
f -EBM: Training EBMs with f -Divergence Minimization

A. Proof of Theorem 1
Assumption 1. The function qθ(x)f∗(Tω(x)) and its partial derivative∇θqθ(x)f∗(Tω(x)) are continuous w.r.t. θ and x.

Theorem 1. For a θ-parametrized energy-based model qθ(x) = exp(−Eθ(x))
Zθ

, under Assumption 1, the gradient of the
variational representation of f -divergence (Equation (3)) w.r.t. θ can be written as:

−∇θEqθ(x)[f
∗(Tω(x))] = Eqθ(x)[∇θEθ(x)f∗(Tω(x))]− Eqθ(x)[∇θEθ(x)] · Eqθ(x)[f

∗(Tω(x))]

When we can obtain i.i.d. samples from qθ, we can get an unbiased estimation of the gradient.

Proof. Under Assumption 1, with Leibniz integral rule, we have:

−∇θEqθ(x)[f
∗(Tω(x))] = −

∫
∇θqθ(x)f∗(Tω(x))dx

= −
∫
qθ(x)

∇θqθ(x)

qθ(x)
f∗(Tω(x))dx

= −
∫
qθ(x)∇θ log qθ(x)f∗(Tω(x))dx

= −
∫
qθ(x) [−∇θEθ(x)−∇θ logZθ] f∗(Tω(x))dx

=

∫
qθ(x)∇θEθ(x)f∗(Tω(x))dx+∇θ logZθ ·

∫
qθ(x)f∗(Tω(x))dx

=

∫
qθ(x)∇θEθ(x)f∗(Tω(x))dx+

∫
exp(−Eθ(x))(−∇θEθ(x))dx

Zθ
·
∫
qθ(x)f∗(Tω(x))dx

= Eqθ(x)[∇θEθ(x)f∗(Tω(x))]− Eqθ(x)[∇θEθ(x)] · Eqθ(x)[f
∗(Tω(x))]

We can simply use i.i.d. samples from qθ to get an unbiased estimation of the first term, and we introduce the following
lemma for estimating the second term Eqθ(x)[∇θEθ(x)] · Eqθ(x)[f∗(Tω(x))].

Lemma 3. Let P denote a probability distribution over sample space X and g, h : X → R are functions. The following
empirical estimator is unbiased with respect to EP [g(X)] · EP [h(X)]:

1

nm

n∑
i=1

g(xi) ·
m∑
i=1

h(yj) (21)

where x1:n ∼ P , y1:m ∼ P are two independent sets of i.i.d. samples from P .

Proof. Let X1:n and Y1:m denote the random variables corresponding to the sampling process for x1:n, y1:m respectively.
Let Pn and Pm denote the probability distribution for X1:n and Y1:m. Then we have:

EPn
EPm

[
1

nm

n∑
i=1

g(Xi) ·
m∑
i=1

h(Yj)

]
(22)

= EPn

[
1

n

n∑
i=1

g(Xi) · EPm

[
1

m

m∑
i=1

h(Yj)

]]
(23)

= EPn

[
1

n

n∑
i=1

g(Xi) · EP [h(X)]

]
(24)

= EP [g(X)] · EP [h(X)] (25)

where the first equality comes from the law of total expectation and the fact that X1:n and Y1:m are independent. Therefore,
the estimator is unbiased.

Lemma 3 shows that we can use i.i.d. samples from qθ to get an unbiased estimation of the second term.

f -EBM: Training EBMs with f -Divergence Minimization

B. Proof of Theorem 2
Theorem 2. Let P and Q be two probability measures over the Borel σ-algebra on domain X with densities p, q and
P � Q. Additionally, let q be an energy-based distribution, q(x) = exp(−E(x))/Zq. For any class of functions H
mapping from X to R such that the expectations in the following equation are finite and ∀x ∈ X ,H contains an element
H(x) = log (p(x)Zq), then we have

Df (P‖Q) = sup
H∈H

Ep(x)[f ′(exp(H(x) + E(x)))]−

Eq(x)[f∗(f ′(exp(H(x) + E(x))))]

where the supreme is attained at H∗(x) = log (p(x)Zq).

Proof. First, we define a function class T̂ = {f ′(r)|r : X → R+}. Since T̂ is a subset of T (in Lemma 1) and the optimal
T ? = f ′(p/q) is an element of T̂ , from Lemma 1, we have:

Df (P‖Q) = sup
T∈T̂

Ep(x)[T (x)]− Eq(x)[f∗(T (x))]. (26)

Without loss of generality, we can reparametrize all functions T ∈ T̂ with H such that T (x) = f ′(exp(H(x) +E(x))) for
all x ∈ X , since the transformations f ′(·), exp(·) and addition by E(x) are all bijections (note that f is strictly convex and
differentiable). The optimal H?(x) then satisfies:

∀x ∈ X , f ′(exp(H?(x) + E(x))) = T ?(x) = f ′(p(x)/q(x))

From the bijectivity of f ′(·), we have:

H?(x) = log p(x)− log q(x)− E(x)

= log p(x) + E(x) + logZq − E(x) = log(p(x)Zq),

C. Proof of Theorem 3
Assumption 2. The function p(x)f ′(exp(Hω(x) +Eθ(x))) and its partial derivative ∇θf ′(exp(Hω(x) +Eθ(x))) are
continuous w.r.t. θ and x.

Assumption 3. The function qθ(x)f∗(f ′(exp(Hω(x) +Eθ(x)))) and its partial derivative∇θqθ(x)f∗(f ′(exp(Hω(x) +
Eθ(x)))) are continuous w.r.t. θ and x.

Theorem 3. For a θ-parametrized energy-based model qθ(x) = exp(−Eθ(x))
Zθ

and a fixed ω, under Assumptions 2 and 3,
the gradient of Lf -EBM(θ,ω) (the objective in Equation (14)) with respect to θ can be written as:

∇θLf -EBM(θ,ω) = Ep(x)[∇θf ′(exp(fω(x) + Eθ(x)))] + Eqθ(x)[Fθ,ω(x)∇θEθ(x)]−
Eqθ(x)[∇θFθ,ω(x)]− Eqθ(x)[∇θEθ(x)] · Eqθ(x)[Fθ,ω(x)]

where Fθ,ω(x) = f∗(f ′(exp(Hω(x)+Eθ(x)))). When we can obtain i.i.d. samples from p and qθ , we can get an unbiased
estimation of the gradient.

Proof. Under Assumption 2, with Leibniz integral rule, for the first term in Equation (14), we have:

∇θEp(x)[f ′(exp(Hω(x) + Eθ(x)))] =

∫
p(x)∇θf ′(exp(Hω(x) + Eθ(x)))dx = Ep(x)[∇θf ′(exp(fω(x) + Eθ(x)))]

f -EBM: Training EBMs with f -Divergence Minimization

For notational simplicity, let us use Fθ,ω(x) to denote f∗(f ′(exp(Hω(x) +Eθ(x)))). Under Assumption 3, with Leibniz
integral rule, for the second term, we have:

−∇θEqθ(x)[f
∗(f ′(exp(Hω(x) + Eθ(x))))]

=−
∫
∇θ(qθ(x)Fθ,ω(x))dx

=−
∫
Fθ,ω(x)∇θqθ(x)dx−

∫
qθ(x)∇θFθ,ω(x)dx

=−
∫
qθ(x)Fθ,ω(x)

∇θqθ(x)

qθ(x)
dx−

∫
qθ(x)∇θFθ,ω(x)dx

=−
∫
qθ(x)Fθ,ω(x)∇θ log qθ(x)dx−

∫
qθ(x)∇θFθ,ω(x)dx

=−
∫
qθ(x)Fθ,ω(x) [−∇θEθ(x)−∇θ logZθ] dx−

∫
qθ(x)∇θFθ,ω(x)dx

=

∫
qθ(x)Fθ,ω(x)∇θEθ(x)dx−

∫
qθ(x)∇θFθ,ω(x)dx+∇θ logZθ ·

∫
qθ(x)Fθ,ω(x)dx

=

∫
qθ(x)Fθ,ω(x)∇θEθ(x)dx−

∫
qθ(x)∇θFθ,ω(x)dx+

∫
exp(−Eθ(x))(−∇θEθ(x))dx

Zθ
·
∫
qθ(x)Fθ,ω(x)dx

= Eqθ(x)[Fθ,ω(x)∇θEθ(x)]− Eqθ(x)[∇θFθ,ω(x)]− Eqθ(x)[∇θEθ(x)] · Eqθ(x)[Fθ,ω(x)]

Similar to the proof in Appendix A, we can use i.i.d. samples from p and qθ to get an unbiased estimation of the gradient.

D. Proof for the Local Convergence of f -EBM
D.1. Non-linear Dynamical Systems

In this section, we present a brief introduction of non-linear dynamical system theory (Hassan, 1996). For a comprehensive
description, please refer to (Hassan, 1996; Nagarajan & Kolter, 2017). We further generalize some of the theories which
will be useful for establishing the local convergence property of f -EBM later.

Consider a system consisting of variables φ ∈ Φ ⊆ Rn whose time derivative is defined by the vector field v(φ):

φ̇ = v(φ) (27)

where v : Φ→ Rn is a locally Lipschitz mapping from a domain Φ into Rn.

Suppose φ∗ is an equilibrium point of the system in Equation (27), i.e., v(φ∗) = 0. Let φt denote the state of the system at
time t. To begin with, we introduce the following definition to characterize the stability of φ∗:

Definition 3 (Definition 4.1 in (Hassan, 1996)). The equilibrium point φ∗ for the system defined in Equation (27) is

• stable if for each ε > 0, there is δ = δ(ε) > 0 such that

‖φ0 − φ∗‖ < δ =⇒ ∀t ≥ 0, ‖φt − φ∗‖ < ε.

• unstable if not stable.

• asymptotically stable if it is stable and δ > 0 can be chosen such that

‖φ0 − φ∗‖ < δ =⇒ lim
t→∞

φt = φ∗.

• exponentially stable if it is asymptotically stable and δ, k, λ > 0 can be chosen such that:

‖φ0 − φ∗‖ < δ =⇒ ‖φt‖ ≤ k‖φ0‖ exp(−λt).

f -EBM: Training EBMs with f -Divergence Minimization

The system is stable if for any value of ε, we can find a value of δ (possibly dependent on ε), such that a trajectory starting in
a δ neighborhood of the equilibrium point will never leave the ε neighborhood of the equilibrium point. However, such
a system may either converge to the equilibrium point or orbit within the ε ball. By contrast, asymptotic stability is a
stronger notion of stability in the sense that trajectories starting in a δ neighborhood of the equilibrium will converge to the
equilibrium point in the limit t→∞. Moreover, if φ∗ is asymptotically stable, we call the algorithm obtained by iteratively
applying the updates in Equation (27) locally convergent to φ∗. If φ∗ is exponentially stable, we call the corresponding
algorithm linearly convergent to φ∗.

Now we introduce the following theorem, which is central for studying the asymptotic stability of a system:

Theorem 4 (Theorem 4.15 in (Hassan, 1996)). Let φ∗ be an equilibrium point for the non-linear system

φ̇ = v(φ) (28)

where v : Φ→ Rn is continuously differentiable and Φ is a neighborhood of φ∗. Let J be the Jacobian of the system in
Equation (28) at the equilibrium point:

J =
∂v(φ)

∂φ

∣∣∣∣∣
φ=φ∗

(29)

Then, we have:

• The equilibrium point φ∗ is asymptotically stable and exponentially stable if J is a Hurwitz matrix, i.e., Re(λ) < 0 for
all eigenvalues λ of J .

• The equilibrium point φ∗ is unstable if Re(λ) > 0 for one or more of the eigenvalues of J .

Proof. See proof for Theorem 4.7, Theorem 4.15 and Corollary 4.3 in (Hassan, 1996).

With Theorem 4, the stability of an equilibrium point can be analyzed by examining if all the eigenvalues of the Jacobian
v′(φ)|φ=φ∗ have strictly negative real part.

In the following, we will use λmax(·) and λmin(·) to denote the largest and smallest eigenvalues of a non-zero positive
semi-definite matrix. Now we introduce the following theorem to upper bound the real part of the eigenvalues of a matrix
with a specific form:

Theorem 5. Suppose J ∈ R(m+n)×(m+n) is of the following form:

J =

[
0 P
−P> −Q

]
where Q ∈ Rn×n is a symmetric real positive definite matrix and P> ∈ Rn×m is a full column rank matrix. Then, for
every eigenvalue λ of J , Re(λ) < 0. More precisely, we have:

• When Im(λ) = 0,

Re(λ) ≤ − λmin(Q)λmin(PP>)

λmin(Q)λmax(Q) + λmin(PP>)

• When Im(λ) 6= 0,

Re(λ) ≤ −λmin(Q)

2

Proof. See Lemma G.2 in (Nagarajan & Kolter, 2017).

This theorem is useful for proving the local convergence of GANs. To prove the stability of f -EBM in the following sections,
we need the following generalized theorem:

f -EBM: Training EBMs with f -Divergence Minimization

Theorem 6. Suppose J ∈ R(m+n)×(m+n) is of the following form:

J =

[
−S P
−P> −Q

]
where S ∈ Rm×m is a symmetric real positive semi-definite matrix,Q ∈ Rn×n is a symmetric real positive definite matrix,
P> ∈ Rn×m is a full column rank matrix. Then, for every eigenvalue λ of J , Re(λ) < 0. More precisely, we have:

• When Im(λ) = 0,

λ1 < −
λmin(Q)λmin(PP>)

λmin(Q)λmax(S,Q) + λmin(PP>)
< 0

where λmax(S,Q) = max(λmax(S), λmax(Q)).

• When Im(λ) 6= 0,

λ1 ≤ −
λmin(S) + λmin(Q)

2
< 0

Proof. We prove this theorem in a similar way to the proof for Theorem 5. Consider the following generic eigenvector
equation: [

−S P
−P> −Q

] [
a1 + ia2

b1 + ib2

]
= (λ1 + iλ2)

[
a1 + ia2

b1 + ib2

]
where ai, bi, λi are all real valued and the vector is normalized, i.e., ‖a1‖2 + ‖a2‖2 + ‖b1‖2 + ‖b2‖2 = 1. The above
equation can be rewritten as:[

−Sa1 + Pb1 + i(−Sa2 + Pb2)
−P>a1 −Qb1 + i(−P>a2 −Qb2)

]
=

[
λ1a1 − λ2a2 + i(λ1a2 + λ2a1)
λ1b1 − λ2b2 + i(λ1b2 + λ2b1)

]
By equating the real and complex parts, we get:

−Sa1 + Pb1 =λ1a1 − λ2a2 (30)

−P>a1 −Qb1 =λ1b1 − λ2b2 (31)
−Sa2 + Pb2 =λ1a2 + λ2a1 (32)

−P>a2 −Qb2 =λ1b2 + λ2b1 (33)

By multiplying the Equations (30), (31), (32), (33) by a>1 , b
>
1 ,a

>
2 , b

>
2 and adding them together, we get:

− a>1 Sa1 + a>1 Pb1 − b>1 P>a1 − b>1 Qb1 − a>2 Sa2 + a>2 Pb2 − b>2 P>a2 − b>2 Qb2
=λ1a

>
1 a1 − λ2a>1 a2 + λ1b

>
1 b1 − λ2b>1 b2 + λ1a

>
2 a2 + λ2a

>
2 a1 + λ1b

>
2 b2 + λ2b

>
2 b1

which simplifies to

−a>1 Sa1 − a>2 Sa2 − b>1 Qb1 − b>2 Qb2 = λ1(a>1 a1 + b>1 b1 + a>2 a2 + b>2 b2) = λ1

Because S � 0, Q � 0, −a>1 Sa1 − a>2 Sa2 − b>1 Qb1 − b>2 Qb2 ≤ 0, where the equality holds only if b1 = 0, b2 = 0
(as well as −a>1 Sa1 − a>2 Sa2 = 0). Next we show that b1 = 0, b2 = 0 is contradictory with the condition that P> is a
full column rank matrix. First, when −a>1 Sa1 − a>2 Sa2 − b>1 Qb1 − b>2 Qb2 = 0, we have λ1 = 0. Applying these to
Equations (31) and (33), we get P>a1 = 0 and P>a2 = 0. Since one of a1 and a2 is non-zero (otherwise the eigenvector
is zero), this implies P> is not a full column rank matrix, which is contradictory with the condition that P> has full column
rank. Consequently, −a>1 Sa1 − a>2 Sa2 − b>1 Qb1 − b>2 Qb2 = λ1 < 0.

Now we proceed to get a tighter upper bound on the real part of the eigenvalue λ1. By multiplying Equations (30) and (32)
by −a>2 and a>1 and adding them together, we get:

a>2 Sa1 − a>2 Pb1 − a>1 Sa2 + a>1 Pb2 = −λ1a>2 a1 + λ2a
>
2 a2 + λ1a

>
1 a2 + λ2a

>
1 a1

f -EBM: Training EBMs with f -Divergence Minimization

which simplifies to:

−a>2 Pb1 + a>1 Pb2 = λ2a
>
2 a2 + λ2a

>
1 a1 (34)

Similarly, by multiplying Equations (31) and (33) by −b>2 and b>1 and adding them together, we get:

b>2 P
>a1 + b>2 Qb1 − b>1 P>a2 − b>1 Qb2 = −λ1b>2 b1 + λ2b

>
2 b2 + λ1b

>
1 b2 + λ2b

>
1 b1 (35)

which simplifies to:

b>2 P
>a1 − b>1 P>a2 = λ2b

>
2 b2 + λ2b

>
1 b1 (36)

With Equation (34) and Equation (36), we have:

λ2(‖a1‖2 + ‖a2‖2) = λ2(‖b1‖2 + ‖b2‖2)

which implies that either ‖a1‖2 + ‖a2‖2 = ‖b1‖2 + ‖b2‖2 = 1/2 or λ2 = 0.

In the first case (λ2 6= 0 and ‖a1‖2 +‖a2‖2 = ‖b1‖2 +‖b2‖2 = 1/2), from−a>1 Sa1−a>2 Sa2−b>1 Qb1−b>2 Qb2 = λ1,
we get an upper bound:

λ1 ≤ −
λmin(S) + λmin(Q)

2

This upper bound is strictly negative since λmin(S) ≥ 0 and λmin(Q) > 0.

Now we introduce the following lemma which is useful for deriving the upper bound of λ1 in the second case:

Lemma 4. Let S � 0 andQ � 0 be two real symmetric matrices. If a>Sa+ b>Qb = c, then a>S>Sa+ b>Q>Qb ∈
[c ·min(λmin(S), λmin(Q)), c ·max(λmax(S), λmax(Q))].

Proof. Let S = USΛSU
>
S andQ = UQΛQU

>
Q be the eigenvalue decompositions of S andQ. Then, we have

c = a>Sa+ b>Qb = a>USΛSU
>
S a+ b>UQΛQU

>
Qb = x>ΛSx+ y>ΛQy

where x = U>S a and y = U>Qb. Therefore, we have:

c =
∑
i

x2iλ
i
S +

∑
j

y2jλ
j
Q

Similarly, we have:

a>S>Sa+ b>Q>Qb =a>USΛSU
>
S USΛSU

>
S a+ b>UQΛQU

>
QUQΛQU

>
Qb

=
∑
i

x2i (λ
i
S)2 +

∑
j

y2j (λjQ)2

which differs from c by a multiplicative factor within [min(λmin(S), λmin(Q)),max(λmax(S), λmax(Q))].

In the second case, the imaginary part of the eigenvalue is zero (λ2 = 0), which implies the imaginary part of the eigenvector
must also be zero, a2 = b2 = 0. Applying this to Equations (30), (31), (32), (33), we get:

−Sa1 + Pb1 =λ1a1

−P>a1 −Qb1 =λ1b1

Rearranging the above equations, we get:

Pb1 =(λ1I + S)a1

−P>a1 =(λ1I +Q)b1

f -EBM: Training EBMs with f -Divergence Minimization

Squaring both sides of the equations, we get:

b>1 P
>Pb1 = a>1 (λ21I + 2λ1S + S>S)a1 = λ21‖a1‖2 + 2λ1a

>
1 Sa1 + a>1 S

>Sa1

a>1 PP
>a1 = b>1 (λ21I + 2λ1Q+Q>Q)b1 = λ21‖b1‖2 + 2λ1b

>
1 Qb1 + b>1 Q

>Qb1

Summing these two equations together, using the fact that −a>1 Sa1 − b>1 Qb1 = λ1 and ‖a1‖2 + ‖b1‖2 = 1, we get:

b>1 P
>Pb1 + a>1 PP

>a1 =λ21(‖a1‖2 + ‖b1‖2)− 2λ21 + a>1 S
>Sa1 + b>1 Q

>Qb1

=− λ21 + a>1 S
>Sa1 + b>1 Q

>Qb1

Let λmax(S,Q) denote max(λmax(S), λmax(Q)). With Lemma 4, we have:

b>1 P
>Pb1 + a>1 PP

>a1 ≤ −λ21 − λ1λmax(S,Q) (37)

Furthermore, we have:

−λ1 = a>1 Sa1 + b>1 Qb1 ≥ λmin(Q)‖b1‖2 = λmin(Q)(1− ‖a1‖2) =⇒ ‖a1‖2 ≥ 1 +
λ1

λmin(Q)

Note that λ1 can either satisfy λ1 ≤ −λmin(Q) or −λmin(Q) < λ1 < 0. In the first scenario, we already obtain an upper
bound: λ1 ≤ −λmin(Q). So we focus on deriving an upper bound for the second scenario. From Equation (37), we have:

− λ21 − λ1λmax(S,Q) ≥ a>1 PP>a1 ≥ λmin(PP>)‖a1‖2 ≥ λmin(PP>)

(
1 +

λ1
λmin(Q)

)
=⇒− λ1

(
λ1 + λmax(S,Q) +

λmin(PP>)

λmin(Q)

)
≥ λmin(PP>)

=⇒− λ1
(
λmax(S,Q) +

λmin(PP>)

λmin(Q)

)
> λmin(PP>) (38)

where the last implication uses the fact that λ1 < 0. From Equation (38), we get an upper bound for λ1:

λ1 < −λmin(Q)
λmin(PP>)

λmin(Q)λmax(S,Q) + λmin(PP>)

Since the fraction in above equation lies in (0, 1), we will use this as the upper bound for the second case (λ2 = 0). Also
note that this upper bound is strictly negative, since λmax(S,Q) ≥ λmin(Q) > 0 and λmin(PP>) > 0.

D.2. Notations and Setup

First, we can reformulate the minimax game defined in Equation (14) as:

min
θ

max
ω

V (θ,ω) = min
θ

max
ω

Ep(x)[A(Hω(x) + Eθ(x))]− Eqθ(x)[B(Hω(x) + Eθ(x))] (39)

where the functions A(u) and B(u) are defined as:

A(u) = f ′(exp(u)), B(u) = f∗(f ′(exp(u)))− f∗(f ′(1)) (40)

withB(0) = 0. Since f∗(f ′(1)) is a constant, and Eqθ(x)[B(Hω(x)+Eθ(x))] = Eqθ(x)[f∗(f ′(exp(Hω(x)+Eθ(x))))]−
f∗(f ′(1)), the above formulation is equivalent to the original f -EBM minimax game in Equation (14) (up to a constant that
does not depend on θ and ω).

We have the following theorem to characterize the properties of functions A(u) and B(u):

Theorem 7. For any f -divergence with closed, strictly convex and third-order differentiable generator function f , functions
A(u), B(u) defined as:

A(u) = f ′(exp(u)), B(u) = f∗(f ′(exp(u)))− f∗(f ′(1))

satisfy the following properties:

f -EBM: Training EBMs with f -Divergence Minimization

• A′(0) = B′(0) = f ′′(1) > 0

• A′′(0)−B′′(0) = −f ′′(1) < 0

• A′′(0)−B′′(0) + 2B′(0) = f ′′(1) = B′(0) > 0

where A′, B′ are first-order derivative of A, B; A′′, B′′ are second-order derivative of A, B.

Proof. First, we introduce the following lemma for convex conjugates and subgradients:

Lemma 5. If f is closed and convex, then we have:

y ∈ ∂f(x)⇐⇒ x ∈ ∂f∗(y)

Proof. If y ∈ ∂f(x), then f∗(y) = supu(yu− f(u)) = yx− f(x). Therefore, we have:

f∗(v) = sup
u
vu− f(u)

≥vx− f(x)

=x(v − y)− f(x) + xy

=f∗(y) + x(v − y)

Because this holds for all v, we have x ∈ ∂f∗(y). The reverse implication x ∈ ∂f∗(y) =⇒ y ∈ ∂f(x) follows from
f∗∗ = f .

Let us use g(y) to denote the conjugate function, g(y) = f∗(y). Next we have the following lemma for the gradient of
conjugate:

Lemma 6. If f is strictly convex and differentiable, then we have: g′(y) = arg maxx (yx− f(x)), g′(f ′(u)) = u.

Proof. Since f is strictly convex, x maximizes yx− f(x) if and only if y ∈ ∂f(x). With Lemma 5, we know that

y ∈ ∂f(x)⇐⇒ x ∈ ∂f∗(y) = {g′(y)}

Therefore g′(y) = arg maxx (yx− f(x)). Then we have:

g′(f ′(u)) = arg max
x

f ′(u)x− f(x) := arg max
x

h(x)

Since h′(x) = f ′(u)− f ′(x), h′′(x) = −f ′′(x) < 0, we have arg maxx f
′(u)x− f(x) = u.

Now we are ready to proof the properties of functions A(u) and B(u). Recall that A(u) = f ′(exp(u)), B(u) =
f∗(f ′(exp(u)))− f∗(f ′(1)), with Lemma 6, we have:

A′(u) =f ′′(exp(u)) exp(u)

A′′(u) =f ′′′(exp(u)) exp(2u) + f ′′(exp(u)) exp(u)

B′(u) =g′(f ′(exp(u)))f ′′(exp(u)) exp(u)

=f ′′(exp(u)) exp(2u)

B′′(u) =f ′′′(exp(u)) exp(3u) + 2f ′′(exp(u)) exp(2u)

Then we have:

A′(0) =f ′′(1)

A′′(0) =f ′′′(1) + f ′′(1)

B′(0) =f ′′(1)

B′′(0) =f ′′′(1) + 2f ′′(1)

f -EBM: Training EBMs with f -Divergence Minimization

Since f is strictly convex with ∀x ∈ dom(f), f ′′(x) > 0, we have:

A′(0) = B′(0) = f ′′(1) > 0

A′′(0)−B′′(0) = −f ′′(1) < 0

A′′(0)−B′′(0) + 2B′(0) = f ′′(1) = B′(0) > 0

Some examples of Theorem 7 can be found in Table 3.

Name A′(0) B′(0) A′′(0) B′′(0)

Kullback-Leibler 1 1 0 1
Reverse Kullback-Leibler 1 1 −1 0
Pearson χ2 2 2 2 4
Neyman χ2 2 2 −4 −2
Squared Hellinger 1

2
1
2 − 1

4
1
4

Jensen-Shannon 1
2

1
2 − 1

4
1
4

α-divergence (α /∈ {0, 1}) 1 1 α− 1 α

Table 3. Some examples of f -divergences and the corresponding first- and second-order gradient values of functions A(u) and B(u)
(defined in Equation (40)) at the equilibrium point.

Let us use (θ∗,ω∗) to denote the equilibrium point and we have the following realizability assumption:

Assumption 4 (Realizability). ∃θ∗,ω∗, such that ∀x ∈ supp(p), qθ∗(x) = p(x) and Hω∗(x) = log(p(x)Zθ∗).

That is we assume the energy function and the variational functions are powerful enough such that at the equilibrium point,
the model distribution qθ∗ matches the true data distribution p and the variational function achieves the optimal form in
Theorem 2. Note that this also implies:

∀x ∈ supp(p), Hω(x) + Eθ(x) = log(p(x)Zθ∗)− log(exp(−Eθ∗(x)))

= log(p(x)/qθ∗(x)) = 0

Furthermore, we have the following assumption on the energy function:

Assumption 5. (Ep(x)[∇θEθ(x)∇>θ Eθ(x)]− 2Ep(x)[∇θEθ(x)]Ep(x)[∇>θ Eθ(x)])|θ∗ is positive semi-definite.

In one-dimension case, this assumption is saying: Ep(x)[(∇θEθ(x))2]− 2(Ep(x)[∇θEθ(x)])2 ≥ 0. Intuitively, this implies
the sum of energies over the entire sample space changes smoothly such that the average change of energies is small
compared to the sum of the squared change of energies. For a better understanding of this assumption and its rationality, in
the following, we will introduce two simple examples that satisfy this assumption.

Example 1. Consider the following quadratic energy function:

Eθ(x) =
(x− µ)2

2σ2
, θ = [µ, σ]>, p = qθ =

exp(− (x−µ)2
2σ2)

√
2πσ

which corresponds to a Gaussian distribution.

The first-order gradient is:

∂Eθ(x)

∂µ
=
x− µ
σ2

,
∂Eθ(x)

∂σ
= − (x− µ)2

σ3

f -EBM: Training EBMs with f -Divergence Minimization

Then, we have: ∫ +∞

−∞
p(x)

∂Eθ(x)

∂µ
dx =

∫ +∞

−∞

exp(− (x−µ)2
2σ2)

√
2πσ

x− µ
σ2

dx = 0

∫ +∞

−∞
p(x)

∂Eθ(x)

∂σ
dx =−

∫ +∞

−∞

exp(− (x−µ)2
2σ2)

√
2πσ

(x− µ)2

σ3
dx

=
1√

2πσ4

∫ +∞

−∞
exp(− x2

2σ2
)x2dx =

1

σ

∫ +∞

−∞
p(x)∇θEθ(x)dx =

∫ +∞

−∞
p(x)

[
∂Eθ(x)
∂µ

∂Eθ(x)
∂σ

]
dx =

[
0
1
σ

]

∫ +∞

−∞
p(x)

(
∂Eθ(x)

∂µ

)2

dx =

∫ +∞

−∞

exp(− (x−µ)2
2σ2)

√
2πσ

(x− µ)2

σ4
dx

=
1√

2πσ5

∫ +∞

−∞
exp(− x2

2σ2
)x2dx =

1

σ2∫ +∞

−∞
p(x)

∂Eθ(x)

∂µ

∂Eθ(x)

∂σ
dx =−

∫ +∞

−∞

exp(− (x−µ)2
2σ2)

√
2πσ

(x− µ)3

σ5
dx = 0

∫ +∞

−∞
p(x)

(
∂Eθ(x)

∂σ

)2

dx =

∫ +∞

−∞

exp(− (x−µ)2
2σ2)

√
2πσ

(x− µ)4

σ6
dx = 0

=
1√

2πσ7

∫ +∞

−∞
exp(− x2

2σ2
)x4dx =

3

σ2

∫ +∞

−∞
p(x)∇θEθ(x)∇>θ Eθ(x)dx =

∫ +∞

−∞
p(x)


(
∂Eθ(x)
∂µ

)2
∂Eθ(x)
∂µ

∂Eθ(x)
∂σ

∂Eθ(x)
∂µ

∂Eθ(x)
∂σ

(
∂Eθ(x)
∂σ

)2
 dx =

[
1
σ2 0
0 3

σ2

]

Therefore, Assumption 5 holds:

Ep(x)[∇θEθ(x)∇>θ Eθ(x)]− 2Ep(x)[∇θEθ(x)]Ep(x)[∇>θ Eθ(x)] =

[
1
σ2 0
0 1

σ2

]
� 0

Example 2. We consider a more powerful energy function:

Eθ(x) = − log

(
K∑
k=1

πk
exp(− 1

2 (x− µ)>Σ−1k (x− µk))√
(2π)n|Σk|

)
,

K∑
k=1

πk = 1, x ∈ Rn, µk ∈ Rn, Σk ∈ Sn++

where π1, . . . , πK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK are the learnable parameters θ; Sn++ denotes the space of symmetric positive
definite n× n matrices.

The partition function is:

Zθ =

∫
exp(−Eθ(x))dx =

∫ K∑
k=1

πk
exp(− 1

2 (x− µ)>Σ−1k (x− µk))√
(2π)n|Σk|

dx =

K∑
k=1

πk = 1

Therefore, Assumption 5 holds:

Ep(x)[∇θEθ(x)∇>θ Eθ(x)]− 2Ep(x)[∇θEθ(x)]Ep(x)[∇>θ Eθ(x)]

=Ep(x)[∇θEθ(x)∇>θ Eθ(x)]− 2∇θ logZθ∇>θ logZθ

=Ep(x)[∇θEθ(x)∇>θ Eθ(x)]

f -EBM: Training EBMs with f -Divergence Minimization

which is a positive semi-definite moment matrix.

Note that the model distribution induced by the energy function correspond to a Gaussian mixture model (GMM). With the
universal approximation theorem of GMM (i.e., any smooth density can be approximated with any specific nonzero amount
of error by a GMM with enough components (Goodfellow et al., 2016)), the above EBM can be used to fit any probability
distribution when K is large enough.

Finally, the last assumption we need is:

Assumption 6. (Ep(x)[∇ωHω(x)∇>ωHω(x)])|ω∗ and (Ep(x)[∇ωHω(x)]Ep(x)[∇>θ Eθ(x)])|(θ∗,ω∗) are full column rank.

This is similar to the assumption used in the local convergence analysis of GANs (Nagarajan & Kolter, 2017; Mescheder
et al., 2018). Alternatively, we can replace it with another assumption that the rank deficiencies of the above matrices, if any,
correspond to equivalent equilibria. In the following, we will use Assumption 6.

D.3. Local Convergence of Single-Step f -EBM

In the following, we will establish a theoretical proof of the local convergence property of Single-Step f -EBM. More
specifically, instead of assuming the variational function Hω is optimal at every update of the energy function, we consider
a more realistic setting, where both the variational function Hω and energy function Eθ take simultaneous gradient steps,
with time derivatives defined as: (

θ̇
ω̇

)
=

(
−∇θV (θ,ω)
∇ωV (θ,ω)

)
(41)

That is we use gradient descent to update θ and gradient ascent to update ω with respect to V (θ,ω) at the same frequency.
In practice we can also update θ and ω alternatively as presented in Algorithm 1. Note that our theoretical analysis also
holds for the alternative gradient methods, as the ordinary differential equations of both simultaneous gradient methods and
alternative gradient methods have the same Jacobians at the equilibrium point.

Throughout this paper we will use the notation∇>(·) to denote the row vector corresponding to the gradient that is being
compute. First, we derive the Jacobian at equilibrium.

Theorem 8. For the dynamical system defined in Equation (39) and the updates defined in Equation (41), under Assumption 4,
the Jacobian at an equilibrium point (θ∗,ω∗) is:

J =

[
−∇2

θV −∇ω∇θV
∇θ∇ωV ∇2

ωV

]
=

[
−f ′′(1)KEE f ′′(1)KEH

−f ′′(1)K>EH −f ′′(1)KHH

]
where

KEE :=(Ep(x)[∇θEθ(x)∇>θ Eθ(x)]− 2Ep(x)[∇θEθ(x)]Ep(x)[∇>θ Eθ(x)])|θ∗

KEH :=(Ep(x)[∇θEθ(x)]Ep(x)[∇>ωHω(x)])|(θ∗,ω∗)

KHH :=(Ep(x)[∇ωHω(x)∇>ωHω(x)])|ω∗

Proof. First, let us derive the first- and second-order derivatives of V (θ,ω) with respect to θ:

∇θV (θ,ω) =

∫
p(x)A′(Hω(x) + Eθ(x))∇θEθ(x)dx−∫
B(Hω(x) + Eθ(x))∇θqθ(x)dx−∫
qθ(x)B′(Hω(x) + Eθ(x))∇θEθ(x)dx

f -EBM: Training EBMs with f -Divergence Minimization

∇2
θV (θ,ω) =

∫
p(x)A′′(Hω(x) + Eθ(x))∇θEθ(x)∇>θ Eθ(x)dx+∫
p(x)A′(Hω(x) + Eθ(x))∇2

θEθ(x)dx−∫
B′(Hω(x) + Eθ(x))∇θqθ(x)∇>θ Eθ(x)dx−∫
B(Hω(x) + Eθ(x))∇2

θqθ(x)dx−∫
B′(Hω(x) + Eθ(x))∇θEθ(x)∇>θ qθ(x)dx−∫
qθ(x)B′′(Hω(x) + Eθ(x))∇θEθ(x)∇>θ Eθ(x)dx−∫
qθ(x)B′(Hω(x) + Eθ(x))∇2

θEθ(x)dx

At the equilibrium point (θ∗,ω∗), we have:

∇2
θV (θ,ω)|(θ∗,ω∗) =

(∫
p(x)A′′(0)∇θEθ(x)∇>θ Eθ(x)dx+∫
p(x)A′(0)∇2

θEθ(x)dx−∫
B′(0)∇θqθ(x)∇>θ Eθ(x)dx−∫
B(0)∇2

θqθ(x)dx−∫
B′(0)∇θEθ(x)∇>θ qθ(x)dx−∫
qθ(x)B′′(0)∇θEθ(x)∇>θ Eθ(x)dx−∫
qθ(x)B′(0)∇2

θEθ(x)dx

) ∣∣∣∣∣
θ∗

With Theorem 7 and Assumption 4, as well as by definition of function B(u) (B(0) = 0) we have:

∇2
θV (θ,ω)|(θ∗,ω∗) =

(∫
p(x)A′′(0)∇θEθ(x)∇>θ Eθ(x)dx−∫
B′(0)∇θqθ(x)∇>θ Eθ(x)dx−∫
B′(0)∇θEθ(x)∇>θ qθ(x)dx−∫
qθ(x)B′′(0)∇θEθ(x)∇>θ Eθ(x)dx

) ∣∣∣∣∣
θ∗

(42)

Next, for a θ-parametrized energy based model qθ(x) = exp(−Eθ(x))
Zθ

, we observe that

∇θqθ(x) = qθ(x)∇θ log qθ(x) = qθ(x)(−∇θEθ(x)−∇θ logZθ) (43)

∇θ logZθ =

∫
exp(−Eθ(x))(−∇θEθ(x))dx

Zθ
= −

∫
qθ(x)∇θEθ(x)dx (44)

f -EBM: Training EBMs with f -Divergence Minimization

With Assumption 4 (qθ∗ = p) and above observation, Equation (42) can be written as:

∇2
θV (θ,ω)|(θ∗,ω∗) =

(∫
p(x)(A′′(0)−B′′(0))∇θEθ(x)∇>θ Eθ(x)dx−∫
B′(0)∇θqθ(x)∇>θ Eθ(x)dx−∫
B′(0)∇θEθ(x)∇>θ qθ(x)dx

) ∣∣∣∣∣
θ∗

=

(
(A′′(0)−B′′(0))

∫
p(x)∇θEθ(x)∇>θ Eθ(x)dx−∫

B′(0)qθ(x)(−∇θEθ(x)−∇θ logZθ)∇>θ Eθ(x)dx−∫
B′(0)qθ(x)∇θEθ(x)(−∇>θ Eθ(x)−∇>θ logZθ)dx

) ∣∣∣∣∣
θ∗

=

(
(A′′(0)−B′′(0) + 2B′(0))

∫
p(x)∇θEθ(x)∇>θ Eθ(x)dx+

B′(0)∇θ logZθ ·
∫
qθ(x)∇>θ Eθ(x)dx+

B′(0)

∫
qθ(x)∇θEθ(x)dx · ∇>θ logZθ

) ∣∣∣∣∣
θ∗

=

(
(A′′(0)−B′′(0) + 2B′(0))

∫
p(x)∇θEθ(x)∇>θ Eθ(x)dx−

2B′(0)∇θ logZθ∇>θ logZθ
) ∣∣∣∣∣
θ∗

With Theorem 7, we have:

∇2
θV (θ,ω)|(θ∗,ω∗) =f ′′(1)

(∫
p(x)∇θEθ(x)∇>θ Eθ(x)dx− 2∇θ logZθ∇>θ logZθ

) ∣∣∣∣∣
θ∗

=f ′′(1)

(∫
p(x)∇θEθ(x)∇>θ Eθ(x)dx− 2

∫
p(x)∇θEθ(x)dx

∫
p(x)∇>θ Eθ(x)dx

) ∣∣∣∣∣
θ∗

=f ′′(1)(Ep(x)[∇θEθ(x)∇>θ Eθ(x)]− 2Ep(x)[∇θEθ(x)]Ep(x)[∇>θ Eθ(x)])|θ∗

Now let us derive the first- and second-order derivatives of V (θ,ω) with respect to ω:

∇ωV (θ,ω) =

∫
p(x)A′(Hω(x) + Eθ(x))∇ωHω(x)dx−

∫
qθ(x)B′(Hω(x) + Eθ(x))∇ωHω(x)dx

∇2
ωV (θ,ω) =

∫
p(x)A′′(Hω(x) + Eθ(x))∇ωHω(x)∇>ωHω(x)dx+∫
p(x)A′(Hω(x) + Eθ(x))∇2

ωHω(x)dx−∫
qθ(x)B′′(Hω(x) + Eθ(x))∇ωHω(x)∇>ωHω(x)dx−∫
qθ(x)B′(Hω(x) + Eθ(x))∇2

ωHω(x)dx

f -EBM: Training EBMs with f -Divergence Minimization

At the equilibrium point (θ∗,ω∗), under Assumption 4, we have:

∇2
ωV (θ,ω)|(θ∗,ω∗) =

(
(A′′(0)−B′′(0))

∫
p(x)∇ωHω(x)∇>ωHω(x)dx+ (A′(0)−B′(0))

∫
p(x)∇2

ωHω(x)dx

) ∣∣∣∣∣
ω∗

With Theorem 7, we have:

∇2
ωV (θ,ω)|(θ∗,ω∗) =− f ′′(1)

(∫
p(x)∇ωHω(x)∇>ωHω(x)dx

) ∣∣∣∣∣
ω∗

=− f ′′(1)(Ep(x)[∇ωHω(x)∇>ωHω(x)])|ω∗

Finally, let us derive ∇ω∇θV (θ,ω):

∇ω∇θV (θ,ω) =

∫
p(x)A′′(Hω(x) + Eθ(x))∇θEθ(x)∇>ωHω(x)dx−∫
B′(Hω(x) + Eθ(x))∇θqθ(x)∇>ωHω(x)dx−∫
qθ(x)B′′(Hω(x) + Eθ(x))∇θEθ(x)∇>ωHω(x)dx

At the equilibrium point (θ∗,ω∗), under Assumption 4, we have:

∇ω∇θV (θ,ω)|(θ∗,ω∗) =

(
(A′′(0)−B′′(0))

∫
p(x)∇θEθ(x)∇>ωHω(x)dx−

B′(0)

∫
qθ(x)(−∇θEθ(x)−∇θ logZθ)∇>ωHω(x)dx

) ∣∣∣∣∣
(θ∗,ω∗)

=

(
(A′′(0)−B′′(0) +B′(0))

∫
p(x)∇θEθ(x)∇>ωHω(x)dx+

B′(0)∇θ logZθ

∫
p(x)∇>ωHω(x)dx

) ∣∣∣∣∣
(θ∗,ω∗)

=

(
(A′′(0)−B′′(0) +B′(0))

∫
p(x)∇θEθ(x)∇>ωHω(x)dx−

B′(0)

∫
p(x)∇θEθ(x)dx

∫
p(x)∇>ωHω(x)dx

) ∣∣∣∣∣
(θ∗,ω∗)

With Theorem 7, we have:

∇ω∇θV (θ,ω)|(θ∗,ω∗) = −f ′′(1)(Ep(x)[∇θEθ(x)]Ep(x)[∇>ωHω(x)])|(θ∗,ω∗)

Similarly, for∇θ∇ωV (θ,ω), we have:

∇θ∇ωV (θ,ω)|(θ∗,ω∗) = −f ′′(1)(Ep(x)[∇ωHω(x)]Ep(x)[∇>θ Eθ(x)])|(θ∗,ω∗)

Now we are ready to present the main theorem:

Theorem 9. The dynamical system defined in Equation (39) and the updates defined in Equation (41) is locally exponentially
stable with respect to an equilibrium point (θ∗,ω∗) when the Assumptions 4, 5, 6 hold for (θ∗,ω∗). Let λmax(·) and λmin(·)
denote the largest and smallest eigenvalues of a non-zero positive semi-definite matrix. The rate of convergence is governed
only by the eigenvalues λ of the Jacobian J of the system at the equilibrium point, with a strictly negative real part upper
bounded as:

f -EBM: Training EBMs with f -Divergence Minimization

• When Im(λ) = 0,

Re(λ) < −f ′′(1)
λmin(KHH)λmin(KEHK

>
EH)

λmin(KHH)λmax(KEE ,KHH) + λmin(KEHK>EH)
< 0

where λmax(KEE ,KHH) = max(λmax(KEE), λmax(KHH)).

• When Im(λ) 6= 0,

Re(λ) ≤ −f
′′(1)

2
(λmin(KEE) + λmin(KHH)) < 0

Proof. In Theorem 8, for any f -divergences with strictly convex and differentiable generator function f , we derived the
Jacobian of the system J under Assumption 4. With Assumptions 5 and 6, and the strict convexity of the function f , we
know that f ′′(1)KEE is positive semi-definite, f ′′(1)KHH is positive definite (a full rank moment matrix with a positive
multiplicative factor), and f ′′(1)K>EH is full column rank. Therefore, with Theorem 6, we know that the Jacobian J is a
Hurwitz matrix, (i.e., all the eigenvalues of J have strictly negative real parts). Furthermore, with Theorem 6, we can obtain
an upper bound of the real parts of the eigenvalues. Finally, with Theorem 4, we can conclude that the system is locally
exponentially stable.

E. Implementation Details
E.1. Implementation of f -EBM Algorithm in PyTorch

1 def update_H(real_x, fake_x, model_h, model_e, optim_h, grad_exp, conjugate_grad_exp):
2 // Step 6-7 in Algorithm 1. Update the parameter of the variational function.
3 // - real_x and fake_x are samples from the data distribution and EBM respectively.
4 // - model_h is the neural network for the variational function H_\vomega.
5 // - model_e is the neural network for the energy function E_\vtheta.
6 // - optim_h is the optimizer for model_h, e.g. torch.optim.SGD(model_h.parameters())
7 // - grad_exp and conjugate_grad_exp are functions defined by the used f-divergence.
8 real_e, fake_e = model_e(real_x), model_e(fake_x)
9 real_h, fake_h = model_h(real_x), model_h(fake_x)

10 loss_h = -(grad_exp(real_h+real_e) - conjugate_grad_exp(fake_h+fake_e)).mean()
11 optim_h.zero_grad()
12 loss_h.backward()
13 optim_h.step()
14

15 def update_E(real_x, fake_x, model_h, model_e, optim_e, grad_exp, conjugate_grad_exp):
16 // Step 8-9 in Algorithm 1. Update the parameter of the energy function.
17 // - optim_e is the optimizer for model_e, e.g. torch.optim.SGD(model_e.parameters())
18 real_e, fake_e = model_e(real_x), model_e(fake_x)
19 real_h, fake_h = model_h(real_x), model_h(fake_x)
20 loss_e = torch.mean(grad_exp(real_h+real_e)) + \
21 torch.mean(conjugate_grad_exp(fake_h+fake_e).detach() * fake_e) - \
22 torch.mean(conjugate_grad_exp(fake_h+fake_e)) - \
23 torch.mean(fake_e) * torch.mean(conjugate_grad_exp(fake_h+fake_e)).detach()
24 optim_e.zero_grad()
25 loss_e.backward()
26 optim_e.step()

Note that according to Lemma 3, technically we should use two independent batches of data to estimate the two expectations
in the product Eqθ(x)[∇θEθ(x)] · Eqθ(x)[f∗(f ′(exp(Eθ(x) +Hω(x))))]. Empirically we found that using the same set of
samples also works well, since it is an asymptotically consistent estimator.

To implement f -EBM in Tensorflow (Abadi et al., 2016), the main change is to use tf.stop gradient(X) to replace
X.detach(). Functions grad exp and conjugate grad exp correspond to f ′(exp(u)) and f∗(f ′(exp(u))), which

f -EBM: Training EBMs with f -Divergence Minimization

can be derived based on the definitions of f -divergences (see Table 5 and Table 6 in (Nowozin et al., 2016) for reference).
Some examples of f ′(exp(u)) and f∗(f ′(exp(u))) can be found in Table 4.

Name Df (P‖Q) f ′(exp(u)) f∗(f ′(exp(u)))

Kullback-Leibler
∫
p(x) log p(x)

q(x) dx 1 + u exp(u)

Reverse Kullback-Leibler
∫
q(x) log q(x)

p(x) dx − exp(−u) −1 + u

Pearson χ2
∫ (q(x)−p(x))2

p(x) dx 2 exp(u)− 2 exp(2u)− 1

Neyman χ2
∫ (p(x)−q(x))2

q(x) dx 1− exp(−2u) 2− 2 exp(−u)

Squared Hellinger
∫ (√

p(x)−
√
q(x)

)2
dx 1− exp(−u2) exp(u2)− 1

Jensen-Shannon 1
2

∫
p(x) log 2p(x)

p(x)+q(x) + q(x) log 2q(x)
p(x)+q(x) dx log(2) + u− log(1 + exp(u)) − log(2) + log(1 + exp(u))

α-divergence (α /∈ {0, 1}) 1
α(α−1)

∫ (
p(x)

[(
q(x)
p(x)

)α
− 1
]
− α(q(x)− p(x))

)
dx 1

α−1 (exp((α− 1)u)− 1) 1
α (exp(αu)− 1)

Table 4. Some examples of f -divergences and corresponding f ′(exp(u)) and f∗(f ′(exp(u))) functions.

E.2. Discussion on Differentiating Through Langevin Dynamics

In this section, we provide a more detailed discussion on gradient reparametrization that was initially introduced in
Section 3.1.2. Specifically, we will discuss the possibility of directly extending the f -GANs framework by differentiating
through the Langevin dynamics. As discussed before, we typically need hundreds of Langevin steps to produce a single
sample while we cannot use a sample replay buffer to reduce the number of transition steps (because the initial distribution
of the Markov chain cannot depend on the model parameters). During gradient backpropagation, we need the same number
of backward steps, where each backward step further involves computing Hessian matrices that are proportional to the
parameter and data dimension. This will lead to hundreds of times more memory consumption compared to only using
Langevin dynamics for producing samples. More specifically, we provide the following implementation to differentiate
through Langevin dynamics in PyTorch:

1 def train_energy(model_e, model_dis, optim_e, conjugate_fn, device=’cuda’):
2 // Initialize Langevin dynamics with random uniform distribution.
3 fake_x = torch.rand(batch_size, channel_num, img_size, img_size, device=device)
4 fake_x.requires_grad = True
5 gaussian_noise = torch.randn(batch_size, 3, 32, 32, device=device)
6

7 for k in range(num_langevin_steps):
8 energy_value = model_e(fake_x)
9 fake_x_grad = torch.autograd.grad(energy_value.sum(), fake_x,

10 create_graph=True)[0]
11 gaussian_noise.normal_(0, gaussian_noise_std)
12 fake_x = fake_x - step_size * fake_x_grad + gaussian_noise
13 fake_x.data.clamp_(0, 1)
14

15 fake_dis = model_dis(fake_x)
16 energy_loss = - torch.mean(conjugate_fn(fake_dis))
17 optim_e.zero_grad()
18 energy_loss.backward()
19 optim_e.step()

Note that in Line 10, we need to set create graph=True in order to compute the second-order derivatives when
backpropagating through Langevin dynamics later, which will store all the computation graphs along the Langevin dynamics.
By contrast, in f -EBMs we only use Langevin dynamics to produce samples and once we get the value of the gradient
∇xEθ(x), we can discard the computational graph immediately after each transition step (create graph=False). As
a result, with gradient reparametrization, the memory consumption grows linearly as the number of transitions. With modern
GPU such as NVIDIA GeForce RTX 2080 Ti and the model architecture in Figure 15, we will run out of memory when the
number of Langevin steps is larger than 5. Since gradient backpropagation through Langevin dynamics involves computing
many Hessian matrices, this approach is also computationally less efficient compared to f -EBMs. In our experiments, we
set num langevin steps = 5 and we observed that this approach cannot produce reasonable images.

f -EBM: Training EBMs with f -Divergence Minimization

F. Additional Experimental Results for Fitting Univariate Mixture of Gaussians
F.1. Parameter Learning Results

Objective µ∗ µ̂ σ∗ σ̂

Contrastive Divergence 1.01065 1.01204 1.82895 1.82907

Kullback-Leibler 1.01065 1.01536 1.82895 1.83024
Reverse KL 1.58454 1.58523 1.63106 1.63453
Squared Hellinger 1.32024 1.32274 1.73089 1.74710
Jensen Shannon 1.30322 1.31669 1.76716 1.76041
Pearson χ2 0.57581 0.56563 1.92172 1.93461
Neyman χ2 1.83037 1.82676 1.51508 1.51598
α-divergence (α = −0.5) 1.74642 1.74332 1.55569 1.55209
α-divergence (α = −1) 1.82923 1.81979 1.51844 1.52513
α-divergence (α = 0.9) 1.07056 1.07237 1.81091 1.81852

Table 5. Fitting a quadratic EBM to mixtures of Gaussians. µ∗, σ∗ represent the desired optimal solution under a certain discrepancy
measure, and µ̂, σ̂ represent the learned parameters. The first row is for contrastive divergence (with KL divergence being the underlying
objective). The other rows are for f -EBMs with various discrepancy measures as the training objectives.

F.2. Density Ratio Estimation Results

−2 0 2 4 6

−5

−4

−3

−2

−1

0

1

log(p(x)/qθ(x))

Hω(x) + Eθ(x)

(a) KL
−2 0 2 4 6

−3

−2

−1

0

1

2 log(p(x)/qθ(x))

Hω(x) + Eθ(x)

(b) Reverse KL

−2 0 2 4 6

−4

−3

−2

−1

0

1

2
log(p(x)/qθ(x))

Hω(x) + Eθ(x)

(c) Jensen-Shannon
−2 0 2 4 6

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5 log(p(x)/qθ(x))

Hω(x) + Eθ(x)

(d) α-Divergence (α = −1)

Figure 3. Density ratio estimation results for different f -divergences. The orange solid line represents the ground truth log-scale density
ratio (log(p(x)/qθ(x))) under a certain divergence; The red dashed line represents the estimated log-scale density ratio (Hω(x) +Eθ(x))
learned by f -EBM. Note that the estimated density ratio is accurate in most areas except in the low density regimes (e.g. (−∞,−2] and
[6,+∞)) where very few training data comes from this region.

f -EBM: Training EBMs with f -Divergence Minimization

F.3. Optimization Trajectories of Single-Step f -EBM

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

µ

1.0

1.5

2.0

2.5

3.0

σ

(a) KL

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

µ

1.0

1.5

2.0

2.5

3.0

σ

(b) Reverse KL

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

µ

1.0

1.5

2.0

2.5

3.0

σ

(c) Jensen-Shannon

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

µ

1.0

1.5

2.0

2.5

3.0

σ

(d) Squared-Hellinger

Figure 4. Convergence of Single-Step f -EBM algorithm for different f -divergences. Optimization trajectories in different colors start
from different initializations. The length and direction of the arrows represent the scale and the direction of the gradient at a certain point.
The red stars that the trajectories converge to represent the desired optimal solutions under corresponding f -divergences.

f -EBM: Training EBMs with f -Divergence Minimization

G. Additional Experimental Details for Modeling Natural Images
G.1. Samples from The Baseline Method in Section 3.1

(a) Reverse KL (b) Jensen Shannon (c) Squared Hellinger

Figure 5. Uncurated samples from EBMs trained by the baseline approach described in Section 3.1 on CIFAR-10 dataset.

G.2. Uncurated CIFAR-10 Samples from f -EBM

Figure 6. Uncurated CIFAR-10 samples from f -EBM under the guidance of Jensen Shannon.

f -EBM: Training EBMs with f -Divergence Minimization

Figure 7. Uncurated CIFAR-10 samples from f -EBM under the guidance of Squared Hellinger.

Figure 8. Uncurated CIFAR-10 samples from f -EBM under the guidance of Reverse KL.

f -EBM: Training EBMs with f -Divergence Minimization

G.3. Image Inpainting Results

(a) Reverse KL

(b) Jensen Shannon

(c) Squared Hellinger

Figure 9. Image inpainting results for f -EBM trained with different f -divergences on CIFAR-10. We use Langevin dynamics sampling to
restore the images which are corrupted by empty boxes.

f -EBM: Training EBMs with f -Divergence Minimization

G.4. Image Denoising Results

(a) Reverse
KL

(b) Jensen
Shannon

(c) Squared
Hellinger

Figure 10. Image denoising results for f -EBM trained with different f -divergences on CIFAR-10. We apply 10% “salt and pepper” noise
to the images in the test set and use Langevin dynamics sampling to restore the images.

f -EBM: Training EBMs with f -Divergence Minimization

G.5. Nearest Neighbor Images

(a) Reverse KL

(b) Jensen Shannon

(c) Squared Hellinger

Figure 11. Nearest neighbor images according to l2 distance between images. Different rows are for different classes. In each row, the
leftmost image (i.e., on the left of the right vertical line) is generated by f -EBM, and the other images are nearest neighbors of the
generated image in the training set.

f -EBM: Training EBMs with f -Divergence Minimization

G.6. Intermediate Samples of Langevin Dynamics on CIFAR-10

(a) Reverse KL

(b) Jensen Shannon

(c) Squared Hellinger

Figure 12. Intermediate samples during Langevin dynamics sampling process for f -EBM.

f -EBM: Training EBMs with f -Divergence Minimization

G.7. Uncurated CelebA Samples from f -EBM

(a) Reverse KL

(b) Jensen Shannon

(c) Squared Hellinger

Figure 13. Uncurated CelebA samples from f -EBM.

f -EBM: Training EBMs with f -Divergence Minimization

G.8. Intermediate Samples of Langevin Dynamics on CelebA

(a) Reverse KL

(b) Jensen Shannon

(c) Squared Hellinger

Figure 14. Intermediate samples during Langevin dynamics sampling process for f -EBM.

f -EBM: Training EBMs with f -Divergence Minimization

G.9. Architectures and Training Hyperparameters

Figure 15. ResNet architec-
ture for implementing the
energy function and the
variational function.

For all the experiments on natural images (conditional generation for CIFAR-10 and uncon-
ditional generation for CelebA), we use the residual network architecture (He et al., 2016) in
Figure 15 (same as the conditional CIFAR-10 model in (Du & Mordatch, 2019)) to implement
both the energy function and the variational function of f -EBM. For the contrastive divergence
baseline, we also use the same model architecture for fair comparisons. We note that the model
architecture is highly relevant to the model performance and we leave the investigation of
better architectures to future works.

For the CelebA dataset, we first center-crop the images to 140 × 140, then resize them to
32× 32. For both CelebA and CIFAR-10, we rescale the images to [0, 1]. Following (Du &
Mordatch, 2019), we apply spectral normalization and L2 regularization (on the outputs of
the models) with coefficient 1.0 to improve the stability. We use 60 steps Langevin dynamics
together with a sample replay buffer of size 10000 to produce samples in the training phase.
In each Langevin step, we use a step size of 10.0 and a random noise with standard deviation
of 0.005. We use Adam optimizer with β1 = 0.0, β2 = 0.999 and learning rate of 3× 10−4

to optimize the parameters of both the energy function and the variational function. In each
training iteration, we use a batch of 128 positive images and negative images. These training
hyperparameters are used for both f -EBMs and the contrastive divergence baseline.

G.10. Time Complexity and Convergence Speed

In the experiments we use the same batch size, learning rate and MCMC step number as in CD (Du & Mordatch, 2019).
Since we use single-step minimax optimization for both the energy function and the variational function, each iteration
needs the same time for MCMC as (Du & Mordatch, 2019) and twice time for stochastic gradient descent parameter updates.
Overall, the time complexity per iteration of f -EBM is comparable to that of CD (within a factor of 2). The convergence
speed of f -EBM is also similar to CD in terms of number of iterations needed (CD: 75K iterations; f -EBM with Jensen
Shannon: 50K iterations; f -EBM with Squared Hellinger: 80K iterations; f -EBM with Reverse KL: 70K iterations; f -EBM
with KL: 75K iterations).

