼ N (0, I)

H̃ distribution of h (z) for z ∼ N (0, I)

Lr
standard reconstruction loss of the autoen-
coder

Lφlr,N
latent reconstruction loss of PGA for z ∼
N (0, I), minimized w.r.t. φ

Lφlr,H
latent reconstruction loss of PGA for z ∼ H,
minimized w.r.t. φ

Lφnll
part of the negative log-likelihood loss of
LPGA, minimized w.r.t. φ

Lθnll
part of the negative log-likelihood loss of
LPGA, minimized w.r.t. θ

Lvr VAE reconstruction loss of VPGA
Lvkl VAE KL-divergence loss of VPGA
Lvae Lvae = Lvr + Lvkl, VAE loss of VPGA

B. Proofs
B.1. Theorem 1

Proof sketch. We first show that any different x’s generated
by gθ are mapped to different z’s by fφ. Let x1 = gθ (z1),
x2 = gθ (z2), and x1 6= x2. Since fφ has sufficient capacity
and Eq. (2) is minimized, we have fφ (x1) = E [z1|x1] and
fφ (x2) = E [z2|x2]. By assumption, fφ (x1) ∈ Z (x1) and
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fφ (x2) ∈ Z (x2). Therefore, since Z (x1) ∩ Z (x2) = ∅,
we have fφ (x1) 6= fφ (x2).

For z ∼ N (0, I), denote the distributions of gθ (z) and
h (z), respectively, by D̃ and H̃. We then consider the case
where D̃ and D̂ are discrete distributions. If gθ (z) � D̂,
then there exists an x that is generated by gθ, such that
pH̃ (fφ (x)) = pD̃ (x) 6= pD̂ (x) = pĤ (fφ (x)), contra-
dicting that h (z) ∼ Ĥ. The result still holds when D̃ and
D̂ approach continuous distributions, in which case D̃ = D̂
almost everywhere.

B.2. Proposition 1

Proof. Let J (z) = ∂h (z) /∂z, P =
[
δ1 δ2 · · · δH

]
,

and P̂ = J (z)P =
[
δ̂1 δ̂2 · · · δ̂H

]
, where ∆ =

{δ1, δ2, . . . , δH} is an orthogonal set ofH-dimensional vec-
tors. Since det

(
P̂
)

= det (J (z)) det (P), we have

log |det (J (z))| = log
∣∣∣det

(
P̂
)∣∣∣− log |det (P)| . (1)

By the geometric interpretation of determinants, the volume
of the parallelotope spanned by ∆ is

Vol (∆) = |det (P)| =
∏
i∈[H]

‖δi‖2 , (2)

where [H] = {1, 2, . . . ,H}. While ∆̂ =
{
δ̂1, δ̂2, . . . , δ̂H

}
is not necessarily an orthogonal set, an upper bound on
Vol

(
∆̂
)

can be derived in a similar fashion. Let ∆̂k ={
δ̂1, δ̂2, . . . , δ̂k

}
, and ak be the included angle between δ̂k

and the plane spanned by ∆̂k−1. We have

Vol
(

∆̂2

)
=
wwwδ̂1www

2

wwwδ̂2www
2

sin a2,

and Vol
(

∆̂k

)
= Vol

(
∆̂k−1

)wwwδ̂kwww
2

sin ak.
(3)

Given fixed
wwwδ̂kwww

2
,∀k ∈ [H], Vol

(
∆̂2

)
is maximized

when a2 = π/2, i.e., δ̂1 and δ̂2 are orthogonal; and
Vol

(
∆̂k

)
is maximized when Vol

(
∆̂k−1

)
is maximized

and ak = π/2. By induction on k, we can conclude that
Vol

(
∆̂
)

is maximized when ∆̂ = ∆̂H is an orthogonal set,
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and therefore

Vol
(

∆̂
)

=
∣∣∣det

(
P̂
)∣∣∣ ≤ ∏

i∈[H]

wwwδ̂iwww
2
. (4)

Combining Eq. (1) with Eqs. (2) and (4), we obtain

log |det (J (z))| ≤
∑
i∈[H]

(
log
wwwδ̂iwww

2
− log ‖δi‖2

)
. (5)

We proceed by randomizing ∆. Let ∆k = {δ1, δ2, . . . , δk}.
We inductively construct an orthogonal set, ∆ = ∆H . In
step 1, δ1 is sampled from S (ε), a uniform distribution on
a (H−1)-sphere of radius ε, S (ε), centered at the origin
of an H-dimensional space. In step k, δk is sampled from
S (ε; ∆k−1), a uniform distribution on an (H−k)-sphere,
S (ε; ∆k−1), in the orthogonal complement of the space
spanned by ∆k−1. Step k is repeated until H mutually
orthogonal vectors are obtained.

Obviously, when k = H − 1, for all j > k and
j ≤ H , p (δj |∆k) = p (δj |∆H−1) = S (δj |ε; ∆H−1) =
S (δj |ε; ∆k). When 1 ≤ k < H , assuming for all j > k
and j ≤ H , p (δj |∆k) = S (δj |ε; ∆k), we get

p (δj |∆k−1) =

∫
S(ε;∆k−1∪{δj})

p (δk|∆k−1) p (δj |∆k) dδk,

(6)
where S (ε; ∆k−1 ∪ {δj}) is in the orthogonal comple-
ment of the space spanned by ∆k−1 ∪ {δj}. Since
p (δk|∆k−1) is a constant on S (δk|ε; ∆k−1), and
S (ε; ∆k−1 ∪ {δj}) ⊂ S (ε; ∆k−1), p (δk|∆k−1) is also
a constant on S (ε; ∆k−1 ∪ {δj}). In addition, δk ∈
S (ε; ∆k−1 ∪ {δj}) implies that δj ∈ S (ε; ∆k), on which
p (δj |∆k) is also a constant. Then it follows from Eq. (6)
that, for all δj ∈ S (ε; ∆k−1), p (δj |∆k−1) is a constant.
Therefore, for all j > k − 1 and j ≤ H , p (δj |∆k−1) =
S (δj |ε; ∆k−1). By backward induction on k, we conclude
that the marginal probability density of δk, for all k ∈ [H],
is p (δk) = S (δk|ε).

Since Eq. (5) holds for any randomly (as defined above)
sampled ∆, we have

log |det (J (z))| ≤ E∆

∑
i∈[H]

(
log
wwwδ̂iwww

2
− log ‖δi‖2

)
= HEδ∼S(ε)

[
log
wwwδ̂www

2
− log ‖δ‖2

]
.

(7)

If h is a multiple of the identity function around z, then
J (z) = CI, where C ∈ R is a constant. In this case, ∆̂
becomes an orthogonal set as ∆, and therefore the inequal-
ities in Eqs. (4), (5), and (7) become tight. Furthermore,
it is straightforward to extend the above result to the case

δ ∼ N
(
0, ε2I

)
, considering thatN

(
0, ε2I

)
is a mixture of

S (ε) with different ε’s.

The Taylor expansion of h around z gives

h (z + δ) = h (z) + J (z) δ +O
(
δ2
)
. (8)

Therefore, for δ → 0 or ε → 0, we have δ̂ = J (z) δ =
h (z + δ)− h (z). The result follows.

C. More Results on CelebA
In Fig. 1, we compare the generated samples and FID scores
of LPGA and VAE on 140x140 crops. In this experiment,
we use the full DCGAN architecture (i.e., 128 filters for the
first convolutional layer) for both LPGA and VAE. Other
hyperparameter settings remain the same as for 108x108
crops. In Fig. 2, we show latent space interpolations of
CelebA samples.

(a) LPGA, FID = 21.35

(b) VAE, FID = 54.25

Figure 1. Random CelebA (140x140 crops) samples generated by
LPGA and VAE.
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(a) Interpolations generated by LPGA.

(b) Interpolations generated by VPGA.

(c) Interpolations generated by VAE.

Figure 2. Latent space interpolations on CelebA.


