Intrinsic Reward Driven Imitation Learning via Generative Model

A. Appendix
A.1. Ablation study
A.1.1. ABLATION STUDY OF OUR METHOD WITH DIFFERENT 3 - LEARNING CURVES.

The full learning curves of our method with different /5 have been shown on Figure 7.
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Figure 7. Average return vs. number of simulation steps on Atari games. The solid lines show the mean performance over 5 random seeds.
The shaded area represents the standard deviation from the mean. The blue dotted line denotes the average return of expert. The area
above the blue dotted line means performance beyond the expert.

A.1.2. THE EFFECT OF STANDARDIZATION IN GIRIL AND CDIL

Table 6. Ablation study of standardized intrinsic reward on the GIRIL and CDIL. The results shown are the mean performance over 5
random seeds with better-than-expert performance in bold.

Expert | Demonstration GIRIL CDIL
Game Average Average Standardized  Original | Standardized Original
Space Invaders 734.1 600.0 992.9 565.5 668.9 532.7
Beam Rider 2,447.7 1,332.0 3,202.3 1,810.4 2,556.9 1,808.1
Breakout 346.4 305.0 426.9 375.2 369.2 369.7
Q*bert 13,441.5 8,150.0 42,705.7 21,080.3 30,070.8 12,755.4
Seaquest 1,898.8 440.0 731.8 2,022.4 897.7 775.4
Kung Fu Master | 23,488.5 6,500.0 23,543.6 23,984.8 17,291.6 18,663.6

Table 6 compares GIRIL and CDIL trained via PPO with the standardized intrinsic reward and the original intrinsic reward.
With the original intrinsic reward, CDIL was able to outperform the one-life demonstration on five out of six games, but
only beat the expert on Breakout. With standardization, CDIL was able to surpass the expert in two more games, Beam
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Rider and Q*bert. GIRIL maintain its superior performance with better-than-one-life performance on five of six games, and
better-than-expert performance on four. Notably, standardizing the reward gave GIRIL the power to outperform the one-life
results with two more games and the expert results with one more game. Without standardization, GIRIL still outperformed
other baselines.

A.1.3. THE EFFECTS OF r; IN GAIL AND /. IN VAIL

We then compare GIRIL against GAIL with two different reward function r; (r§1)=f log(D(s¢, at)) and T,EQ):* log(1 —
D(s,at)), where D is the discriminator) and VAIL with two different information constraints /.. (1.=0.2, and 1.=0.5).
1.=0.2 and 1.=0.5 are the default hyper-parameters in Karnewar (2018) and Peng et al. (2019), respectively. The results are
provided in Table 7.

Table 7. Parameter Analysis of the GIRIL versus VAIL with different information constraints ., and versus GAIL with different rewards
e riY=— log(D(s¢, at)) and rP=— log(1 — D(st, a¢)). The results shown are the mean performance over 5 random seeds with
better-than-expert performance in bold.

Expert | Demonstration | GIRIL VAIL (I..) GAIL (1)

Game Average Average Average 0.2 0.5 rt(l) r§2)
Space Invaders 734.1 600.0 992.9 549.4 426.5 2280 1299
Beam Rider 2,447.7 1,332.0 3,202.3 | 2,864.1  2,502.7 2855 1313

Breakout 346.4 305.0 426.9 36.1 27.2 1.3 2.5
Q*bert 13,441.5 8,150.0 42,705.7 | 10,862.3 54,247.3 | 8,737.4 205.3
Seaquest 1,898.8 440.0 2,022.4 3129 1,746.7 0.0 28.9
Kung Fu Master | 23,488.5 6,500.0 23,543.6 | 24,6159 14,709.3 | 1,324.5 549.7

As the results show, GAIL with — log(D(s¢, a;)) performed better than that with —log(1 — D(s¢,a:)). VAIL showed
similar performance no matter the information constraint. Both outplayed the expert on two games - an overall worse
performance than CDIL with standardized reward and GIRIL with both types of reward.

A.1.4. THE EFFECT OF THE NUMBER OF FULL-EPISODE DEMONSTRATIONS.

We also evaluated our method with different number of full-episode demonstrations on both Atari games and continuous
control tasks. Table 8 and Table 9 show the detailed quantitative comparison of imitation learning methods across different
number of full-episode demonstrations in the games, Breakout and Space Invaders. The comparisons on two continuous
control tasks, InvertedPendulum and InvertedDoublePendulum, have been shown in Table 10 and Table 11.

The results shows that our method GIRIL achieves the highest performance across different numbers of full-episode
demonstrations, and CDIL usually comes the second best. GAIL is able to achieve better performance with the increase of
the demonstration number in both continuous control tasks.

Table 8. Parameter Analysis of the GIRIL versus other baselines with different number of full-episode demonstrations on Breakout game.
The results shown are the mean performance over 5 random seeds with best performance in bold.

Table 9. Parameter Analysis of the GIRIL versus other baselines with different number of full-episode demonstrations on Space Invaders
game. The results shown are the mean performance over 5 random seeds with best performance in bold.

# Demonstrations | GIRIL | CDIL | VAIL | GAIL
1 4139 | 361.2 | 34.0 14
5 3844 | 3349 | 30.5 1.9
10 415.0 | 332.1 | 27.1 2.9

# Demonstrations | GIRIL | CDIL | VAIL | GAIL
1 1,073.8 | 557.5 | 557.0 | 190.0
5 977.6 | 580.6 4.4 190.0
10 910.3 | 533.2 | 90.0 | 190.0
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Table 10. Parameter Analysis of the GIRIL versus other baselines with different number of full-episode demonstrations on InvertedPendu-
lum task. The results shown are the mean performance over 5 random seeds with best performance in bold.

# Demonstrations | GIRIL CDIL | VAIL | GAIL
1 990.2 979.7 113.6 | 612.6
5 1,000.0 | 1,000.0 | 78.5 | 1,000.0
10 994 4 999.9 80.1 988.2

Table 11. Parameter Analysis of the GIRIL versus other baselines with different number of full-episode demonstrations on InvertedDou-
blePendulum task. The results shown are the mean performance over 5 random seeds with best performance in bold.

# Demonstrations | GIRIL CDIL | VAIL | GAIL
1 9,164.9 | 7,114.7 | 725.2 | 1,409.0
5 9,290.4 | 7,628.7 | 3429 | 8,634.5
10 8,972.8 | 8,548.6 | 714.8 | 8,842.0

A.2. Details of the curiosity-driven imitation learning (CDIL)

The Intrinsic Curiosity Module (ICM) is a natual choice for reward learning in imitaiton learning. ICM is a state-of-the-art
exploration method (Pathak et al., 2017; Burda et al., 2019) that transforms high-dimensional states into a visual feature
space and then impose a cross-entropy loss and a Euclidean loss to learn the features with a self-supervised inverse dynamics
model. Further, the prediction error in the feature space becomes the intrinsic reward function for exploration. As illustrated
in Figure 8, ICM encodes the states s;, s, into features and then the inverse dynamics model gp, is trained to predict
actions from the states features ¢(s;) and ¢(s;41). Additionally, the forward model fy,. takes a feature ¢(s;) and an action
a; as input and predicts the feature representation of state s,1. The intrinsic reward is calculated as the curiosity, i.e. the
prediction error in the feature space.
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Figure 8. Intrinsic Curiosity Module ICM).

In ICM, the inverse dynamics model is used to predict the action d; = gg, (¢(st), ¢(s¢+1)), and is optimized by:

min Ly (as, az), 3)
0r

where Ly is the loss function measures the discrepancy between the predicted and actual action. In our experiments, we use
cross-entropy loss for Atari games and mean squared error (MSE) for continuous control tasks.

The forward dynamics model estimates the feature of next state ¢(s;11) = fa,. (¢(s¢), az), and is optimized by:
min Lp(é(st), §(se41)) = [S(se41) = d(sin) 3, )
F

where || - ||2 is the L2 norm.
ICM is optimized by minimizing the overall objective as follows:

0r1,0F

The intrinsic reward signal 7; is calculated as the prediction error in feature space:

e = )\||¢3(5t+1) - ¢(St+1)H§ (6)
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where || - ||2 is the L2 norm, and A is a scaling weight. In all experiments, A = 1.

Thus, our solution combines ICM for reward learning and reinforcement learning. The full CDIL training procedure is
summarized in Algorithm 2.

Algorithm 2 Curiosity-driven imitation learning (CDIL)

: Input: Expert demonstration data D = {(s;, a;)} ;.
Initialize policy , encoder g4 and decoder py.
fore=1,--- ,Fdo
Sample a batch of demonstration D~ D.
Train fy, and gy, to optimize the objective (5) on D.
end for
fori=1,--- ,MAXITER do
Update policy parameters via any policy gradient method, e.g., PPO on the intrinsic reward inferred by Eq. (6).
end for
Output: Policy 7.
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In brief, the process begins by training ICM for E epochs (Steps 3-6). In each training epoch, we sample a mini-batch of
demonstration data D with a size of B and maximize the objective in Eq. (5). Steps 7-9 perform policy gradient steps, e.g.,
PPO(Schulman et al., 2017), so as to optimize the policy 7 with the intrinsic reward r; inferred with ICM using Eq. (6). We
treated CDIL as a related baseline in our experiments, using the feature extractor with the same architecture as the encoder
except for the final dense layer. We trained the ICM using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of
3e-5 and a mini-batch size of 32 for 50, 000 epochs. In each training epoch, we sample a mini-batch data every four states
for Atari games and every 20 states for continuous control tasks.



