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Abstract

We study the exploration problem with approx-
imate linear action-value functions in episodic
reinforcement learning under the notion of low
inherent Bellman error, a condition normally em-
ployed to show convergence of approximate value
iteration. First we relate this condition to other
common frameworks and show that it is strictly
more general than the low rank (or linear) MDP
assumption of prior work. Second we provide an
algorithm with a high probability regret bound
rOp
řH
t“1 dt

?
K `

řH
t“1

?
dtIKq where H is the

horizon, K is the number of episodes, I is the
value if the inherent Bellman error and dt is the
feature dimension at timestep t. In addition, we
show that the result is unimprovable beyond con-
stants and logs by showing a matching lower
bound. This has two important consequences:
1) it shows that exploration is possible using only
batch assumptions with an algorithm that achieves
the optimal statistical rate for the setting we con-
sider, which is more general than prior work on
low-rank MDPs 2) the lack of closedness (mea-
sured by the inherent Bellman error) is only am-
plified by

?
dt despite working in the online set-

ting. Finally, the algorithm reduces to the cele-
brated LINUCB when H “ 1 but with a differ-
ent choice of the exploration parameter that al-
lows handling misspecified contextual linear ban-
dits. While computational tractability questions
remain open for the MDP setting, this enriches
the class of MDPs with a linear representation
for the action-value function where statistically
efficient reinforcement learning is possible.
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1. Introduction
Improving the sample efficiency of reinforcement learning
(RL) algorithms through effective exploration-exploitation
strategies is a major focus of the recent theoretical litera-
ture. Strong results are available with a generative model
(Azar et al., 2012; Sidford et al., 2018; Agarwal et al., 2019;
Zanette et al., 2019a) as well as in the online setting when
the learning performance is measured by the cumulative
regret, i.e., the difference between the performance of the
optimal policy and the reward accumulated by the learner.
For finite horizon problems, UCBVI (Azar et al., 2017)
achieves worst-case optimal regret, while algorithms with
domain adaptive bounds have been introduced by (Zanette
& Brunskill, 2019) and (Simchowitz & Jamieson, 2019).
Randomized (Russo, 2019) and model-free (Jin et al., 2018)
variants have also been proposed, together with methods
with other beneficial properties (Dann et al., 2019; Efroni
et al., 2019). Similar results are also available in the infinite
horizon setting (Jaksch et al., 2010; Maillard et al., 2014;
Fruit et al., 2018; Zhang & Ji, 2019; Tossou et al., 2019).

Approximate dynamic programming. While the results
for tabular settings are encouraging, function approximation
is normally required to tackle problems where the state or
action spaces may be intractably large. In this case, even
when the Bellman operator can be applied exactly, simple
dynamic programming algorithms coupled with linear ar-
chitectures may diverge (Baird, 1995; Tsitsiklis & Van Roy,
1996), thus suggesting that effective approximate RL may
not be feasible in the general case.

Convergence guarantees (Lagoudakis & Parr, 2003) and
finite-sample analyses (Lazaric et al., 2012) are available
for the least-squares policy improvement (LSPI) algorithm
under the assumption that the value function of all poli-
cies can be well approximated within the chosen function
class (LSPI conditions, for short). For concreteness, let ε
be the worst-case misspecification error of a d-dimensional
linear function approximator over the policy action-value
functions (i.e., for any policy π, there exists an approxima-
tion pQπ such that } pQπ ´ Qπ} ď ε). Recently, (Du et al.,
2019) showed that when using highly misspecified approx-
imators ε Ç 1{

?
d the worst-case sample complexity may

be exponential in d. At the same time, when ε Æ 1{
?
d,

(Van Roy & Dong, 2019) and (Lattimore & Szepesvari,
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2020) showed algorithms with
?
d loss times the misspecifi-

cation level ε. In particular, (Lattimore & Szepesvari, 2020)
showed that LSPI attains polynomial sample complexity
using G-optimal design with a «

?
dε additive error using

a generative model.

Similarly, for the least-squares value iteration algorithm
(LSVI) convergence guarantees (Munos, 2005) and finite
sample analysis (Munos & Szepesvári, 2008) are also avail-
able under the assumption of low inherent Bellman error
(IBE), (LSVI conditions, for short). Given a function classF ,
the IBE measures the error in approximating the image of
any function in F through the Bellman operator. Whenever
the IBE is not small, it is easy to show that approximation
errors may be amplified by a constant factor at each ap-
plication of the Bellman operator, leading to divergence.
Although methods exist to limit this amplification of er-
rors (Zanette et al., 2019b; Kolter, 2011), the question of
when sample-efficient value-based RL is possible remains
open even in the absence of misspecification.

In this paper we focus on the problem of exploration-
exploitation using LSVI approaches in settings with low
IBE. We make several contributions.

Exploration with low inherent Bellman error. We first
show that the notion of inherent Bellman error is distinct
from the LSPI condition, and more general than the low-rank
assumption on the dynamics used in a series of recent works
on exploration with linear function approximation (Yang &
Wang, 2020; Jin et al., 2020; Zanette et al., 2020). For a
finite horizon MDP, when the LSVI conditions are satisfied
either exactly or approximately (i.e., the inherent Bellman
error is either zero or small) we propose Efficient Linear
Exploration of Actions by Nonlinear Optimization of the
Residuals (ELEANOR), an optimistic generalization of the
popular LSVI algorithm. We analyze ELEANOR and derive
the first regret bound for this setting and show it is unim-
provable in terms of statistical rates, though we leave its
computational tractability open.

Our analysis shows that the performance of ELEANOR de-
grades gracefully in the case of positive inherent Bellman
error. Interestingly, we recover a similar

?
d amplification

of the misspecification error (the IBE in our case) as for
LSPI (Lattimore & Szepesvari, 2020) , despite the fact that
we consider the more challenging online setting as opposed
to the generative model by Lattimore & Szepesvari (2020).

Low-rank MDPs and contextual misspecified linear
bandits. Our result applies to low-rank MDPs and improves
upon the best-known regret bound for that setting (Jin et al.,
2020) by a

?
d factor. When applied to contextual linear

bandits, our algorithm reduces to the celebrated LINUCB
(or OFUL) algorithm of (Abbasi-Yadkori et al., 2011). In ad-
dition, however, it can handle contextual misspecified linear

bandits while retaining computationally tractability, making
this the first algorithm and analysis for this setting, although
we require knowledge of the misspecification level. A sim-
ilar result was recently derived for a different algorithm
based on G-experimental design (Lattimore & Szepesvari,
2020) for the more restrictive setting of non-contextual (i.e.,
with features not depending on the state and fixed action
space) misspecified linear bandits; however, their approach
is agnostic to the misspecification level.

Core ideas. LSVI-based algorithms have been successfully
analyzed for low-rank MDPs (Jin et al., 2020) by adding
exploration bonuses at every experienced state, thereby en-
suring optimism by backward induction. In contrast, our
more general setting demands that the value function stays
linear, ruling out approaches based on exploration bonuses.
In fact, if the value function used for backup is not linear,
low inherent Bellman error does not provide any guarantee
about how errors may propagate, which can be exponential
in the general case (Zanette et al., 2019b).

Our proposal extends the LSVI algorithm to return an opti-
mistic solution at the initial state through global optimiza-
tion over the value function parameters, while still enforcing
linearity of the representation. This has two advantages: 1)
(handling of the bias) it enables us to use the concept of
inherent Bellman error, requiring that the Bellman operator
be applied to linear action-value functions and avoiding a?
d amplification of the value function error at every step

(Zanette et al., 2019b); 2) (handling of the variance) it keeps
the complexity of the action-value functional space small
(linear), enabling the use of confidence intervals that are
as tight as those used in the bandit literature, yielding the
optimal finite-sample statistical rate.

2. Notation
We consider an undiscounted finite-horizon MDP (Puter-
man, 1994) M “ pS,A, p, r,Hq with state space S , action

spaceA, and horizon lengthH P N`. For every t P rHs def“
t1, . . . ,Hu, every state-action pair is characterized by an
expected reward rtps, aq with an associated reward random
variable Rtps, aq and a transition kernel ptp¨ | s, aq over
next state. We assume S to be a measurable, possibly in-
finite, space and A can be any (compact) time and state
dependent set (we omit this dependency for brevity). For
any t P rHs and ps, aq P S ˆA, the state-action value func-
tion of a non-stationary policy π “ pπ1, . . . , πHq is defined
as Qπt ps, aq “ rtps, aq ` E

”

řH
l“t`1 rlpsl, πlpslqq | s, a

ı

and the value function is V πt psq “ Qπt ps, πtpsqq. Since
the horizon is finite, under some regularity conditions,
e.g., (Shreve & Bertsekas, 1978), there always exists an
optimal policy π‹ whose value and action-value functions
are defined as V ‹t psq

def
“ V π

‹

t psq “ supπ V
π
t psq and
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Q‹t ps, aq
def
“ Qπ

‹

t ps, aq “ supπ Q
π
t ps, aq.

The value iteration (or backward induction) algorithm (Sut-
ton & Barto, 2018) computes π‹ and V ‹ as follows: it starts
from V ‹H`1psq “ 0 for all s P S and it computes Q‹t using
the Bellman equation in each state-action pair recursively
from t “ H down to 1 and it returns the optimal policy
π‹t psq “ arg maxaQ

‹
t ps, aq. In particular, the Bellman

operator Tt applied to Qt`1 is defined as

TtpQt`1qps, aq “ rtps, aq ` Es1„ptps,aqmax
a1

Qt`1ps
1, a1q.

3. Linear Value Function Frameworks
In this section we introduce basic notation and assumptions
for linear function approximation, we define the concept of
inherent Bellman error, and we investigate connections with
alternative settings.

Whenever the state space S is too large or continuous, value
functions cannot be represented by enumerating their val-
ues at each state or state-action pair. A common approach
is to define a feature map φt : S ˆ A Ñ Rdt , possibly
different at any t P rHs, embedding each state-action pair
ps, aq into a dt-dimensional vector φtps, aq. The action-
value functions are then represented as a linear combination
between the features φt and a vector parameter θt P Rdt ,
such that Qtps, aq “ φtps, aq

Jθt. This effectively reduces
the complexity of the problem from |S ˆA| down to dt.

We define the space of parameters θ inducing uniformly
bounded action-value functions

Bt
def
“ tθt P Rdt | |φtps, aqJθt| ď D,@ps, aqu. (1)

We will later require the constant D P R to be chosen to sat-
isfy Asm. 1. For instance,D “ 1 requires the value function
to be in r´1,`1s and complies with the assumption.

Each parameter θ identifies an (action) value function

Qtpθtqps, aq “ φtps, aq
Jθt, Vtpθtq “ max

a
φtps, aq

Jθt

and the associated functional spaces

Qt
def
“ tQtpθtq | θt P Btu, Vt

def
“ tVtpθtq | θt P Btu. (2)

Inherent Bellman error. The value iteration algorithm
can be used to compute an optimal policy (Sutton & Barto,
2018) and it smoothly extends to linear approximators. The
procedure repeatedly applies the Bellman operator Tt to an
action-value function1 Qt P Qt and projects the computed
point TtQt back to Qt`1 using a (e.g., least-squares) pro-
jection operator Πt. The projection error is precisely the
inherent Bellman error, which can be thought of as how
close the space Qt is w.r.t. the Bellman operator Tt.

1One can reason with either the value function V or the action-
value function Q.

Definition 1. The inherent Bellman error2 of an MDP with
a linear feature representation φ is denoted with I and is
the maximum over the timesteps t P rHs of

sup
θt`1PBt`1

inf
θtPBt

sup
ps,aqPSˆA

|φtps, aq
Jθt

´pTtQt`1pθt`1qq ps, aq|.

Our definition of inherent Bellman error is natural in the
sense that it is defined with respect to the linear action-
value function class without additional clipping if the value
function exceeds a prescribed threshold and is not enlarged
to incorporate exploration bonuses (see e.g., (Wang et al.,
2019)). Alternative definitions may enlarge the underly-
ing functional space in an artificial, non linear, possibly
algorithm-dependent way, and result in a much more restric-
tive definition of inherent Bellman error. We notice that
while our definition is less restrictive, it rules out traditional
forms of exploration based on adding exploration bonuses,
making it harder to design effective exploration strategies.

Properties. We discuss the properties of MDPs with I “ 0.
An immediate consequence of def. 1 is that when I “ 0
the reward function is linear, and so is the transition kernel
when applied to elements of Vt`1.

Proposition 2 (Linearity of Rewards and Restricted Lin-
earity of Transitions). Given an MDP and a linear feature
representation with Bt “ Rdt and inherent Bellman error
I “ 0 we have that the rewards are linear in the sense that:

inf
θRt PBt

sup
ps,aqPSˆA

|rtps, aq ´ φtps, aq
JθRt | “ 0

and the transition have a linear effect on members of Vt`1

sup
θt`1PBt`1

inf
θPt PBt

sup
ps,aqPSˆA

|Es1„ptps,aq Vt`1pθt`1qps
1q

´φtps, aq
JθPt | “ 0.

If I “ 0, the application of the Bellman operator Tt to
members of Qt`1 always produces a member of Qt, i.e.,
TtQt`1 Ď Qt. From here, we can immediately see that
the zero inherent Bellman error assumption is more general
than low-rank MDPs (Yang & Wang, 2020; Jin et al., 2020;
Zanette et al., 2020). Indeed, in low-rank MDPs the Bell-
man operator returns a function in the range of the features
(i.e., in Qt) regardless of value function Qt`1, while prob-
lems with zero inherent Bellman error are only required to
map elements of Qt`1 to Qt, and are thus more general
approximators.

Proposition 3 (Low Rank Ď LSVI Conditions). Let Bt “
Rdt , and consider an MDP with associated linear feature

2A different definition, more suitable for generative models
with stationary policies using a p-norm induced by the sampling
distribution is provided by (Munos & Szepesvári, 2008).
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representation φ. If the MDP is a low rank (or linear) MDP,
i.e., for a parameter θRt P Rdt and a measure function3

ψtp¨q:

@ps, a, t, s1q, rtps, aq “ φtps, aq
JθRt

ptps
1 | s, aq “ φtps, aq

Jψtps
1q

(16)

then I “ 0. However, the converse does not hold, i.e., there
exists an MDP and a linear feature extractor φ with I “ 0
which is not a linear MDP in the sense of eq. (16).

Another assumption often made on the approximation space
is that the action-value functions for all policies do belong
to Qt (LSPI condition), a condition normally employed to
show convergence of LSPI (Lagoudakis & Parr, 2003). This
assumption is also strictly less restrictive than low-rank (see
also (Jin et al., 2020) for a claim in one direction).

Proposition 4 (Low Rank Ď LSPI Conditions). If a given
MDP is low rank in the sense of eq. (16) then the value
function of all policies admit a linear parameterization:

@π, @t P rHs, Dθπt such that Qπt ps, aq “ φtps, aq
Jθπt .

However, there exists an MPD and a linear approximator
with feature extractor φ which satisfies the above display
but there exists no ψt such that eq. (16) holds.

One may wonder what is the relation between MDPs with
no inherent Bellman error and MDPs where all action-value
function for all policies are linear, i.e., the LSVI and LSPI
conditions. These are two very distinct assumptions: the
former deals with policies that are optimal with respect to
a parameter, while the latter deals with arbitrary policies.
Conversely, the latter deals with the Q values that actually
corresponds to Q values of policies, while the former mea-
sures the error with respect to any function in the class.

Proposition 5 (LSVI Conditions ‰ LSPI Conditions).
There exists an MDP and a linear representation with fea-
ture extractor φ with I “ 0 and yet the policies are not
linearly parameterizable in the sense that:

Dπ, Dt P rHs, Eθπt P Rdt s.t. Qπt “ φtps, aq
Jθt.

Vice-versa, there exists an MDP and a feature representation
such that all action-value functions of all policies admit a
linear parameterization:

@π,@t P rHs, Dθπt that satisfies Qπt ps, aq “ φtps, aq
Jθπt

and yet the inherent Bellman is non-zero: I ą 0.

The final connection we make is with settings with low
Bellman rank, see (Jiang et al., 2017). It is possible to show

3a positive function such that }Ψt}TV “ 1

that if the LSVI conditions are satisfied, the Bellman rank
is at most d, where d is the dimensionality of the features.
However, no statistically efficient algorithm exists for this
setting, because OLIVE from (Jiang et al., 2017) has an
explicit dependence on the size of the action space, which
can be very large or infinite in the setting we consider here.

4. Algorithm
We consider the standard online learning protocol in finite-
horizon problems, where at each episode k, the learner
executes a policy πk, records the samples in the trajectory,
updates the policy and reiterates over the next episode. We
first recall the standard LSVI. At the beginning of episode
k, consider timestep t and assume the next-step parameter
is fixed and equal to θt`1. The objective function of the
regularized least-square is

k´1
ÿ

i“1

`

φJtiθ ´ rti ´ Vt`1pθt`1qpst`1,iq
˘2
` λ}θ}22 (3)

where tφtiui“1,...,k´1 are the features observed at timestep
t in state sti and rti are the corresponding rewards. For any
λ ą 0 the prior display has a closed-form solution

pθt “ Σ´1
tk

k´1
ÿ

i“1

φti

”

rti ` Vt`1pθt`1qpst`1,iq

ı

(4)

with Σtk
def
“

řk´1
i“1 φtiφ

J
ti` λI as the empirical covariance.

We introduce an optimistic variant of LSVI, where the opti-
mistic parameters are chosen by solving a global optimiza-
tion problem across the whole horizon H . At each episode,
ELEANOR (in Alg. 1) solves the following problem.

Definition 2 (Planning Optimization Program).

max
pξ1,...,ξHq

ppθ1,...,pθHq

pθ1,...,θHq

max
a

φ1ps1k, aq
Jθ1 subject to

pθt “ Σ´1
tk

k´1
ÿ

i“1

φJti
`

rti ` Vt`1pθt`1qpst`1,iq
˘

θt “ pθt ` ξt; }ξt}Σtk
ď
?
αtk; θt P Bt

As we will show in the technical analysis, a feasible solution
pθ‹1, . . . , θ

‹
Hq, corresponding to the best approximator (in

eq. (9)) always exists and so the program is well posed.

The least-square solution pθt is used as a constraint and
perturbed by adding a vector ξt as optimization variable,4

4We add the subscript k later to indicate the actual variable
chosen by the optimization procedure in episode k.
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subject to

}ξt}Σtk
ď
?
αtk :“

a

βtk
loomoon

noise

`
?
λRt

loomoon

regularization

`
?
kI,

loomoon

misspec.

(5)

where αtk is designed to account for the noise, misspecifica-
tion, and regularization bias. The actual bound is a function
of the allowable radius R ď

?
dt for the parameter (as in

assumption 1) and the noise parameter
?
βtk “ rOp

?
dtq

stems from self-normalizing concentration inequalities as
described in the technical analysis later, while I is the in-
herent Bellman error. The resulting parameter θt “ pθt ` ξt
must satisfy the constraint θt P Bt. This is equivalent to
clipping the value function to avoid out-of-range values,
with the difference that such clipping occurs directly in
the parameter space as opposed to state by state, and thus
preserves linearity.

We emphasize that the optimization over the ξt’s is global,
in stark contrast to the tabular setting and even the setting
of linear MDPs considered by (Yang & Wang, 2020; Jin
et al., 2020), where any perturbation (clipping, exploration
bonus, etc) can be done state by state. For example, (Jin
et al., 2020) define Qtps, aq

redefined
“ mint1, φtps, aq

Jθt `
BONUSu where the bonus is the result of maximizing ξt
state by state. This trick works in the low-rank setting of
(Jin et al., 2020), since any non-linear component is filtered
out by the low-rank projector. ELEANOR instead pushes
that maximization over the ξt’s “outside” of local states, i.e.,
it performs a global maximization to ensure linearity of the
value function representation, a mandatory condition in our
setting to avoid an exponential propagation of the errors.

When linear representations are enforced, however, the algo-
rithm cannot choose a value function everywhere optimistic
due to values in different states possibly being negatively
correlated. ELEANOR shoots for being optimistic at the
initial state, but in general the algorithm does not play op-
timistic actions in the encountered states at later timesteps.
Fortunately, this is enough to attain a rate-optimal efficiency.

Algorithm 1 ELEANOR

1: Input: failure probability δ, regularization λ “ 1, fea-
ture extractor φ, inherent Bellman residual I

2: Initialize Σt1 “ λI , for t “ 1, 2, . . . ,H .
3: for k “ 1, 2, . . . do
4: Receive starting state s1k

5: Set θH`1,k “ pθH`1,k “ ξH`1,k “ 0
6: Solve program of definition 2.
7: Execute πk : ps, tq ÞÑ arg maxa φtps, aq

Jθtk and
collect pstk, atk, rtkq for t P rHs.

8: end for

Although ELEANOR is proved to be near optimal, it is dif-
ficult to implement the algorithm efficiently. This should

not be seen as a fundamental barrier, however. The issue of
computational tractability arises even for tabular problems
(Bartlett & Tewari, 2009; Zhang & Ji, 2019), but of course
the problem is more pronounced when function approxi-
mators are implemented (Krishnamurthy et al., 2016; Jiang
et al., 2017; Sun et al., 2018; Osband & Van Roy, 2014),
and even for low-rank MDPs the first regret result has been
obtained at the expense of a practical algorithm (Yang &
Wang, 2020). Fortunately, later work has made progress on
the computational aspects for many of these settings (Tossou
et al., 2019; Fruit et al., 2018; Dann et al., 2018; Jin et al.,
2020). For now, we leave this to future work.

Relaxations. With an eye towards a possible relaxation,
we notice that the constraint θt P Bt can be expensive to
evaluate because it would require checking that every prod-
uct φtp¨, ¨qJθt is bounded. However, one can use simpler,
more restrictive geometries and assume Bt is a unit ball,
bypassing this problem. The algorithm regret bound for this
case is the same as that of theorem 1.

Finally, it is possible to avoid the regularization in the
least square objective of eq. (3) and relax the requirement
}θt}2 ď

?
dt as presented later in assumption 1. In fact, the

constraint on Bt suffices to avoid ill-conditioned solutions,
but then one would need to resort to pseudo-inverse compu-
tations (Auer, 2002), making the algorithm / analysis more
complicated.

5. Main Result: Regret Upper Bound
Assumption 1 (Main Assumption). We assume:

• |Qπt ps, aq| ď 1, @π,@ps, a, tq

• }φtps, aq}2 ď Lφ ď 1, @ps, a, tq

• For any Qt P Qt and any ps, a, tq P S ˆ A ˆ
rHs define the random variable5 X “ Rtps, aq `
maxa1 Qt`1ps

1, a1q. Then the noise η “ X ´ EX
is 1-subgaussian

• @t P rHs,@θt P Bt, it holds that }θt} ď Rt ď
?
dt,

and Bt is compact

The first condition is a condition on the scaling of the prob-
lem and the bound on the feature norm is without loss of
generality. The sub-Gaussianity is standard already for
linear bandits (Abbasi-Yadkori et al., 2011; Lattimore &
Szepesvári, 2020). In particular, if the reward are in r0, 1s
and D “ 1 in eq. (1), which gives V p¨q P r´1, 1s, then
this condition is automatically satisfied. Finally, the bound

5Here, Rtps, aq is the reward random variable, and s1
„

ptps, aq is the successor state random variable under the distri-
bution ptps, aq.
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on the parameter limits the bias introduced by regulariza-
tion which scales with the norm of the parameter, but a
psedoinverse computation would relax this requirement.

After rescaling, however, our assumptions are much weaker
the the usual setting that requires rtp¨, ¨q P r0, 1s and
V πt p¨q P r0, Hs since we allow the reward to be of the
same order as the value function after rescaling and even be
negative. This is a harder setting (Jiang & Agarwal, 2018;
Zanette & Brunskill, 2019).

Theorem 1 (Main Result). Under assumption 1 with λ “ 1,
with probability at least 1 ´ δ jointly over all episodes it
holds that the regret of ELEANOR is bounded by:

REGRETpT q “ rOp
H
ÿ

t“1

dt
?
K

loooomoooon

variance term

`

H
ÿ

t“1

a

dtIK
looooomooooon

approximation term

q.

There are no additional “lower order” terms in the above dis-
play, although the rOp¨q notation hides, as usual, logarithms
of dt, H,K, 1{δ.

Care must be taken when comparing across settings with
different scaling. In particular, rescaling the problem (i.e.,
the reward function) by H increases the sub-Gaussian norm
of the rewards and transitions, and the value of the inherent
Bellman error alike, yielding an extra H factor in the regret
bound. For example, in the setting that the rewards are
bounded in r0, 1s and the value function is in r0, Hs with

d1 “ ¨ ¨ ¨ “ dH
def
“ d and I “ 0 for simplicity, the above

regret bound reduces (with T “ KH) to rOpdH
3
2

?
T q.

Low-rank MDPs As explained in proposition 3, our result
applies to low-rank MDPs; surprisingly, this shows that at
least

?
d improvement is possible in the main rate compared

to the best-known rOppdHq3{2
?
T q of (Jin et al., 2020) up-

per bound despite ELEANOR is not specifically tailored to
handle low-rank MDPs. This is possible because ELEANOR
looks for optimistic solutions directly in the θ parameter
space instead of perturbing the value function by an ex-
ploration bonus as in (Jin et al., 2020). When the value
function is perturbed by a bonus, it grows in complexity as
it departs from the linear space; this requires an additional
union bound over a more complicated value function class
and ultimately loses a

?
d factor. Finally, the inherent Bell-

man error covers the notion of approximate low-rank MDPs
(Jin et al., 2020), and on the misspecification regret term we
save a

?
d factor as well thanks to a more careful projection

argument in lemma 8.

6. Contextual Misspecified Linear Bandits
Our framework reduces to bandits with linear approxima-
tors when H “ 1 (we drop the time subscript t in this case):

ELEANOR can handle contextual misspecified linear ban-
dits, where contextual refers to allowing the action set to
change as the feature extractor can be a function of the con-
text. It follows from the definition that the inherent Bellman
error is the reward function misspecification in this case.

Corollary 1 (LINUCB Regret on Contextual Misspecified
Linear Bandits). Consider a misspecified contextual linear
bandit problem with reward response

rps, aq “ φps, aqJθ‹ ` η ` fps, aq

with |φps, aqJθ‹| ď 1, }θ‹}2 ď
?
d, }φps, aq}2 ď 1,

misspecification |fps, aq| ď I and 1 sub-Gaussian noise
η. If ELEANOR is informed that H “ 1 then the algo-
rithm reduces to the LINUCB (aka OFUL) algorithm of
(Abbasi-Yadkori et al., 2011) with arm selection strategy
arg maxaPA,}ξ}Σk

ď
?
αk
φpsk, aq

J

´

pθk ` ξk

¯

but a differ-

ent confidence interval: }θk ´ pθk}Σk
“ }ξk}Σk

ď
?
αk.

The arm selection strategy admits the closed-form solution
arg maxaPA

”

φpsk, aq
J
pθk ` }φpsk, aq}Σ´1

k

?
αk

ı

and the
algorithm has a high probability regret bound

rO
´

d
?
K `

?
dIK

¯

.

The corollary above is immediate upon substituting H “ 1
in theorem 1 and verifying that our assumptions match the
setting described in the corollary, which is the standard lin-
ear bandit setting6 (Lattimore & Szepesvári, 2020) with
the addition of misspecification (few more details in ap-
pendix E).

Due to the equivalence to LINUCB the algorithm is com-
putationally tractable when applied to bandits; the key dif-
ference with vanilla LINUCB resides in the width of the
confidence intervals, parameter αk. In the absence of mis-
specification (I “ 0),

?
αk “

?
βk `

?
λR “ rOp

?
dq, as

in the work of (Abbasi-Yadkori et al., 2011). When mis-
specification is present, however, there is a correction factor?
kI in the definition of

?
αk, see equation eq. (5). In other

words, this is the factor one should add to the exploration
bonus for an LinUCB-like algorithm in case of (potentially
adversarial) misspecification.

The recent result by (Du et al., 2019) applies here (see also
the work of (Van Roy & Dong, 2019)). They show that for
large misspecification I Ç 1{

?
d an exponential sample

complexity is unavoidable to identify an arm with positive
return. This does not contradict our result, because our
regret is rOpKq under such large misspecification, which is
vacuous as the maximum loss up to episode K is exactly K.

Notice that the equivalence is established by informing
ELEANOR of the setting (through the horizon H “ 1) un-
like (Zanette & Brunskill, 2018). Finally, if the corruption

6We drop the constraint θ P B for simplicity
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fp¨q is only a function of the context then it is possible to
do much better (Krishnamurthy et al., 2018).

This surprising connection with the popular LINUCB makes
ELEANOR (or LINUCB with a correction on the exploration
bonus) the first algorithm capable of handling misspecified
contextual linear bandits, although we are not the first to
consider misspecification in linear bandits per se: (Ghosh
et al., 2017) propose an algorithm that switches to tabular if
misspecification is detected and (Gopalan et al., 2016) con-
sider the case that the misspecification is less than roughly
the action gap; (Van Roy & Dong, 2019) comment on the
lower bound by (Du et al., 2019) using the Eluder dimen-
sion. Finally, (Lattimore & Szepesvari, 2020) have recently
obtained a result similar to ours, but for a different setting.
Their algorithm can leverage having finitely many actions
(where a

?
d factor can be saved; otherwise their regret is the

same as ours) but relies heavily on G-experimental design:
the algorithm will not work without a stationary action set,
ruling out the important case of contextual linear bandits
where the action is allowed to depend on the context. How-
ever, our correction to vanilla LINUCB relies on having
knowledge of the misspecification, while the approach of
(Lattimore & Szepesvari, 2020) is agnostic. Furthermore,
concurrently to our work (Lattimore & Szepesvari, 2020)
also consider the same modification to LINUCB as we do
here, and provide proof that the algorithm can fail if no
modification is implemented. However, these definitions
of misspecification are adversarial in nature, and for less
pathological problems the algorithm is expected to perform
well.

7. Lower Bounds
In terms of statistical rate, ELEANOR is unimprovable due to
a lower bound directly borrowed from the bandit literature.

Proposition 1 (Lower Bound Without Misspecification).
Let rd def“

řH
t“1 dt. There exist a class of H-horizon MDPs

that satisfy asm. 1 and H feature maps φtp¨, ¨q P Rdt , with
rd ě 2H such that for K “ Ωprd2q the expected regret of
any algorithm is Ωprd

?
Kq.

The fact that our result matches the lower bound can ap-
pear surprising, because our work relies on a sub-Gaussian
conditions and disregards the variance in the process. It
does not use a “law of total variance” argument (Azar et al.,
2012; 2017), which was necessary in the past to obtain rate-
optimal algorithms for tabular settings. One may wonder
whether a

?
H factor can be saved by that argument for

MDPs parameterized by linear action-value function. Due
to the bandit lower bound, no such improvement is possible
with linear function approximations, unless the structure is
restricted further. The reason is that our setting is a super-
set of tabular RL (Azar et al., 2017) and contains harder

instances than the lower bound for tabular RL (in particular,
a linear bandit problem at a single timestep) but the law of
total variance would bring no benefit to those structures.

Approximation error Our positive result regarding mis-
specification matches the LSPI analysis of (Lattimore &
Szepesvari, 2020) but for the harder online setting. Al-
though the two respective frameworks (i.e., LSPI vs LSVI
conditions) are incompatible as explained in proposition 5,
we notice a similar effect: a square-root factor of the prob-
lem dimensionality multiplies the “misspecification” error.
While the LSPI analysis of (Lattimore & Szepesvari, 2020)
relies on having features from G-optimal design to query
the system, in the online setting we’re not free to choose
arbitrary features anywhere in the state-action space. As a
result, the agent can learn on an ill-conditioned basis, and
the prediction error on features much different from those
experienced can be very large. Our analysis shows that
while this can indeed be the case, the situation of high pre-
diction error cannot persist for too long and the

?
d loss in

prediction accuracy is, on average, recovered. Using the
recent result by (Du et al., 2019), we can augment proposi-
tion 1 by including a sequence of misspecified linear bandits,
obtaining the following result (see also appendix D):

Theorem 2 (Lower Bound for Inherent Bellman Error Set-
ting). There exist feature maps φ1, . . . , φH that define an
MDP classM such that every MDP in that class satisfies
assumption 1 with inherent Bellman error I and such that
the expected regret of any algorithm on at least a member
of the class (for A ě 3, dt ě 3,K “ Ωpp

řH
t“1 dtq

2q) is
Ωp

řH
t“1 dt

?
K `

řH
t“1

?
dtIKq, that is:

min
A

max
MPM

K
ÿ

k“1

pV ‹1 ´ V
πk
1 q ps1kq

“ Ωp
H
ÿ

t“1

dt
?
K `

H
ÿ

t“1

a

dtIKq.

8. Proof Overview
We now give a quick proof sketch and highlighting how
working in the parameter space allows us to 1) avoid an ex-
ponential propagation of the errors by leveraging the notion
of inherent Bellman error (handling of the bias) and 2) pre-
serve confidence intervals that are as tight as in a bandit prob-
lem (handling of the variance). Our objective is to bound
the regret: REGRETpKq

def
“

řK
k“1 pV

‹
1 ´ V

πk
1 q ps1kq for

the chosen policies πk, but first we need to discuss how the
errors propagate and how to ensure optimism.

8.1. Propagation of errors

The inherent Bellman error condition ensures that there
exists a parameter θ̊t and a Bellman residual function ∆̊t,
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both depending on Qt`1, such that ∆̊tpQt`1qps, aq “

“ φtps, aq
Jθ̊tpQt`1q ´

`

TtQt`1

˘

ps, aq (6)

with }∆̊tpQt`1qq}8 ď I provided that Qt`1 P Qt`1. In
other words, we can successfully represent TtQt`1 up to an
additive error I if the next-step Qt`1 function is linear.

This representational constraint unfortunately rules out
adding exploration bonuses as in prior low-rank work (Yang
& Wang, 2020; Jin et al., 2020) as well as in tabular MDPs;
their addition can have the backup TtQt`1 leave the linear
space (which is equivalent to having large I) and can lead
to divergence of the repeated least-square procedure (Baird,
1995; Sutton & Barto, 2018; Zanette et al., 2019b).

Error decomposition We aim to compute the error encoun-
tered in minimizing eq. (3) with Vt`1 “ V t`1 fixed and no
regularization. Denote with sti the i-th state encountered
at timestep t of episode i, and let ati “ πtipstiq. Define

the i-th sample noise ηtipV t`1q
def
“ rti ´ rtpsti, atiq `

V t`1pst`1,iq ´ Es1„ptpsti,atiq V t`1ps
1q and the misspecifi-

cation ∆̊tipQt`1q
def
“ ∆̊tpQt`1qpsti, atiq. Premultiply pθtk

(which minimizes eq. (3)) by φtps, aqJ and use the defini-
tions just introduced: φtps, aqJpθtk “

φtps, aq
JΣ´1

tk

k´1
ÿ

i“1

φti
`

TtQt`1psti, atiq ` ηtipV t`1q
˘

“ φtps, aq
J
”

θ̊tpQt`1q`

` Σ´1
tk

k´1
ÿ

i“1

φti

´

∆̊ti ` ηti

¯

`

Qt`1

˘

ı

eq. (6)
“ TtpQt`1qps, aq ` ∆̊tpQt`1qps, aq`

` φtps, aq
JΣ´1

tk

k´1
ÿ

i“1

φti

´

∆̊ti ` ηti

¯

`

Qt`1

˘

. (7)

We discuss the main error terms below.

Inherent Bellman error Cauchy-Schwartz and a projection
argument (lemma 8) gives:

|φtps, aq
JΣ´1

tk

k´1
ÿ

i“1

φti∆̊tipQt`1q| ď }φtps, aq}Σ´1
tk

?
kI.

The inability to correctly represent the application of the
Bellman operator could be exploited adversarially to intro-
duce an error that grows with

?
k (where k is the number of

episodes). On average, however, the Σ´1
tk -norm of those fea-

tures that are selected shrinks as }φtps, aq}Σ´1
tk
«

a

dt{k.
While the agent can select a ps, aq pair where the product
}φtps, aq}Σ´1

tk

?
kI can be large, this cannot happen for too

long. Intuitively, a large prediction error is made only on

features that are significantly different from those seen in the
past, but trying those features reveals the correct prediction,
which decreases the prediction error for that direction in the
future.

Noise error and covering argument Cauchy-Schwartz
again gives

|φtps, aq
JΣ´1

tk

k´1
ÿ

i“1

φtiηtipV t`1q|

ď }φtps, aq}Σ´1
tk
}

k´1
ÿ

i“1

φtiηtipV t`1q}Σ´1
tk

def
ď }φtps, aq}Σ´1

tk

a

βtk

where βtk follows from the self normalizing bound of
(Abbasi-Yadkori et al., 2011) modified to cover the func-
tional space Vt. The covering argument is necessary since
the noise depends on V t`1 which is itself random. More

precisely, we can write
?
βtk Æ

b

ln detpΣtkq
1
2 ` lnN ,

where N is the covering number to ε accuracy of Vt`1.
The determinant-trace inequality (see lemma 10 of (Abbasi-
Yadkori et al., 2011)) bounds the volume of the covariance
matrix ln detpΣtkq

1
2 “ rOpdtq; fortunately the metric en-

tropy lnN is of the same order. To see this, remember that
to cover Vt it is sufficient to cover Bt, which is a dt dimen-
sional object (Ă Rdt), and hence lnN “ rOpdtq. There-
fore, despite having an additional union bound compared
to (Abbasi-Yadkori et al., 2011) because of the moving tar-
get V t`1, our confidence intervals are of the same order of
magnitude.

This is the place where a
?
dt can be saved compared to for

example (Jin et al., 2020; Wang et al., 2019), which need to
do a union bound over a more complicated function class
because of the exploration bonuses.

Final expression Adding φtps, aq
Jξt to both sides

of eq. (7) and using the bounds just derived gives
|
`

Qt ´ TtQt`1

˘

ps, aq| “

ď I
loomoon

misspecification

`}φtps, aq}Σ´1
tk
ˆ

´ ?
kI

loomoon

misspecification

`
?
αtk

loomoon

exploration

`
a

βtk
loomoon

noise

¯

. (8)

It remains to define αtk, which controls the size of optimiza-
tion parameters, justifying eq. (5).

8.2. Feasibility, best approximator and optimism

A key point of optimistic approaches for exploration is to
overestimate the value of policies by assigning them a statis-
tically plausible return, and play the policy with the highest
such value.
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Since the optimal value function is an upper bound to the
value of all policies, technically an optimistic learner is only
required to identify a policy with value at least as high as
V ‹1 while satisfying some confidence intervals. To show it
possible to achieve this with our formulation, we will find a
feasible solution to the program of definition 2 that is “close”
to V ‹. In general V ‹t R Vt, and so we need to define the
“best” approximator in Vt for V ‹t . We denote its parameter
with θ‹t P Bt, inductively defined (see def. 4 in appendix)
as the parameter one obtains by applying the exact Bellman
operator and then by minimizing the8 norm of the Bellman
residual: θ‹t

def
“

arg min
θPBt

sup
ps,aq

ˇ

ˇ

ˇ
φtps, aq

Jθ ´
`

TtQt`1pθ
‹
t`1q

˘

ps, aq
ˇ

ˇ

ˇ
(9)

If I “ 0 then φtps, aqJθ‹t “ Q‹t ps, aq inductively follows.

Computation of αtk Under an inductive argument, as-
sume the program of definition 2 admits a partial solution
ξt`1, . . . , ξH that satisfies θt`1 “ θ‹t`1, . . . , θH “ θ‹H (the
parameters for timesteps less than t` 1 have not been de-
cided yet).

Now setting:

ξt “ ´Σ´1
tk

k´1
ÿ

i“1

φti

´

∆̊ti ` ηti

¯

pQt`1pθ
‹
t`1qq (10)

and adding φtps, aq
Jξt back to eq. (7) evaluated with

Qt`1 “ Qt`1pθ
‹
t`1q can “undo” the effect of noise and

approximation error at timestep t, producing (recall θt “
pθt ` ξt)

φtps, aq
Jθt

“ TtpQt`1pθ
‹
t`1qqps, aq ` ∆̊tpQt`1pθ

‹
t`1qqps, aq.

Comparing with eq. (9) we can claim θt “ θ‹t , complet-
ing the induction. Thus, the best approximator defined
through θ‹t is a feasible solution to the program of defini-
tion 2. The corresponding value function Vtpθ‹t q can make
an error of size I in representing the Bellman backup, and
this accumulates linearly, and hence ELEANOR is ultimately
nearly-optimistic:

V 1ps1kq ě V ‹1 ps1kq ´HI. (11)

As we’ll see in a second, this near-optimism is enough to
obtain a solid regret bound. Finally, eq. (10) gives:

}ξt}Σtk
ď

›

›

›

k´1
ÿ

i“1

φti∆ti

›

›

›

Σ´1
tk

loooooooomoooooooon

ď
?
kI

`

›

›

›

k´1
ÿ

i“1

φtiηti

›

›

›

Σ´1
tk

loooooooomoooooooon

ď
?
βtk

(12)

which matches eq. (5) after adding the regularization term.

8.3. Regret Bound

Finally, we can present the regret bound, which now follows
similarly to prior analyses for model free algorithms (e.g.,
(Jin et al., 2018)). Consider the usual decomposition from
the starting state s1k:

REGRETpKq
def
“

K
ÿ

k“1

`

V ‹1 ´ V 1k ` V 1k ´ V
πk
1

˘

ps1kq.

The first term inside the parenthesis can be bounded by
eq. (11); we can expand the second term using eq. (8) where
πk is the agent’s policy in episode k and atk “ πtkpstkq for
short. For a generic timestep t we obtain

`

V tk ´ V
πk
t

˘

pstkq ď

«

Es1„ptpstk,atkq
`

V t`1,k ´ V
πk
t`1

˘

ps1q

` I ` }φtpstk, atkq}Σ´1
tk

´?
kI `

?
αtk `

a

βtk

¯

loooooooooooooomoooooooooooooon

« rOp
?
kI`

?
dtq

ff

.

Now write Es1„ptpstk,atkq
`

V t`1,k ´ V
πk
t`1

˘

ps1q as
`

V t`1,k ´ V
πk
t`1

˘

pst`1,kq plus a martingale term 9ζtk
which we ignore for brevity (details in appendix). In-
duction over t P rHs and summing over k P rKs gives
řK
k“1

řH
t“1

`

V 1k ´ V
πk
1

˘

ps1kq

ď

K
ÿ

k“1

H
ÿ

t“1

«

I ` }φtpstk, atkq}Σ´1
tk
ˆ rOp

?
kI `

a

dtq

ff

.

Recall
řK
k“1 }φtpstk, atkq}Σ´1

tk
“ rOp

?
dtKq from (Abbasi-

Yadkori et al., 2011); substituting this concludes.

9. Conclusion
We have introduced an algorithm for online exploration
with linear approximators under the notion of low-inherent
Bellman error with an optimal regret bound with regards to
statistical rates and the lack of closedness of the Bellman
operator. The construction reveals that a shift to global op-
timization might be unavoidable with more general linear
approximators than prior low-rank work, making computa-
tional tractability harder to achieve. A core idea is that by
working directly in the parameter space we enable a linear
propagation of the errors (as opposed to exponential) and
we limit the complexity of the value function class, which
can serve as inspiration to improve the statistical efficiency
for other algorithms as well. Finally, a noteworthy contribu-
tion is our analysis for misspecified contextual linear bandit,
which explains that a simple modification of a mainstream
algorithm is sufficient to handle such setting.
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A. Symbols

Table 1: Symbols

Lφ
def
“ upper bound on sups,a,t }φtps, aq}2

Rt
def
“ upper bound on }θt}2 for θt P Bt, that is }θt}2 ď Rt

R def
“ maxtPrHsRt

Bt
def
“ set for θt

aBt
def
“ tax | x P Btu for a positive real a

Fij
def
“ failure events, see definition 3

stk
def
“ state encountered in timestep t of episode k

atk
def
“ action played in timestep t of episode k, i.e., atk “ πtkpstkq

rtk
def
“ reward experienced in timestep t of episode k after playing atk in stk

rtps, aq
def
“ average reward at timestep t after playing a in s

ptps, aq
def
“ transition function at timestep t after playing a in s

9ζtk
def
“ Es1„ptpstk,atkq

`

V t`1,k ´ V
π
t`1

˘

ps1q ´
`

V t`1,k ´ V
π
t`1

˘

pst`1,kq

φtk
def
“ Feature encountered in timestep t of episode k, i.e., φtpstk, atkq

Vt
def
“ tV | V psq “ maxa φtps, aq

Jθ, θ P Btu

Qt
def
“ tQ | Qps, aq “ φtps, aq

Jθ, θ P Btu

ηtipVt`1q
def
“ rti ´ rtpsti, atiq ` Vt`1pst`1,iq ´ Es1„ptpsti,atiq Vt`1ps

1q (this is for a generic Vt`1q

ηtki
def
“ ηtipV t`1,kq

9ζtk
def
“

”

Es1„ptpstk,atkq
`

V t`1,k ´ V
πk
t`1

˘

ps1q ´
`

V t`1,k ´ V
πk
t`1

˘

pst`1,kq

ı

1
`

F k
˘

?
βtk

def
“

c

dt ln
´

1` L2
φk{dt

¯

` 2dt`1 lnp1` 4RtLφ
?
kq ` ln

`

1
δ1

˘

` 1

?
αtk

def
“

?
βtk `

?
kI `

?
λRt

δ1
def
“ δ

2T

Qtpθq
def
“ function that maps ps, aq ÞÑ φtps, aq

Jθ

Vtpθq
def
“ function that maps s ÞÑ maxa1 φtps, aq

Jθ

TtpQq
def
“ function Q` that maps ps, aq ÞÑ rtps, aq ` Es1„ptps,aqmaxa1 Qps

1, a1q

θ̊tpQq
def
“ arg minθPBt

supps,aq |φtps, aq
Jθ ´ pTtQq ps, aq| (ties broken arbitrarily)

∆̊tpQq
def
“ minθPBt

supps,aq |φtps, aq
Jθ ´ pTtQq ps, aq|

Σtk
def
“

řk´1
i“1 φtiφ

J
ti ` λI

V πt
def
“ value function of policy π at timestep t
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B. On the Inherent Bellman Error
If I “ 0 one could represent Q‹ using a linear representation; in addition, having no inherent Bellman error is equivalent to
having linear rewards with transitions to elements of Vt`1 that appears to be linear. For simplicity, the discussion is with
Bt “ Rdt , though this is not the only possible choice.
Proposition 2 (Linearity of Rewards and Restricted Linearity of Transitions). Given an MDP and a linear feature
representation with Bt “ Rdt and inherent Bellman error I “ 0 we have that the rewards are linear in the sense that:

inf
θRt PBt

sup
ps,aqPSˆA

|rtps, aq ´ φtps, aq
JθRt | “ 0

and the transition have a linear effect on members of Vt`1

sup
θt`1PBt`1

inf
θPt PBt

sup
ps,aqPSˆA

|Es1„ptps,aq Vt`1pθt`1qps
1q

´φtps, aq
JθPt | “ 0.

Proof. Since the zero vector 0 P Qt (by construction, otherwise Bt “ H) at all timesteps, for any t P rHs we certainly have
(by choosing 0 “ Qt`1 P Qt`1 in the outer sup of definition 1):

0 “ inf
θtPBt

sup
ps,aqPSˆA

|φtps, aq
Jθt ´ pTtp0qq ps, aq| “ inf

θtPBt

sup
ps,aqPSˆA

|φtps, aq
Jθt ´ rtps, aq| (13)

Now, for the second part of the proof,

0 “ sup
θt`1PBt`1

inf
θtPBt

sup
ps,aqPSˆA

|φtps, aq
Jθt ´

`

rtps, aq ` Es1„ptps,aq Vt`1pθt`1qps
1q
˘

|. (14)

Using the just reward linearity just shown:

0 “ sup
θt`1PBt`1

inf
θtPBt

sup
ps,aqPSˆA

|φtps, aq
J
`

θt ´ θ
R
t

˘

´ Es1„ptps,aq Vt`1pθt`1qps
1q|. (15)

Since θRt P Bt, we certainly have θPt
def
“

`

θt ´ θ
R
t

˘

P Bt.

Next we examine the relation between low rank MDPs and MDPs with no inherent Bellman error. One direction of the
following proposition also appeared in (Yang & Wang, 2019) (proposition 2). We recall that a measure ψt is a positive
function with }ψtp¨q}TV “ 1.
Proposition 3 (Low Rank Ď LSVI Conditions). Let Bt “ Rdt , and consider an MDP with associated linear feature
representation φ. If the MDP is a low rank (or linear) MDP, i.e., for a parameter θRt P Rdt and a measure function7 ψtp¨q:

@ps, a, t, s1q, rtps, aq “ φtps, aq
JθRt

ptps
1 | s, aq “ φtps, aq

Jψtps
1q

(16)

then I “ 0. However, the converse does not hold, i.e., there exists an MDP and a linear feature extractor φ with I “ 0
which is not a linear MDP in the sense of eq. (16).

Proof. pñq
Assume the MDP is low rank in the sense of eq. (16). Let θt`1 P Bt`1. Then

TtpQt`1pθt`1qqps, aq “ φtps, aq
JθRt `

ż

s1PS
φtps, aqψtps

1qVt`1pθt`1qps
1qds1 (17)

“ φtps, aq
J

ˆ

θRt `

ż

s1PS
ψtps

1qVt`1pθt`1qps
1qds1

˙

loooooooooooooooooooooooomoooooooooooooooooooooooon

def
“ θtPBt

. (18)

7a positive function such that }Ψt}TV “ 1
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Thus I “ 0.
pðq

Fix N P N` and consider the chain with a starting state in the middle (s “ 0) with N states to the left and N to the right.
The agent can go one unit to the right or one to the left in each timestep by choosing action `1 or ´1, respectively, or stay
put by choosing action a “ 0. The total time available within an episode is H “ N ` 1, and there is a reward in the leftmost
state and a reward in the rightmost state, zero everywhere else. Formally:

• S “ t´N ´ 1, . . . , N ` 1u

• A “ t´1, 0,`1u

• H “ N ` 1

• ptps, aq “ es`a (here ei is the canonical vector with a one in the i-th position and zero otherwise)

• rH rH, 1s “ r‹`1, rH r´H,´1s “ r‹´1, and 0 otherwise, with r‹`1 P R, r‹´1 P R.

Clearly the transition matrix is not low rank (in the sense of being independent of N ), for any choice of the feature
representation. For example for the policy πtpsq “ 0 we have that Pπ “ I , which is full rank. Now consider the feature
representation:

φtps, aq “

$

’

&

’

%

r1, 0s, if ps, aq “ p`t,`1q

r0, 1s, if ps, aq “ p´t,´1q

r0, 0s, otherwise.
(19)

The feature dimensionality is “ 2 ‰ N , so this is not a low-rank MDP according to equation eq. (16).

We claim that this gives 0 inherent Bellman error. Indeed, it’s easy to verify this by inspection, |st| “ t´ 1 are the only two
reachable states at timestep t with at least an action with non-zero feature:

@θt`1 Dθ`t such that }Qtpθ
`
t q ´ TtQt`1pθt`1q}8 “ 0 (20)

In particular, set θ`t “ rmaxt0, θt`1r1su,maxt0, θt`1r2sus for t “ 1, . . . ,H ´ 1 and θ`H
def
“ rr‹`1, r

‹
´1s.

The next step is to show that, likewise, low-rank MDPs imply that every policy has a linearly parameterizable action-value
function, but not viceversa. The first direction is established by, for example, proposition 2.3 in (Jin et al., 2020).

Proposition 4 (Low Rank Ď LSPI Conditions). If a given MDP is low rank in the sense of eq. (16) then the value function
of all policies admit a linear parameterization:

@π, @t P rHs, Dθπt such that Qπt ps, aq “ φtps, aq
Jθπt .

However, there exists an MPD and a linear approximator with feature extractor φ which satisfies the above display but there
exists no ψt such that eq. (16) holds.

Proof. pñq
Assume by induction that Qπt`1 P Qt`1, and proceed as the first part of the proof of proposition 3 (but with the Bellman
operator of policy π (as T πt ) in place of Tt) to conclude θt P Bt, showing the inductive step. The base case is immediate.
pðq

Now, for the viceversa not being true, consider the same MDP as in the proof of proposition 3; as already shown, this is not
a low-rank MDP. On the other hand, the policies can be in three disjoint sets (we adopt the same feature representation as in
the proof of proposition 3): for |s| ď t´ 1 (we cannot reach states outside of this range at timestep t) we can write

1) Policies that always go right We have Qπt ps, aq “ φtps, aq
Jrr‹`1, 0s (by inspection)

2) Policies that always go left We have Qπt ps, aq “ φtps, aq
Jr0, r‹´1s (by inspection)

3) All other policies We have Qπt ps, aq “ φtps, aq
Jr0, 0s (by inspection)
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In other words, we can represent the cumulated return of each policy. The proof is complete, since the MDP is not low rank
with this feature representation.

Finally, we compare MDPs with linear architectures which have I “ 0 with those where every policy has an action-value
function linearly parameterizable. As we show next, these are quite different assumptions, although an intersection is
possible by combining the proofs of the prior two propositions.

Proposition 5 (LSVI Conditions ‰ LSPI Conditions). There exists an MDP and a linear representation with feature
extractor φ with I “ 0 and yet the policies are not linearly parameterizable in the sense that:

Dπ, Dt P rHs, Eθπt P Rdt s.t. Qπt “ φtps, aq
Jθt.

Vice-versa, there exists an MDP and a feature representation such that all action-value functions of all policies admit a
linear parameterization:

@π,@t P rHs, Dθπt that satisfies Qπt ps, aq “ φtps, aq
Jθπt

and yet the inherent Bellman is non-zero: I ą 0.

This suggests that, depending on the parameterization, different algorithms may be preferable for solving the MDP (i.e.,
finding the optimal policy). In particular, if I “ 0 then approximate value iteration converges to the global optimum;
viceversa, if all policies are linearly parameterizable then approximate policy improvement should be used.

Proof. pñq
Consider an MDP with two groups (A and B) of non-communicating states, i.e., with states sA1 , . . . , s

A
H and sB1 , . . . , s

B
H .

The starting state is either sA1 or sB1 . There is only one action except in sAH , s
B
H . From state sAi the transition to sAi`1 is

deterministic as long as i P rH ´ 1s and likewise from sBi to sBi`1. In sAH and sBH there are two actions with identical
outcome regardless of the state. In particular, both psAH , 0q and psBH , 0q give a return of 0 while both psAH , 1q and psBH , 1q
give a return of 1; both terminate the episode.

Let the parameterization be φtp¨, ¨q “ 1 for any state indexed ă H , for the only available action. In the last timestep,
φHps

A
H , 0q “ φHps

B
H , 0q “ 0 and φHpsAH , 1q “ φHps

B
H , 1q “ 1.

It’s easy to see (by inspection) that this MDP has I “ 0: in any timestep t P rH ´ 1s we have Qtps
A
t , ¨q “ Qtps

B
t , ¨q “

V t`1ps
B
t`1q “ V t`1ps

A
t`1q by using an identical parameter θt “ θt`1 (notice that there is only one action for t P rH ´ 1s).

In other words, @θt`1, Dθtp“ θt`1q that gives Qtp¨, ¨q “ TtQt`1p¨, ¨q with Qt P Qt and Qt`1 P Qt`1 for all reachable
states at timestep t P rH ´ 1s. Finally, the last timestep can be expressed as linear bandit problem. Thus I “ 0.

However, consider policy πx that takes two different actions in the last states, i.e., πxHps
A
Hq “ 1 ‰ 0 “ πxHps

B
Hq. The

return of the policies differs, indicating that for any t P rH ´ 1s, Qπ
x

t ps
A
t , ¨q ‰ Qπ

x

t ps
B
t , , ¨q, but our parameterization

forces QtpsAt , ¨q “ Qtps
B
t , ¨q if Qt P Qt, and therefore the policies do not have an action-value function that is linearly

parameterizable.

pðq

(Construction inspired by the linear bandit example in (Zanette et al., 2019b)) Consider a chain mdp with states s1, . . . , sH ,
and starting state s1. Any action deterministically leads to the next state, i.e., from si to si`1, for i P rH ´ 1s, and does
not yield any reward. There are two actions in each state with associated feature φtp¨,´1q “ ´1 and φtp¨,`1q “ `1.
In particular, notice that the approximator cannot represent the same value for different actions since Qtpθtqpst,`1q “
´Qtpθtqpst,´1q must hold by construction.

Since there is no reward in the MDP, every policy has zero return for any state-action at any intermediate timestep,
so Qπt ps, aq “ φtps, aq

Jθπt with θπt “ 0 certainly holds at any ps, a, tq triplet. Yet, for example, for θt`1 “ 1, the
corresponding value function is (in the only possible state st`1) Vt`1pθt`1qpst`1q “ maxa φt`1pst`1, aq

Jθt`1 “ 1. Quite
clearly, pTtVt`1pθt`1qq pst, ¨q “ Vt`1pθt`1qpst`1q (i.e., the value function stays constant since there are no rewards) since
there is no rewards in the system and the transition is the same for both actions. However, the approximator cannot represent
the same value for different actions since they use opposite (in sign) features, i.e., Qtpθtqpst,`1q “ ´Qtpθtqpst,´1q must
hold by construction, which means the inherent Bellman error is strictly positive.
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The above construction uses an MDP with zero reward function for the sake of clarity of exposition; it is possible to augment
the MDP in an obvious way to include rewards by including a “fork” at the beginning, similarly to (Zanette et al., 2019b).
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C. ELEANOR

C.1. First Step Analysis

Lemma 1 (First Step Analysis). If the program of definition 2 admits a feasible solution then the θt’s must satisfy for
t P rHs:

θt “ ξt ` θ̊tpQt`1q ` Σ´1
tk

k´1
ÿ

i“1

φJti∆̊tpQt`1qpsti, atiq ´ λΣ´1
tk θ̊tpQt`1q ` Σ´1

tk

k´1
ÿ

i“1

φtiηtipV t`1q. (21)

Furthermore, outside of the failure event of definition 3 it holds that:

|
`

Qtps, aq ´ TtQt`1

˘

ps, aq| ď I ` }φtps, aq}Σ´1
tk

´?
kI `

?
αtk `

a

βtk `
?
λRt

¯

. (22)

Proof. We start by recalling (see constraint of the program of definition 2):

θt
def
“ ξt `

pθt. (23)

Now we use the fact that pθt must satisfy its constraint written in the program of definition 2, where V t`1ps
1q “

maxa1 Qt`1ps
1, a1q and Qt`1ps

1, a1q “ φt`1ps
1, a1qJθt`1:

“ ξt `

˜

k´1
ÿ

t“1

φtiφ
J
ti ` λI

¸´1 k´1
ÿ

i“1

φti

”

rti ` V t`1pst`1,iq

ı

“ ξt `

˜

k´1
ÿ

t“1

φtiφ
J
ti ` λI

¸´1 k´1
ÿ

i“1

φti

”

rtpsti, atiq ` Es1„ptpsti,atiq V t`1,kps
1q ` ηtipV t`1q

ı

(24)

where in particular,

ηtipV t`1q
def
“ rti ´ rtpsti, atiq ` V t`1pst`1,iq ´ Es1„ptpstk,atkq V t`1ps

1q. (25)

Recall the following definition of Bellman operator:

`

TtQt`1

˘

psti, atiq
def
“ rtpsti, atiq ` Es1„ptpsti,atiqmax

a1
Qt`1ps

1, a1q. (26)

The key step is now the following: by construction, if a solution to the program of definition 2 exists, then in particular
pθ1, . . . , θHq must satisfy the ball constraint θt P Bt for all t P rHs which implies that each Qt function belongs to the
prescribed functional space Qt. With this in mind, denote with θ̊tpQt`1q the parameter P Bt that best approximates the
Bellman backup of Qt`1 and with ∆̊tpQt`1q the “residual” function, see table 1. This allows us to use the value of the
finite inherent Bellman error of definition 1 to write:

`

TtQt`1

˘

ps, aq “ φtps, aq
Jθ̊tpQt`1q ` ∆̊tpQt`1qps, aq. (27)

Comparing the above display (with ps, aq “ psti, atiq) against eq. (26) and then plugging back into eq. (24) and using the
definition of Σ´1

tk we can write:

“ ξt `

˜

k´1
ÿ

i“1

φtiφ
J
ti ` λI

¸´1

¨

˚

˚

˚

˝

k´1
ÿ

i“1

φJti

“TtpQt`1qpsti,atiq
hkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkj

´

φtiθ̊tpQt`1q ` ∆̊tpQt`1qpsti, atiq
¯

`λθ̊tpQt`1q ´ λθ̊tpQt`1q

˛

‹

‹

‹

‚

` Σ´1
tk

k´1
ÿ

i“1

φtiηtipV t`1q

“ ξt ` θ̊tpQt`1q ` Σ´1
tk

k´1
ÿ

i“1

φJti∆̊tpQt`1qpsti, atiq ´ λΣ´1
tk θ̊tpQt`1q ` Σ´1

tk

k´1
ÿ

i“1

φtiηtipV t`1q. (28)

This proves the first part of the lemma.
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To show the second part, premultiply the above display by φtps, aqJ; the left hand side becomes Qtps, aq by definition and
we proceed to bound each term of the rhs. First, eq. (27) allows us to write:

φtps, aq
Jθ̊tpQt`1q

def
“

`

TtQt`1

˘

ps, aq ´ ∆̊tpQt`1qps, aq (29)

with |∆̊tpQt`1qps, aq| ď I. Cauchy-Schwartz and then lemma 8 give:

ˇ

ˇ

ˇ
φtps, aq

JΣ´1
tk

k´1
ÿ

i“1

φJti∆̊tpQt`1qpsti, atiq
ˇ

ˇ

ˇ
ď }φtps, aq}Σ´1

tk
}

k´1
ÿ

i“1

φJti∆̊tpQt`1qpsti, atiq}Σ´1
tk
ď }φtps, aq}Σ´1

tk

?
kI. (30)

Again Cauchy-Schwartz as done above allows us to write (outside of the failure event):

ˇ

ˇ

ˇ
φtps, aq

JΣ´1
tk

k´1
ÿ

i“1

φtiηtipV t`1q

ˇ

ˇ

ˇ
ď
a

βtk}φtps, aq}Σ´1
tk
. (31)

Cauchy-Schwartz applied to the term below also gives (by definition / constraints on ξt):
ˇ

ˇ

ˇ
φtps, aq

Jξt

ˇ

ˇ

ˇ
ď
?
αtk}φtps, aq}Σ´1

tk
. (32)

Finally, Cauchy-Schwartz with lemma 9 gives (since θ̊tpQt`1q P Bt ):
ˇ

ˇ

ˇ
φtps, aq

JλΣ´1
tk θ̊tpQt`1q

ˇ

ˇ

ˇ
ď λ}φtps, aq}Σ´1

tk
}θ̊tpQt`1q}Σ´1

tk
ď
?
λRt}φtps, aq}Σ´1

tk
. (33)

Plugging the bounds back gives the thesis.
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C.2. Failure Event and their Probabilities

In this section we introduce the failure modes of the algorithm. Whenever a failure event occurs, we cannot guarantee the
overall performance of the algorithm.

Definition 3 (Failure Events). We define the following failure event in episode k:

Ftk
def
“

#

DVt`1 P Vt`1 such that
›

›

›

k´1
ÿ

i“1

φti
`

rti ´ rtpsti, atiq ` Vt`1pst`1,iq ´ Es1„ptpsti,atiq Vt`1ps
1q
˘

›

›

›

Σ´1
tk

ą
a

βtk

+

.

(34)

We call failure event in episode k the union of these events over the within-episode timestep t P rHs:

Fk
def
“

ď

tPrHs

Ftk, (35)

and failure event of the algorithm the union of the above events over all the episodes:

F
def
“

ď

kPrKs

Fk. (36)

Lemma 2 (Total Failure Probability). Under assumption 1 it holds that:

P pF q ď
δ

2
, @k P rKs. (37)

Proof. By union bound:

P pF q
def
“ P

¨

˝

ď

kPrKs

ď

tPrHs

Ftk

˛

‚ (38)

ď

K
ÿ

k“1

H
ÿ

t“1

P pFtkq (39)

ď Tδ1. (40)

The last step is from lemma 3; the thesis follows by setting δ1 “ δ
2T .

Lemma 3 (Transition Noise High Probability Bound). If λ “ 1, with probability at least 1´ δ1 for all Vt`1 P Vt`1 it holds
that

›

›

›

k´1
ÿ

i“1

φti
`

rti ´ rtpsti, atiq ` Vt`1pst`1,iq ´ Es1„ptpsti,atiq Vt`1ps
1q
˘

›

›

›

Σ´1
tk

ď
a

βtk (41)

where:

a

βtk
def
“

d

dt ln
´

1` L2
φk{dt

¯

` 2dt`1 lnp1` 4RtLφ
?
kq ` ln

ˆ

1

δ1

˙

` 1. (42)

Proof. We start by constructing an ε-cover for the set Vt`1 using the supremum distance. To achieve this, we construct
an ε-cover for the parameter θt`1 P Bt`1 using lemma 4. This ensures that there exists a set Dt`1 Ď Bt`1, containing

p1` 2R{ε1qdt`1 vectors
4
θ t`1 that well approximates any θt`1 P Bt`1:

DDt`1 Ď Bt`1 such that @θt`1 P Bt`1, D
4
θ t`1 P Dt`1 such that }θt`1 ´

4
θ t`1}2 ď ε1. (43)
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Let
4
V t`1psq

def
“ maxa φt`1ps, aq

J
4
θ t`1, where

4
θ t`1 “ arg min4

θ t`1PDt`1

}
4
θ t`1 ´ θt`1}2. For any fixed s P S we have

that:

|
`

Vt`1 ´
4
V t`1

˘

psq| “ |max
a1

φt`1ps, a
1qJθt`1 ´max

a2
φt`1ps, a

2q
4
θ t`1|

ď |max
a

φtps, aq
J
`

θt`1 ´
4
θ t`1

˘

|

ď max
a
}φt`1ps, aq}2}θt`1 ´

4
θ t`1}2

ď Lφε
1. (44)

By using the triangle inequality we can write:

›

›

›

k´1
ÿ

i“1

φti
`

rti ´ rtpsti, atiq ` Vt`1pst`1,kq ´ Es1„ptpsti,atiq Vt`1ps
1q
˘

›

›

›

Σ´1
tk

ď

›

›

›

k´1
ÿ

i“1

φti

ˆ

rti ´ rtpsti, atiq `
4
V t`1pst`1,kq ´ Es1„ptpsti,atiq

4
V t`1ps

1q

˙

›

›

›

Σ´1
tk

`

`

›

›

›

k´1
ÿ

i“1

φti

ˆ

Es1„ptpsti,atiq
4
V t`1ps

1q ´ Es1„ptpsti,atiq Vt`1ps
1q

˙

›

›

›

Σ´1
tk

`

›

›

›

k´1
ÿ

i“1

φti

ˆ

Vt`1pst`1,iq ´
4
V t`1pst`1,iq

˙

›

›

›

Σ´1
tk

. (45)

Each of the last two terms above can be written for some bi’s (different for each of the two terms) as
›

›

›

řk´1
i“1 φtibi

›

›

›

Σ´1
tk

. The

projection lemma, lemma 8 ensures (here we are using eq. (44) to bound the bi’s):

›

›

›

k´1
ÿ

i“1

φtibi

›

›

›

Σ´1
tk

ď Lφε
1
?
k. (46)

Now we proceed to compute the probability of the event in the theorem statement.

Denote with C the event reported below, which is a large deviation bound on the first term on the rhs of eq. (45).

Cp
4
θ t`1q

def
“

#

›

›

›

k´1
ÿ

i“1

φti

ˆ

rti ´ rtpsti, atiq `
4
V t`1pst`1,iq ´ Es1„ptpsti,atiq

4
V t`1ps

1q

˙

›

›

›

2

Σ´1
tk

ą 2ˆ p1q2 ln

˜

detpΣtkq
1
2 det pλIq

´ 1
2

δ2

¸+

.

(47)

We obtain that:

P

˜

ď

4
θ t`1PDt`1

Cp
4
θ t`1q

¸

ď
ÿ

4
θ t`1PDt`1

P

˜

Cp
4
θ t`1q

¸

ď p1` 2Rt`1{ε
1qdt`1δ2

def
“ δ1 (48)

where the last inequality above follows from Theorem 1 in (Abbasi-Yadkori et al., 2011) with R “ 1 (the reward and
transitions are 1-subgaussian by assumption 1). In particular, we set

δ2 “
δ1

p1` 2Rt`1{ε1qdt`1
(49)

from the prior display and so with probability 1´ δ1 we have upper bounded eq. (45) by:
g

f

f

e2 ln

˜

detpΣtkq
1
2 det pλIq

´ 1
2 p1` 2Rt`1{ε1qdt`1

δ1

¸

` 2Lφε
1
?
k. (50)
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If we now pick

ε1 “
1

2Lφ
?
k

(51)

we get:
g

f

f

e2 ln

˜

detpΣtkq
1
2λ´

dt
2 p1` 2Rt`1{ε1qdt`1

δ1

¸

` 1 “
?

2

d

1

2
ln pdetpΣtkqq ´

dt
2

ln pλq ` dt`1 lnp1` 2Rt`1{ε1q ` ln

ˆ

1

δ1

˙

` 1

(52)

Finally, by setting λ “ 1 and using the Determinant-Trace Inequality (see lemma 10 of (Abbasi-Yadkori et al., 2011)) we

obtain detpΣtkq ď
´

1` L2
φk{dt

¯dt

ď

d

dt ln
´

1` L2
φk{dt

¯

` 2dt`1 lnp1` 4RtLφ
?
kq ` ln

ˆ

1

δ1

˙

` 1
def
“

a

βtk. (53)

Lemma 4 (Covering Number of Euclidean Ball). For any ε ą 0, the ε-covering number of the Euclidean ball Rd with
radius R ą 0 is upper bounded by p1` 2R{εqd.

Proof. See for example Lemma 5.2 in (Vershynin, 2010).

Finally, the following martingale concentration inequality is well known and will be used later when bounding the regret.

Lemma 5 (Azuma-Hoeffding Inequality). Let Xi be a martingale difference sequence such that Xi P r´A,As for some
A ą 0. Then with probability at least 1´ δ1 it holds that:

ˇ

ˇ

ˇ

n
ÿ

i“1

Xi

ˇ

ˇ

ˇ
ď

d

2A2n ln

ˆ

1

δ1

˙

. (54)

Proof. Tha Azuma inequality reads:

P

˜

ˇ

ˇ

ˇ

n
ÿ

i“1

Xi

ˇ

ˇ

ˇ
ě t

¸

ď e´
2t2

4A2n , (55)

see for example (Wainwright, 2019). From here setting the rhs equal to δ1 gives:

t
def
“

d

2A2n ln

ˆ

1

δ1

˙

. (56)
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C.3. Best Approximant and its Properties

In this section we introduce the θ‹’s parameters, which is the “best” sequence of parameters that 1) well approximate the Q‹

values while 2) they satisfy θ‹t P Bt, so they are going to be a feasible solution for the program of definition 2, as we show in
next section. The θ‹ is not the best parameter that approximates Q‹ (though it’s a good enough parameter); rather it’s the
parameter that one would obtain upon running LSVI in the limit of infinite data and using a minimization of the residual in
the8-norm.

Definition 4 (Best Running Approximant in8-norm). We recursively define the best approximant parameter θ‹t for t P rHs
as:

θ‹t
def
“ arg min

θPBt

sup
ps,aq

ˇ

ˇ

ˇ
φtps, aq

Jθ ´
`

TtQt`1pθ
‹
t`1q

˘

ps, aq
ˇ

ˇ

ˇ
(57)

with ties broken arbitrarily and θ‹H`1 “ 0.

Using the above definition, we first compute an absolute bound for |Q‹t ps, aq ´ φtps, aq
Jθ‹t | and then use this result to

compute the performance bound pV ‹1 ´ V
π
1 q px1q from an arbitrary starting state x1 using the policy that can be extracted

from θ‹.

Lemma 6 (Accuracy Bound of θ‹). It holds that:

sup
ps,aq

|Q‹t ps, aq ´ φtps, aq
Jθ‹t | ď pH ´ t` 1qI. (58)

Proof. We proceed by induction. Assume that supps,aq |Q
‹
t`1ps, aq ´ φt`1ps, aq

Jθ‹t`1| ď pH ´ tqI for a certain timestep
t` 1 (this is certainly true for t` 1 “ H ` 1). Now consider timestep t; the triangle inequality gives us:

sup
ps,aq

|Q‹t ps, aq ´ φtps, aq
Jθ‹t | “ sup

ps,aq

|
`

TtQ‹t`1

˘

ps, aq ´
`

TtQt`1pθ
‹
t`1q

˘

ps, aq `
`

TtQt`1pθ
‹
t`1q

˘

ps, aq ´ φtps, aq
Jθ‹t |

ď sup
ps,aq

|
`

TtQ‹t`1

˘

ps, aq ´
`

TtQt`1pθ
‹
t`1q

˘

ps, aq| ` sup
ps,aq

|
`

TtQt`1pθ
‹
t`1q

˘

ps, aq ´ φtps, aq
Jθ‹t |

(59)

Since θ‹t`1 P Bt`1 by construction (see definition 4), Qt`1pθ
‹
t`1q P Qt`1 and so by definition of inherent Bellman error

(and definition 4) the second term must be ď I. It remains to examine the first term. By definition of Bellman operator Tt
we have that for any ps, aq pair:

|
`

TtQ‹t`1

˘

ps, aq ´
`

TtQt`1pθ
‹
t`1q

˘

ps, aq| “ |rtps, aq ` Es1„ptps,aqmax
a1

Q‹t`1ps
1, a1q ´ rtps, aq ´ Es1„ptps,aqmax

a1
φt`1ps

1, a1qJθ‹t`1|

(60)

ď |Es1„ptps,aqmax
a1

φt`1ps
1, a1qJθ‹t`1 ´max

a1
Q‹t`1ps

1, a1q| (61)

ď Es1„ptps,aq |max
a1

φt`1ps
1, a1qJθ‹t`1 ´max

a1
Q‹t`1ps

1, a1q| (62)

ď Es1„ptps,aqmax
a1
|φt`1ps

1, a1qJθ‹t`1 ´Q
‹
t`1ps

1, a1q| ď pH ´ tqI. (63)

The last inequality in the previous display comes from the inductive hypothesis, and concludes the proof.
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C.4. Optimism

The purpose of this section is to show that if assumption 1 is satisfied, then the program of definition 2 1) admits a feasible
solution and 2) the solution returned is at least as good as the θ‹’s defined in definition 4, which is in some sense the best
possible.

Lemma 7 (Optimism). Outside of the failure event Fk, pθ‹1, . . . , θ
‹
Hq is a feasible solution8 to the program of definition 2 in

episode k. As a consequence the value function returned by the algorithm V 1ps1kq satisfies

V 1ps1kq ě V ‹1 ps1kq ´HI. (64)

Proof. First we show feasibility, and then the estimation bound.

Feasibility The proof is constructive: we show that we can find ξ1, . . . , ξH so that we can satisfy θt “ θ‹t for all t P rHs
along with the other constraints of the program of definition 2. The base case t “ H ` 1 is trivial, as θH`1 “ θ‹H`1 “ 0
already holds. The inductive hypothesis goes backward from t “ H to t “ 1 and consists of the following statement:

There exists ξt, . . . , ξH such that:

• θt “ θ‹t , . . . , θH “ θ‹H

• the constraints of the program of definition 2 are satisfied for t, . . . ,H

• no additional constraints are set on θτ , pθτ , ξτ for τ “ 1, . . . , t´ 1.

Now assume the inductive hypothesis holds at t` 1. We have from lemma 1 the relation below. Here we set θt`1 “ θ‹t`1

using the inductive hypothesis, and we request θt “ θ‹t to show the inductive step:

θ‹t “ ξt ` θ̊tpTtQt`1pθ
‹
t`1qq

looooooooomooooooooon

def
“ θ‹t

`Σ´1
tk

k´1
ÿ

i“1

φJti∆̊tpQt`1pθ
‹
t`1qqpsti, atiq ´ λΣ´1

tk θ̊tpTtQt`1pθ
‹
t`1qq ` Σ´1

tk

k´1
ÿ

i“1

φtiηtipVt`1pθ
‹
t`1qq

(65)

Notice that θ‹t P Bt by definition of θ‹t and simplifying the above display gets us the following condition to satisfy for ξt:

ξt “ ´Σ´1
tk

k´1
ÿ

i“1

φJti∆̊tpQt`1pθ
‹
t`1qqpsti, atiq ` λΣ´1

tk θ̊tpTtQt`1pθ
‹
t`1qq ´ Σ´1

tk

k´1
ÿ

i“1

φtiηtipVt`1pθ
‹
t`1qq. (66)

Taking Σtk-norms9 and using the triangle inequality we get:

}ξt}Σtk
ď }

k´1
ÿ

i“1

φJti∆̊tpQt`1pθ
‹
t`1qqpsti, atiq}Σ´1

tk
` λ}θ̊tpTtQt`1pθ

‹
t`1qq}Σ´1

tk
` }

k´1
ÿ

i“1

φtiηtipVt`1pθ
‹
t`1qq}Σ´1

tk
. (67)

Since θ‹t`1 P Bt`1 by definition, we know that Vt`1pθ
‹
t`1q P Vt`1 and therefore outside of the failure event of definition 3

we know that:

}

k´1
ÿ

i“1

φtiηtipVt`1pθ
‹
t`1qq}Σ´1

tk
ď
a

βtk. (68)

It remains to bound the other two terms in the rhs of eq. (67). An application of lemma 9 gives one of the two bounds:

λ}θ̊tpTtQt`1pθ
‹
t`1qq}Σ´1

tk
ď
?
λ}θ̊tpTtQt`1pθ

‹
t`1qq}2 ď

?
λRt. (69)

8The solution comprises also the pθ and ξ variables, so this is “part of” a feasible solution
9In particular, note that Σtk is spd
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The last equality holds by definition of the operator θ̊t p¨q. Next lemma 8 helps bound the remaining term:

}

k´1
ÿ

i“1

φJti∆̊tpQt`1pθ
‹
t`1qqpsti, atiq}Σ´1

tk
ď
?
kI. (70)

Combining the above relations and plugging back into eq. (67) gives us that to satisfy eq. (66), the Σtk-norm of ξt must
satisfy:

}ξt}Σtk
ď
a

βtk `
?
kI `

?
λRt

def
“
?
αtk (71)

This is the definition of αtk. Since θt “ θ‹t P Bt holds, we have shown we can satisfy all constraints of the program of
definition 2 at timestep t by fixing the value of ξt, without adding further constraints to the optimization variables for τ ă t.

We have shown that the inductive hypothesis holds @t P rHs, so in particular for t “ 1. The suboptimality gap result follows
from the fact that the optimization program finds a solution with a value at least as high as maxa φtps1k, aq

Jθ‹1 for the
starting state s1k, as explained next.

Estimation Bound Denote with tθtkut“1,...,H the maximizer found in episode k, and with V tk, Qtk the corresponding
value and action-value function, respectively. Since θ‹1 is a feasible solution,

V 1kps1kq “ max
a1

Q1kps1k, a
1q (72)

“ max
a1

φ1ps1k, a
1qJθ1k (73)

ě max
a1

φ1ps1k, a
1qJθ‹1 (74)

otherwise θ1k would not be a maximizer,

ě φ1ps1k, π
‹
1ps1kqq

Jθ‹1 (75)
ě Q‹1ps1k, π

‹
1ps1kqq ´HI (76)

“ V ‹1 ps1kq ´HI (77)

where the last inequality is by lemma 6.
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C.5. Regret Bound

We are finally ready to present our regret bound:
Theorem 1 (Main Result). Under assumption 1 with λ “ 1, with probability at least 1´ δ jointly over all episodes it holds
that the regret of ELEANOR is bounded by:

REGRETpT q “ rOp
H
ÿ

t“1

dt
?
K

loooomoooon

variance term

`

H
ÿ

t“1

a

dtIK
looooomooooon

approximation term

q.

Proof. First, decompose the regret as

REGRETpT q
def
“

K
ÿ

k“1

pV ‹1 ´ V
πk
1 q ps1kq “

K
ÿ

k“1

pV ‹1 ´ V
πk
1 q ps1kq1pF kq `

K
ÿ

k“1

pV ‹1 ´ V
πk
1 q ps1kq1pFkq. (78)

The second sum in the rhs above is non-zero only when at least one indicator 1pFkq turns on for at least one k. This event
can be written as

Ť

kPrKs Fk, and following lemma 2 we can bound its size:

P pDk P rKs s.t. Fkq “ P

¨

˝

ď

kPrKs

Fk

˛

‚ď
δ

2
. (79)

Thus it’s sufficient to bound the regret when
Ť

kPrKs Fk does not occur and consider:

K
ÿ

k“1

pV ‹1 ´ V
πk
1 q ps1kq1pF kq. (80)

We indicate with πk the policy found by algorithm 1 in episode k. Thanks to lemma 7 we can ensure this is nearly-optimistic:

pV ‹1 ´ V
πk
1 q ps1kq1pF kq “

`

V ‹1 ´ V 1k

˘

ps1kq1pF kq
loooooooooooooomoooooooooooooon

ďHI

`
`

V 1k ´ V
πk
1

˘

ps1kq1pF kq. (81)

We put the expression above aside for a second to derive a recursion. First notice the equality below:

pTtQt`1,kqpstk, atkq ´ V
πk
t pstkq “ Es1„ptpstk,atkq

`

V t`1,k ´ V
πk
t`1

˘

ps1q. (82)

Now evaluate lemma 1 (with s “ stk and a “ atk “ πtkpstkq for short) under F k:

Qtkpstk, atkq ď TtQt`1,kpstk, atkq ` I ` }φtpstk, atkq}Σ´1
tk

´?
kI `

?
αtk `

a

βtk `
?
λRt

¯

. (83)

Recalling that Qtkpstk, atkq “ V tkpstkq and combining the two above displays to eliminate TtQt`1,kpstk, atkq gives

`

V tk ´ V
πk
t

˘

pstkq ďEs1„ptpstk,atkq
`

V t`1,k ´ V
πk
t`1

˘

ps1q ` I ` }φtpstk, atkq}Σ´1
tk

´?
kI `

?
αtk `

a

βtk `
?
λRt

¯

.

(84)

We can define the martingale:

9ζtk
def
“

”

Es1„ptpstk,atkq
`

V t`1,k ´ V
πk
t`1

˘

ps1q ´
`

V t`1,k ´ V
πk
t`1

˘

pst`1,kq

ı

1
`

F k
˘

. (85)

Next, we plug the martingale definition into eq. (84), use induction over t, and finally substitute back in eq. (81). Further
summation over the episodes k gives:

K
ÿ

k“1

pV ‹1 ´ V
πk
1 q ps1kq1

`

F k
˘

ď HKI` (86)

`

K
ÿ

k“1

H
ÿ

t“1

«

9ζtk ` I ` }φtk}Σ´1
tk

´?
kI `

?
αtk `

a

βtk `
?
λRt

¯

ff

1
`

F k
˘

(87)
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Further applying Cauchy-Schwartz to the term featuring }φtk}Σ´1
tk

gives:

ď 2IT `
K
ÿ

k“1

H
ÿ

t“1

9ζtk1
`

F k
˘

`

H
ÿ

t“1

?
K

g

f

f

e

K
ÿ

k“1

}φtps, aq}2Σ´1
tk

´?
KI `

?
αtk `

a

βtk `
?
λRt

¯2

(88)

We can right away substitute βtk ď βtK “ rOp
a

dt ` dt`1q and αtk ď αtK . Since V t`1,kpsq “ φtps, aq
Jθt for

some action a and }θt}2 ď Rt we have that V t`1,kpsq ď LφRt`1 ď
a

dt`1 by Cauchy-Schwartz and assumption 1.
Azuma-Hoeffding (lemma 5) with a union bound over κ P rKs ensures (notice that by assumption 1 we also have that
}V πk
t`1}8 ď 1):

P

˜

Dκ P rKs such that
ˇ

ˇ

ˇ

κ
ÿ

k“1

9ζtk

ˇ

ˇ

ˇ
ą

d

2 p2LφRt`1q
2
κ ln

ˆ

2T

δ

˙

¸

ď
δ

2
. (89)

Thus, with high probability the martingale gives a contribution rOp
řH
t“1

a

dt`1Kq “ rOp
řH
t“1

?
dtKq since dH`1 “ 0.

Finally, lemma 11 in the appendix of (Abbasi-Yadkori et al., 2011) gives with λ “ 1 and Lφ “ 1:

K
ÿ

k“1

}φtk}
2
Σ´1

tk

ď 2

¨

˚

˝

dt ln

¨

˚

˝

¨

˚

˝

tracepλIq
looomooon

“dt

`KL2
φ

˛

‹

‚

{dt

˛

‹

‚

´ ln detpλIq
loooomoooon

“0

˛

‹

‚

“ rOpdtq. (90)

This concludes the regret bound, which holds with probability at least 1´ δ jointly over all episodes by union-bounding the
failure event in lemma 2 with eq. (89), and substitutingRt ď

?
dt, Lφ “ 1, λ “ 1. By using

a

dt ` dt`1 ď
?
dt `

a

dt`1

and
a

dtdt`1 ď

b

d2
t ` d

2
t`1 ď dt ` dt`1 and that dH`1 “ 0 we obtain:

REGRET(K) ď rO

˜

TI `
H
ÿ

t“1

a

dtK `

H
ÿ

t“1

a

dt
?
K

´?
KI `

a

dt ` dt`1 `
a

dt

¯

¸

(91)

“ rO

˜

TI `
H
ÿ

t“1

a

dtK `

H
ÿ

t“1

a

dtIK `

H
ÿ

t“1

a

dt
?
K
a

dt ` dt`1

¸

(92)

“ rO

˜

H
ÿ

t“1

a

dtIK `

H
ÿ

t“1

?
K
a

dtp
a

dt `
a

dt`1q

¸

(93)

“ rO

˜

H
ÿ

t“1

a

dtIK `

H
ÿ

t“1

?
Kdt `

H
ÿ

t“1

?
K
a

dtdt`1q

¸

(94)

“ rO

˜

H
ÿ

t“1

a

dtIK `

H
ÿ

t“1

?
Kdt `

H
ÿ

t“1

?
K
b

d2
t ` d

2
t`1

¸

(95)

“ rO

˜

H
ÿ

t“1

a

dtIK `

H
ÿ

t“1

?
Kdt `

H
ÿ

t“1

?
K pdt ` dt`1q

¸

(96)

“ rO

˜

H
ÿ

t“1

a

dtIK `

H
ÿ

t“1

dt
?
K

¸

. (97)
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C.6. Projection Bound

The purpose of this section is to compute the maximum amplification factor of the model misspecification while using a
least-square procedure. While in the generative model setting this has been analyzed before (Zanette et al., 2019b; Lattimore
& Szepesvari, 2020) with an amplification-factor that can be made at most as large as

?
d by using the Kiefer–Wolfowitz

theorem (Lattimore & Szepesvári, 2020). Unfortunately in the online setting one cannot choose the features and the the
amplification factor can grow with

?
n where n is the number of samples. However, one can show that this situation cannot

persist for long in the online setting. Below we analyze one technical factor in the prediction error. We use a geometric
argument based on a shrinking projector.

Lemma 8 (Projection Bound). Let taiui“1,...,n be any sequence of vectors in Rd and tbiui“1,...,n be any sequence of
scalars such that |bi| ď ε P R`. For any λ ě 0 and k P N we have:

›

›

›

›

›

n
ÿ

i“1

aibi

›

›

›

›

›

2

“

řn
i“1 aia

J
i `λI

‰´1

ď nε2. (98)

Notice that in this proof Σ is the matrix of singular values defined according to standard linear algebra notation and is not
the covariance matrix used elsewhere in this work.

Proof. Consider the matrix A P Rnˆd such that Ari, :s “ aJi , and the vector b P Rn with bris “ bi and consider the full
SVD A “ UΣV J, with U P Rnˆn, Σ P Rnˆd, V P Rdˆd. Here U and V are orthogonal matrices and also define s to
be the number of non-zero singular values, so that s ď mintn, du. For an existence proof of such decomposition see for
example Thm 2.4.1 in (Golub & Van Loan, 2012). By definition, the singular values in Σ are decreasing in value, so we can
write:

UΣV J “
”

U1 U2

ı

»

–

Σ11 Σ12

Σ21 Σ22

fi

fl

»

–

V J1

V J2

fi

fl “ U1Σ11V
J
1 (99)

with Σ11 P Rsˆs, 0 “ Σ12 P Rsˆpd´sq, 0 “ Σ21 P Rpn´sqˆs, 0 “ Σ22 P Rpn´sqˆpd´sq. The reader can verify that
AJb “

řn
i“1 aibi and AJA “

řn
i“1 aia

J
i . Using this, and the definition of

“

AJA` λI
‰´1

-norm we can write:

}

n
ÿ

i“1

aibi}
2
“

řn
i“1 aia

J
i `λI

‰´1 “ }AJb}2“
AJA`λI

‰´1 “ bJA
“

AJA` λI
‰´1

AJb. (100)

Now it’s time to use the SVD of A while recalling V V J “ V JV “ I and UJU “ I , yielding:

bJ UΣV J
loomoon

A

“

V ΣJUJ
looomooon

AJ

UΣV J
loomoon

A

`λ V V J
loomoon

I

‰´1
V ΣJUJ
looomooon

AJ

b

bJUΣV J
“

V ΣJΣV J ` λV V J
‰´1

V ΣJUJb

bJUΣV JV
“

ΣJΣ` λI
‰´1

V JV ΣJUJb

bJUΣ
“

ΣJΣ` λI
‰´1

ΣJUJb. (101)

Since we can write:

ΣJUJb “

»

–

ΣJ11 ΣJ12

ΣJ21 ΣJ22

fi

fl

»

–

UJ1 b

UJ2 b

fi

fl “

»

–

Σ11 0

0 0

fi

fl

»

–

UJ1 b

UJ2 b

fi

fl “

»

–

Σ11U
J
1 b

0

fi

fl (102)
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from eq. (101) we can write:

“

”

bJU1ΣJ11 0
ı

»

–

ΣJ11Σ11 ` λI 0

0 λI

fi

fl

´1 »

–

Σ11U
J
1 b

0

fi

fl

“

”

bJU1ΣJ11 0
ı

»

–

`

ΣJ11Σ11 ` λI
˘´1

0

0 pλIq
´1

fi

fl

»

–

Σ11U
J
1 b

0

fi

fl

“

”

bJU1ΣJ11 0
ı

»

–

`

ΣJ11Σ11 ` λI
˘´1

Σ11U
J
1 b

0

fi

fl

“ bJU1
loomoon

def
“ xJ

ΣJ11

`

ΣJ11Σ11 ` λI
˘´1

Σ11 UJ1 b
loomoon

def
“ x

. (103)

Notice that, by construction, Σ11 an sˆ s is a diagonal matrix filled of non-zeros.

ΣJ11

`

ΣJ11Σ11 ` λI
˘´1

Σ11 “ Σ11

`

Σ2
11 ` λI

˘´1
Σ11. (104)

Indicate with di the i-th diagonal element of the matrix in eq. (104) which reads:

Σ11ri, is
`

Σ11ri, is
2 ` λI

˘´1
Σ11ri, is

def
“ di ď 1. (105)

The inequality is because Σ11ri, is ą 0 by construction and λ ą 0. In essence, we have obtained from eq. (103) the
d-weighted 2-norm of x:

“

s
ÿ

i“1

di pxrisq
2
ď

s
ÿ

i“1

pxrisq
2 (106)

“ }x}22 (107)

“ }UJ1 b}
2
2 (108)

“

›

›

›

›

›

»

–

UJ1 b

0

fi

fl

›

›

›

›

›

2

2

(109)

ď

›

›

›

›

›

»

–

UJ1 b

UJ2 b

fi

fl

›

›

›

›

›

2

2

(110)

“ }UJb}22 (111)

“ bJUUJb (112)

“ bJb (113)

“ }b}22 (114)

“

n
ÿ

i“1

pbrisq2 ď
n
ÿ

i“1

ε2 “ nε2. (115)

C.7. Technical Lemmas

Lemma 9 (Worst-Case Bound). For any vector x P Rd it holds that:

}x}Σ´1
tk
ď

1
?
λ
}x}2. (116)
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Proof. Unless x “ 0, in which case the statement holds, we can write:

}x}Σ´1
tk

}x}2
“

d

xJΣ´1
tk x

xJx
ď

b

λmaxpΣ
´1
tk q “

1
a

λminpΣtkq
“

1
?
λ

(117)

The inequality is due to, for example, the Courant-Fischer minimax theorem (see Theorem 8.1.2 in (Golub & Van Loan,
2012)), and λmax, λmin are the maximum and minimum eigenvalues of the matrix in parenthesis, respectively.
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D. Lower Bounds
In this section we first recall the classical linear bandit “statistical” lower bound (in the absence of misspecification) and the
recent lower bound by (Du et al., 2019) regarding misspecified linear bandits. Then we embed these into an MDP to provide
a reinforcement learning lower bound for our setting. At a high level the construction works at follows: the starting states
is chosen from two sets of non-communicating states: in set L (for linear) the agent encounters a linear bandit problem
(which can be represented within our framework), that induces a Ωp

řH
t“1 dt

?
Kq regret; in set M we use a sequence of

misspecified linear bandit problems, each with misspecification ε (which is also the inherent Bellman error I), and this gives
an expected regret at least of order Ωp

řH
t“1

?
dtIKq for any algorithm. Since the agent is forced to go through either set of

problems a lower bound Ωp
řH
t“1 dt

?
K `

řH
t“1

?
dtIKq follows.

D.1. Statistical Lower Bound

In this section we mention the construction that supports the lower bound of proposition 1. Since our MDP framework
includes bandit problems, it is sufficient to consider a linear bandit problem to achieve the result. We recall the following
result (theorem 24.2 in (Lattimore & Szepesvári, 2020)) with our notation:

Lemma 10 (Stochastic Linear Bandit Unit Ball Lower Bound). Consider the class of linear bandit problems with reward
function φJθ‹` η where η is 1 (conditionally) sub-Gaussian noise. Assume d2

48 ď K where K is the time elapsed and let the
feature set be tφ P Rd | }φ}2 ď 1u. Then for any algorithm there exists a parameter vector θ‹ P Rd with }θ‹}22 “

d2

48K ď 1
such that:

K max
φ

φJθ‹ ´ E

«

K
ÿ

t“1

φJt θ
‹

ff

ě d
?
K{p16

?
3q (118)

where φ1, . . . , φK are the features selected by the algorithm.

The result of proposition 1 is a direct consequence of lemma 10. In particular, consider an MDP with a linear bandit reward
response with features in the unit ball at the initial state sstart and deterministic transitions to a terminal state send where
only one action aend exists. For t ą 1 we choose φtpsend, aendq “ 1 (so d2 “ ¨ ¨ ¨ “ dH “ 1q; no reward is present in send
and the transition is to send. This problem has dimensionality rd “ d`

řH
t“2 1 “ d`H ´ 1, and satisfies assumption 1.

The statement of the theorem follows immediately.

D.2. Misspecification Lower Bound

In this section we recall the bandit lower bound recently proposed by (Du et al., 2019). We follow the presentation in the
technical note by (Lattimore & Szepesvari, 2020) for simplicity of presentation. We use a rescaling argument to ensure the
actual rewards are in r0, as (with a « 1

H ) so that we can later stack H of them while still complying with assumption 1
regarding the maximum return.

Assuming (finitely many) A actions, the reward of playing action a at timestep t in the only possible state is synthetically
summarized as the µa entry in µ P RA. Let the hypothesis classH be the set of all possible reward responsesH def

“ tµ P
RA | µ P r0, asAu. We define the worst-case expected query complexity for any algorithm A to output a δ-correct action
(an action i such that maxj µj ´ µi ď δ):

cδpHq
def
“ inf

A
sup
µPH

qδpA , µq. (119)

where qδpA , µq is the expected query complexity for A to return at least a δ-suboptimal action on the problem instance
identified by µ. The following can be derived by elementary probability using symmetry, where ei is the i-th canonical
vector.

Lemma 11 (Lemma 2.1 in (Lattimore & Szepesvari, 2020)). For any a ą 0,

cδptae1, . . . , aeAuq ě
A` 1

2
, @δ P r0, as. (120)

Next, notice that bigger hypothesis classes can only increase the sample complexity:
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Lemma 12. If U Ă V then cδpUq ď cδpV q.

We have the following consequence of the Johnson-Lindenstrauss lemma (here ε1 is a just an intermediate quantity we define,
it is not the accuracy ε of the predictor as in (Lattimore & Szepesvari, 2020); we define such accuracy later):

Lemma 13 (Lemma 3.1 from (Lattimore & Szepesvari, 2020)). For any ε1 ą 0 and d P rAs such that d ě r
8 lnpAq
pε1q2 s there

exists Φ P RAˆd with unique rows such that (here Φri, :s indicates the i-th row of Φ) for all i ‰ j:

}Φri, :s}2 “ 1 and |Φri, :sJΦrj, :s| ď ε1. (121)

We define the hypothesis class defined by Φ and perturbed in the hypercube r´ε,`εsA:

HεΦ,a
def
“ tpΦθ ` cq P RA | θ P Rd, }θ}2 ď a, c P r´ε, εsAu. (122)

Combining lemmas 11 to 13 gives (here ε is the “approximation error”):

Lemma 14 (Slight generalization of proposition 3.2 in (Lattimore & Szepesvari, 2020)). For any ε ą 0 and d P rAs there

exists Φ P RAˆd with rows of unitary 2-norm such that cδpHεΦ,aq ě A`1
2 for any δ P r0, as with a “ ε

b

d´1
8 lnpAq .

Proof. Fix ε1 “
b

8 lnA
d´1 and let Φ P RAˆd be the matrix given in lemma 13 (as function of ε1). Denote θ “ aΦri, :s for a

positive a P R. Lemma 13 (in particular, eq. (121)) ensures

|Φri, :sJθ| “ a|Φri, :sJΦri, :s| “ a

|Φrj, :sJθ| “ a|Φrj, :sJΦri, :s| ď aε1 j ‰ i. (123)

Therefore, fix any index i P rAs, which identifies a canonical vector ei P RA, i.e., a vector with a 1 in position i and
0 elsewhere. We have that θ “ aΦri, :s satisfies θ P Rd, }θ}2 “ a. In addition there exists c P r´aε1, aε1sA such that
Φθ ` c “ aei (by leveraging eq. (123)). Therefore aei P Haε

1

Φ,a. In other words, there exists a matrix Φ, function of ε1 and
an appropriate θ, which depends on i, such that Φθ can approximately represent the (scaled) canonical vector aei up to

an additive error of order aε1 def“ ε. As explained, we can set ε1 “
b

8 lnA
d´1 to obtain this; therefore ε “ aε1 “ a

b

8 lnA
d´1

yields a “ ε
b

d´1
8 lnpAq . Since we have reasoned for an arbitrary i, we have that te1, . . . , eAu Ă HεΦ,a. At this point invoke

lemmas 11 and 12 to obtain cδpHεΦ,aq ě A`1
2 for δ P r0, as.

Remark on regret By the symmetry of the problem, a fraction of p1´ 1
A q queries in expectation must be allocated to

suboptimal actions with reward “ 0, equalling a loss of a compared to the best rewarding (and only rewarding) action. This
implies that, up K ď A`1

2 (say A “ 2K ´ 1) where K is the total number of bandit rounds, we must have (for A ě 2):

@A , E
”

REGRETpA q
ı

ě p1´
1

2K ´ 1
q

looooooomooooooon

expected fraction of
non-optimal arms pulled

ˆ a
loomoon

loss of any suboptimal arm

ˆ K
loomoon

# rounds

ě
1

2
ˆ

˜

ε

d

d´ 1

8 lnpAq

¸

ˆK “ Ωp
?
dεKq.

(124)

Therefore we have the proved the following proposition (notice that this is a slight generalization of (Du et al., 2019), in that
we allow ε to be smaller than 1?

d
and study the best achievable regret).

Proposition 6 (Misspecified Linear Bandit Regret Lower Bound). There exists a feature map φ : AÑ Rd that defines a
misspecified linear bandit classM such that every bandit instance in that class has reward response:

µa “ φJa θ ` ca (125)

for any action a (here ca P r0, εs is the deviation from linearity and µa P r0, 1s) and such that the expected regret of any
algorithm on at least a member of the class (for A ě 3) up to round K is Ωp

?
dεKq.
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D.3. Lower Bound Construction

In the two prior sections we recalled bandit lower bounds for estimation in noisy and misspecified linear bandits. Combining
the two yields the result for our setting.

More precisely we construct a class of MDPs where each MDP comprises two parts: the noisy “linear” part of the MDP,
denoted with L, that contains a one-shot bandit problem at timestep t “ 1 and no reward for later timesteps t “ 2, ¨ ¨ ¨ , H
which complies with linearity and gives the statistical lower bound; the “misspecification” part, denoted with M which
deviates from linearity by ε and therefore induces the misspecification lower bound. Since the starting state is arbitrary (and
it can even be chosen adversarially) then alternating the starting state from the L to the M part of the MDP gives the result.
More precisely, let there be two possible starting states sM1 and sL1 , and let the starting state be sM1 (sL1 , respectively) every
other episode.

D.3.1. MISSPECIFIED CHAIN - REWARDS AND DYNAMICS

If sM1 is the starting state then the agents enters into the “misspecified” area of the MDP, made of linear bandits with a
similar construction as in (Lattimore & Szepesvari, 2020; Du et al., 2019). In particular, we have the states tsMt ut“1,...,H .
Any action from a generic sMt gives a deterministic transition to the state indexed sMt`1, for any t P rHs. There are A actions
in every state. The rewards upon taking action a in timestep t P 2, . . . ,H is µta P r0, 1

2H s Ă RA but is 0 in sM1 .

D.3.2. MISSPECIFIED CHAIN - FEATURIZATION

The feature extractor for t “ 1 is φ1ps
M
1 , ¨q “ r

d
hkkkikkkj

0, ¨ ¨ ¨ , 0, 1{2s which has dimension d` 1; there is only one action available
at the starting state. For t ą 2 the feature extractor is φtpsMt , aq “

1
2 rΦra, :s, 1s, of dimension dt. The construction is such

that Φ is used for the reward response, and the bias is used to represent the next-state value function.

Here Φ is the matrix described in lemma 13 (i.e., with 2-norm of the rows of value 1). Notice that @a, }φtpsMt , aq}2 ď
Lφ “ 1 satisfies our hypothesis on the feature bound.

D.3.3. LINEAR BANDITS - REWARDS AND DYNAMICS

When starting in state sL1 , the first step is a linear bandit problem in terms of reward response (in particular with response
φpsL1 , aq

Jrθ‹,L, 0s ` η with 1-subGaussian noise and a unique transition to the state sL2 . In particular, the feature φpsL1 , ¨q
has the last component equal to zero. Later states (so for t “ t2, ¨ ¨ ¨ , Hu) have no rewards and have deterministic transition
to from sLt to sLt`1.

D.3.4. LINEAR BANDITS - FEATURIZATION

The features in sL1 have the first d components on a d dimensional hypersphere, as per the construction in Theorem 24.2
of (Lattimore & Szepesvári, 2020) but divided by 2, and the last component (the “bias”) is set equal to 1{2; the fact
}φpsL1 , aq}2 ď Lφ “ 1 follows. At later timesteps (i.e., t ě 2) we set φLt ps

L
t , ¨q “ 0 P Rdt .

D.3.5. COMPUTATION OF INHERENT BELLMAN ERROR

Define the value function classes, for each t P rHs:

Qt “
!

ps, aq ÞÑ φtps, aq
Jθt such that |φtps, aq

Jθt| ď
H ´ t` 1

H

)

(126)

Vt “
!

psq ÞÑ max
a

φtps, aq
Jθt such that |φtps, aq

Jθt| ď
H ´ t` 1

H

)

(127)

Notice that at any timestep t P rHs the only state possible is sMt or sLt depending on whether the starting state was sM1 or
sL1 , respectively.
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Inherent Bellman Error at Timestep t “ 1 Notice that the model is linear at timestep t “ 1: for any V2 P V2 we can
write:

pT1V2qps
L
1 , aq “ φ1ps

L
1 , aq

Jrθ‹,L, 0s (128)

pT1V2qps
M
1 , aq “ V2ps

M
2 q. (129)

Notice that that θ1 “ rθ
‹,L, 2V2ps

L
2 qs can precisely represent such backup:

φ1ps
L
1 , aq

Jrθ‹,L, 2V2ps
L
2 qs “ φ1ps

L
t , aqr1 : dsJθ‹,L ` 0 ˚ 2V2ps

M
2 q “ φ1ps

L
1 , aq

Jrθ‹,L, 0s (130)

φ1ps
M
1 , aqJrθ‹,L, 2V2ps

M
2 qs “ 0Jθ‹1

,L
`

1

2
˚ 2V2ps

M
2 q “ V2ps

M
2 q. (131)

Finally, notice that }θ2}
2
2 “ }rθ‹,L, 2V2ps

L
2 qs}

2
2 “ }θ‹,L}22 ` p2V2ps

L
2 qq

2 ď 1 ` 2 ď d since }θ‹,L}2 ď d
2

48KL
as the

construction is the same as in lemma 10 (here KL is the number of episodes spent in section L of the MDP). The condition
d ě 3 will be put as assumption on theorem 2.

Inherent Bellman Error at Timestep t ą 1 We show that the inherent Bellman error is I “ ε
2H (this will be the value

of the inherent Bellman error for the full MDP). For any timestep t “ 2, . . . ,H (so excluding t “ 1) and Vt`1 P Vt`1:

pTtVt`1qps
L
t , aq “ 0 (132)

pTtVt`1qps
M
t , aq “ µta ` Vt`1ps

M
t`1q. (133)

where µta P Hε
Φ,a with a “ ε

b

d´1
8 lnpAq .

The feature matrix (for all the A actions) is 1
2 rΦ,1s in state sMt and r0, . . . , 0s for the only action in state sLt . Using the

above display, we can compute the θt that minimizes the largest of the two following quantities (to compute a bound on I):

}r0, ¨ ¨ ¨ , 0sJθt ´ Vt`1ps
L
t`1q

looooomooooon

“0

}8 (134)

}
1

2
rΦ,1sθt ´

`

µt ` Vt`1ps
M
t`1q1

˘

}8 (135)

The first is “ 0 for all choices of θt and θt`1. For the second, use the triangle inequality:

}
1

2
rΦ,1sθt ´

`

µt ` Vt`1ps
M
t`1q1

˘

}8 ď }
1

2
Φθtr1 : dt ´ 1s ´ µt}8 ` }

1

2
1θtrdts ´ Vt`1ps

M
t`1q1}8 (136)

The second term can be made 0 by choosing θtrdts “ 2Vt`1ps
M
t`1q P r0, 1s. The first term can be made ď ε (with ε to be

defined in few steps). This implies that I “ ε; here ε is an upper bound on the approximation error, and in particular, ε can

be chosen to satisfy10 1
2H “ ε

b

dt´2
8 lnpAq by choosing a “ 1

2H in lemma 14. In other words, I ď 1
2H

b

8 lnpAq
dt´2 .

D.3.6. REGRET CALCULATION

Assume that in odd-numbered episodes the starting state is sL1 and in even-numbered episodes the starting states is sM1 . Then
lemma 10 ensures that the expected regret up to episode K is at least Ωpd

?
Kq (in particular we choose d “ d1 “

řH
t“2 dt).

At the same time, the M part of the chain contains H misspecified problems (which can be chosen independently) and
the expected regret must be ΩpKH q in each of the bandit (assuming K ď A`1

2 and A ě 2) using lemma 14 with a “ 1
2H

and the remark on regret below such proposition. Since the misspecified bandits can be chosen independently, the regret
up to episode K on section M of the MDP is ΩpH ˆ K

H q. Given the relation a “ ε
b

dt´2
8 lnpAq to satisfy in lemma 14 with

a “ 1
2H , we can write the regret in section M of the MDP as ΩpH ˆ K

H q “ Ωp
řH
t“2

?
dt ˆ

K?
dtH

q “ Ωp
řH
t“2

?
dt ˆ εKq.

However, we established ε “ I , so an expected regret Ωp
řH
t“2

?
dt ˆ IKq follows. Since the dimensions dt’s are arbitrary,

we can choose
řH
t“2 dt “ d1 “ d for simplicity. This leads to the following theorem:

10Notice that the last component of the feature is reserved for the bias
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D.3.7. THEOREM STATEMENT

Let Mpθ‹,L, µ2, . . . , µHq be the MDP described in appendix D.3: this MDP is function of a certain feature representation φ
as described in appendices D.3.2 and D.3.4, where θ‹,L is the parameter for the linear bandit response of appendix D.3.3
and the µt’s are the reward response vectors for the misspecified subpart of the MDP as described in appendix D.3.1. Next,
consider the setM of MDPs (which depends on the horizon H and misspecification ε) defined by the MDP just explained
with varying parameters:

M def
“ tMpθ‹,L, µ2, . . . , µHq | }θ

‹,L}2 ď 1, µt P HεΦt,a, t “ 2, . . . ,Hu

with a “ ε
b

dt´2
8 lnpAq for any t “ 2, . . . ,H andHεΦt,a

as described in eq. (122). As computed in appendix D.3.5 we have that
I “ ε for any MDP in the class. Notice that that every MDP in the class is defined through certain feature maps φ1, . . . , φH ,
which are shared among all MDPs in the class. We have proved the following:

Theorem 2 (Lower Bound for Inherent Bellman Error Setting). There exist feature maps φ1, . . . , φH that define an
MDP class M such that every MDP in that class satisfies assumption 1 with inherent Bellman error I and such that
the expected regret of any algorithm on at least a member of the class (for A ě 3, dt ě 3,K “ Ωpp

řH
t“1 dtq

2q) is
Ωp

řH
t“1 dt

?
K `

řH
t“1

?
dtIKq, that is:

min
A

max
MPM

K
ÿ

k“1

pV ‹1 ´ V
πk
1 q ps1kq

“ Ωp
H
ÿ

t“1

dt
?
K `

H
ÿ

t“1

a

dtIKq.
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E. Misspecified Contextual Linear Bandit
We briefly verify corollary 1. In particular, assumption 1 is satisfied since the maximum return is 1 in this setting; the features
are certainly }φp¨, ¨q}2 ď 1 by assumption; the rewards are 1 sub-Gaussian by assumption and there are no transitions;

}θ‹}2 ď
?
d and finally B def

“ tθ P Rd | }θ}2 ď
?
du. Then the optimization program that ELEANOR solves reads (after

simplification and removal of the constraint θ P B):

max
ξ,pθ,θ

max
a

φpsk, aq
J

«˜

k´1
ÿ

i“1

φJi φ
J
i ` λI

¸´1 k´1
ÿ

i“1

φiri
loooooooooooooooooomoooooooooooooooooon

pθ

`ξ

ff

subject to

}ξ}Σk
ď
?
αk

It is possible to further simplify the objective, by “aligning” ξ to φpsk, aq, obtaining:

max
ξ,pθ,θ

max
a

«

φpsk, aq
J

˜

k´1
ÿ

i“1

φJi φ
J
i ` λI

¸´1 k´1
ÿ

i“1

φiri ` }φpsk, aq}Σ´1
k
}ξ}Σk
loomoon

def
“
?
αk

ff

which is computationally tractable (depending on the size of the action space). This coincides with the classical LINUCB
algorithm with

?
αk “ rOp

?
dq exploration parameter when I “ 0; otherwise, the exploration parameter becomes

?
αk “ rOp

?
d`

?
kIq. In other words, we need to add

?
kI to compensate for misspecification. In fact, it is possible to

prove that LINUCB can fail in misspecified linear bandit, unless the
?
kI correction is made to the exploration parameter

?
αk. Finally, such correction partially appeared in (Jin et al., 2020; Zanette et al., 2020) for a different setting, but here we

use a tighter projection argument to save a
?
d factor (our projection argument can be applied to their analyses as well).


