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A. Proofs
A.1. THEOREM 9

Proof. (Theorem 9) The proof is done by reducing the #P-
complete problem #2SAT over a 2SAT formula Ag to an
MI problem on a 2-Clause SMT(LR.A) formula A.

By the Boolean-to-real reduction from (Zeng & Van den
Broeck, 2019), there exists an SMT(LR.A) formula A over
real variables only such that MI(Ag) = MI(A). The for-
mula A can be obtained in the following way. Any Boolean
literal B or =B in propositional formula A is substituted
by LR A literals Zg > 0 and Zp < 0 respectively where
the real variable Zp is an auxiliary real variable with bound-
ing box (Zg > —1) A (Zg < 1). Denote the formula after
replacement by A’. Then we have formula A as follows.

A=A'A A

Bevars(Ag)

(Zp>-1)A(Zp <1)

For each clause in formula A, since it contains at most
two Boolean variables before substitution, it also contains
at most two real variables now. Therefore formula A is
a 2-Clause SMT(LR.A) formula over real variables only.
Moreover, the reduction guarantees that MI(A) = MI(Ag)
where MI(Ag) is the number of satisfying assignments to
Ap by the definition of WMI. Thus, computing MI of a
2-Clause SMT(LR.A) formula over real variables is #P-
hard. O

A.2. THEOREM 12

Proof. (Theorem 12) When the weight function family
Q=M by the WMI-to-MI reduction process in Zeng &
Van den Broeck (2019), any WMI problem in treeWMI(€2)
can be reduced to an MI problem in class treeMI.

We prove the other way by contradiction. Suppose that there
exists a WMI problem v = WMI(A,w) € treeWMI(€2)
with a per-literal weight function w, ¢ QM uch that
p(v) € treeMI. Since the per-literal weight function
wy ¢ Q™' from the definition of 25!, it holds that £ is a
bivariate literal defined in a clause I" which is a conjunction
of more than one distinct literals, i.e., ' = Z\/\/f:1 bik>1
with ¢ # ¢;,Vi = 1,--- , k. During the reduction, a clause
I'=¢(= Aj'0; is conjoined to the formula A to encode
the weight function w, with at least one auxiliary variable
in formula 6. Then there are at least three distinct variables
in clause I" since given the form of clause I, clause I can
not be further simplified by resolution. This causes a loop
in the primal graph of the reduced MI problem p(v), which
contradicts the assumption that p(v) € treeMI. Therefore,
if Yo € treeWMI(R2), p(v) € treeMI, then Q@ C QM

O

A.3. PROPOSITION 16

Proof. (Proposition 16) Recall that given a WMI problem
with SMT formula A over real variables only, the WMI
can be computed as follows by the definition of WMI in
Equation 1.

WMI(A, w) = / we(x)FE dg

TEA pe LITS(A)

Notice that this 1is equivalent to integrating
on domain RIX| over the integrand f(z) =
[ = Al Treprrs(ay we(@)®ED Next, we  show
how to factorize over the integrand f(x) based on the
factorization on formula A in Equation 2. First, for the
indicator function, we have that
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Moreover, it holds that
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Together they complete the proof that the integrand f(x)
here equals to the unnormalized joint distribution p(x) de-
fined in Equation 4 and therefore the partition function of
distribution p(x) equals to the WMI of formula A. O

A.4. PROPOSITION 18

Proof. (Proposition 18) This follows by induction on the
message-passing scheme. Consider the base case of the
messages sent by leaf nodes. When the leaf node is a vari-
able node X;, by definition the messages it sends to a factor
node fsismy, ,, (X;) = 1; when the leaf node is a factor
node f;, by definition the messages it sends to the variable
node X; is my ,  (X;) = fi(X;). By the definition of
factor functions in Equation 3, the function f; is a univari-
ate piecewise function in variable X; with pieces defined
by the logical constraints in formula A; as in Equation 2.
Then it holds that messages sent from the leaf nodes in the
message-passing scheme are piecewise function.

Further, by the recursive formulation of messages in Propo-
sition 17, since the piecewise functions are close under prod-
uct, messages sent from variable nodes to factor nodes are
again univariate piecewise functions; for messages m,__, v,
sent from factor nodes fs to variable nodes X;, the do-
main of variable X; is divided into different pieces by con-
straints in formula Ag that correspond to different integra-
tion bounds and thus the resulting messages from integration
is again univariate piecewise integration. This concludes the
proof. O
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A.5. PROPOSITION 19

Proof. (Proposition 19) Given the tree structure of the factor
graph as well as the factorization of WMI as in Equation 4,
the factors functions can be partitioned into groups, with
each group associated with each factor nodes fs that is a
neighbour of the variable node X;. Then the unnormalized
joint distribution can be rewritten as follows.

pi@) = ]

fs€neigh(X;)

Fs(zi,xs)

where xs denotes the set of all variables in the subtree
connected to the variable X; via the factor node fgs, and
Fs(z;,xs) denotes the product of all the factors in the
group associated with factor fs. Then we have that

pz)= I

fs€Eneigh(X;)

= H )/Fs(ﬂii,ws) dxs = /P(w) dz\z;

fs€Eneigh(X;

where the last equality is obtained by interchanging the in-
tegration and product. Thus it holds that p(z;) obtained
from the product of messages to variable node X is the
unnormalized marginal. The fact that the partition func-
tion of marginal p(z;) is the WMI of formula A follows
Proposition 16. O

A.6. PROPOSITION 21

Proof. (Proposition 21) W.L.o.g, assume that both the cho-
sen root node and leaf nodes are variable nodes. Recall
that the tree-height h is the longest path from root node to
any leaf node. Let n ¢ be the number of factor nodes in the
longest path in the factor graph from root node to a leaf node
that defines the tree-height h. Then it holds that A = 2ny
since the factor graph is a bipartite graph.

For another, consider a directed graph G whose nodes are
the directed factor nodes in F and whose directed edges
go from one factor node to factor nodes if they are visited
right after in the MP-WMI. By definition, we have that
A = 2c¢- M where M is the adjacency matrix of G, and c is
the constant that bounds the size of sub-formulas associated
to factors.

For adjacency matrix M, since the power matrix M* has
non-zero entries only when there exists at least one path in
graph G with length k, the order of matrix M is the length
of longest path in graph G plus one which is two times the
number of number of factor nodes in the longest path in the
factor graph, i.e., 2ns. Therefore the adjacency matrix M
is a nilpotent matrix with order being at most 2ny, i.e., the
tree-height of the factor graph, which is at most the diameter
of the factor graph. So is matrix A. O

A.7. PROPOSITION 22

Proof. (Proposition 22) The statement () holds since the
message My _, ¢ is the product of messages hence intersec-
tion of corresponding pieces by definition in Proposition 17.

For the statement (i4), the end points of the message pieces
in message m X, are obtained by the solving linear
equations with respect to variable x; as described in Zeng
& Van den Broeck (2019) where they define them as critical
points. For these equations, each side can be either an
endpoint in message my. ., ., Or an LRA atom from a
literal in sub-formula A;;. Then there are at most 2mc
equations with one side as an endpoint and the other size
as an LR.A atom, and at most ¢? equations with both sides
as LRA atoms. Thus the total number of critical points
from solving the equations is 2mc + ¢2, which indicates
that the number of pieces, whose domains are bounded
intervals with critical points being their endpoints, is at
most 2mc + 2. O

A.8. PROPOSITION 23

Proof. (Proposition 23) The proof is done by mathematical
induction at steps in MP-WMI. Given a directed factor node
fs € F, denote the set S(f) := {fs | Ay, 5., # 0}.

For step 0, the statement holds by the definition of v(%),
Suppose that for step ¢, each entry in vector v(*~1) denoted
by fs bounds the number of pieces in the message my, ,
received by factor f, from some variable node X; at step
t — 1. For step t, it holds for v(*) by its definition that

(v®)y, = ZfS/ES(fS)(Afmfs/ (”(tfl))fg + ).

Moreover, for a factor node f; € F, there exists an vari-
able X; such that nodes in S(fs) are connected to f
by the variable node X; in the factor graph. Since the
entry (v(tfl)) 7., bounds the number of message pieces
in m X,—fo for some variable X;, the number of mes-
sage pieces in each message m Foo X, is bounded by
2¢- (v, + ¢? by Proposition 22. It further indicates
that the number of message pieces inm -, 7, is bounded by
Yofes( (2 (D), +c2) = (v®)y, since the non-
zero entries in A are defined as 2¢. Thus the statement holds
for step ¢, which finishes the induction and the proof. [

A.9. PROPOSITION 24

Proof. (Proposition 24) For brevity, we denote the L1-norm
by || - |- Denote the cardinality of set F to be s. From the
definition of matrix A, it holds that || A ||< 2¢s. Then for
all ¢, it holds that

1o (<[l Av®D e sgn(AvY) [|< 2es || oY || 4%
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From the recurrence above, it can be obtained that

d

1> 0® ||<Z [
t=0
d t—1
[(2¢s)! || 0@ | —|—Z (2¢s)cs] < 2(2cs)?4T2
t=0 =0

Moreover, since the cardinality s < 2n, we have that
I g o s of O((4nc)>™+2), O



