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Abstract
In this supplementary material, the detailed proofs of theorems in this paper are present.

1. Proof of Porposition 1
Proof. Denote πij = PS(Y = j|Ŷ = i),∀i, j ∈ {1, 2}. Note that as in many label noise methods, we assume π11π22 −
π12π21 6= 0. Since Y → Ŷ and Y → X , then X and Ŷ are conditional independent given Y . Then, it is easy to derive that

PSρX|Y=1 = π11P
S
X|Y=1 + π12P

S
X|Y=2

PSρX|Y=2 = π21P
S
X|Y=1 + π22P

S
X|Y=2.

(A.1)

Since PTX = ωρ1P
S
ρX|Y=1 + ωρ2P

S
ρX|Y=2, we have

PTX = (ωρ1π11 + ωρ2π21)PSX|Y=1 + (ωρ1π12 + ωρ2π22)PSX|Y=2. (A.2)

We also have PTX = ω1P
S
X|Y=1 + ω2P

S
X|Y=2. Since PSX|Y=1 and PSX|Y=2 is different, according to Theorem 1 in (Yu et al.,

2018), we have
ω1 = ωρ1π11 + ωρ2π21;

ω2 = ωρ1π12 + ωρ2π22.
(A.3)

and
ωρ1 = (π22ω1 − π21ω2)/(π11π22 − π12π21);

ωρ2 = (π11ω2 − π12ω1)/(π11π22 − π12π21).
(A.4)

Let ωi = ωρi, i = 1, 2, we have
ω1 = (π22ω1 − π21ω2)/(π11π22 − π12π21);

ω2 = (π11ω2 − π12ω1)/(π11π22 − π12π21).
(A.5)

Then, we have
(π11π22 − π12π21)ω1 = π22ω1 − π21ω2;

(π11π22 − π12π21)ω2 = π11ω2 − π12ω1.
(A.6)

Then,
(π22 − π11π22 + π12π21)ω1 = π21ω2;

(π11 − π11π22 + π12π21)ω2 = π12ω1.
(A.7)

Then, we have
π12ω1 = π21ω2. (A.8)

According to ω1 + ω2 = 1, we have ω2 = π12/(π12 + π21) and ω1 = π21/(π12 + π21).
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2. Proof of Theorem 1
Proof. In this proof, Y = y (resp. Ŷ = y′) is replaced by y (resp. y′) for simplicity. For example, we let PS(Ŷ = y′|Y =
y) = PS(y′|y). We also let X ′ = τ(X). According to Eq. (2) in the main paper, we have

P new
X′ =

∑
y

∑
y′

βρ(y
′)PS(y′|X ′, y)PS(X ′, y) =

∑
y

PS(X ′|y)PS(y)
∑
y′

PS(y′|y)βρ(y
′). (A.9)

Because PTX′ =
∑
y P

T (X ′|y)PT (y), then combining with the above equation, we have∑
y

PT (X ′|y)PT (y) =
∑
y

PS(X ′|y)PS(y)
∑
y′

PS(y′|y)βρ(y
′). (A.10)

Because the transformation τ satisfies that P (X ′|Y = i), i ∈ {1, · · · , c} are linearly independent, there exist no such
non-zero γ1, · · · , γc and κ1, · · · , κc that

∑c
i=1 γiP

S(X ′|Y = i) = 0 and
∑c
i=1 κiP

T (X ′|Y = i) = 0. According to the
assumption in Theorem 1, the elements in the set {viPS(X ′|Y = i)+λiP

T (X ′|Y = i); i ∈ {1, · · · , c};∀vi, λi (v2
i +λ2

i 6=
0)} are also linearly independent. Then we have, ∀y ∈ {1, · · · , c},

PT (X ′|y)PT (y)− PS(X ′|y)PS(y)
∑
y′

PS(y′|y)βρ(y
′) = 0. (A.11)

Taking the integral of above equation w.r.t. X ′, we have

PT (y) = PS(y)
∑
y′

PS(y′|y)βρ(y
′), (A.12)

which further implies PT (X ′|y) = PS(X ′|y),∀y ∈ {1, · · · , c}. According to Eq. (A.12), we have ∀y ∈ {1, · · · , c},∑
y′

PS(y′|y)βρ(y
′) = PT (y)/PS(y) = β(y).

The proof of Theorem 1 ends. �

3. Proof of Theorem 2
Recall the denoising MMD loss, we have

D̂(W,α) = ‖ 1

m
ψ(x′

S
)Gα− 1

n
ψ(x′

T
)1‖2.

Let
D(W,α) = ‖E 1

m
ψ(x′

S
)Gα− E

1

n
ψ(x′

T
)1‖2,

where we abuse the training samples {(xS1 , ŷS1 ), · · · , (xSm, ŷSm)} and {xT1 , · · · , xTn} as being i.i.d. variables, respectively.

We analyze the convergence property of the learned α̂ to the optimal one α∗ by analyzing the convergence from the expected
objective function D(Ŵ , α̂) to D(Ŵ , α∗).

To prove Theorem 2, we need the following Theorem A.1, Lemma A.1, and Lemma A.2. Theorem A.1 is about concentration
inequality (McDiarmid’s inequality (Boucheron et al., 2013), also known as the bounded difference inequality). Lemma A.1
shows that the distance D(Ŵ , α̂)−D(Ŵ , α∗) can be upper bounded even though we do not know the optimal α∗. Lemma
A.2 upper bounds the Rademacher-like (Bartlett & Mendelson, 2002) term E supα∈∆ ‖f(xS ,xT , α)‖2.
Theorem A.1. Let X = [X1, · · · , Xn] be an independent and identically distributed sample and Xi a new sample with the
i-th example in X being replaced by an independent example X ′i. If there exists b1, · · · , bn > 0 such that f : Xn → R
satisfies the following conditions

|f(X)− f(Xi)| ≤ bi,∀i ∈ {1, · · · , n}.
Then for any X ∈ Xn and ε > 0, the following inequality holds

P (Ef(X)− f(X) ≥ ε) ≤ exp

(
−2ε2∑n
i=1 b

2
i

)
.
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Lemma A.1. We denote ∆ , {α|α ≥ 0, ‖α‖1 = 1} and

f(xS ,xT , α) , E
(

1

m
ψ(x′

S
)Gα− 1

n
ψ(x′

T
)1

)
− 1

m
ψ(x′

S
)Gα+

1

n
ψ(x′

T
)1. (A.13)

Then, we have
D(Ŵ , α̂)−D(Ŵ , α∗) ≤ 2 sup

α∈∆
|D(Ŵ , α)− D̂(Ŵ , α)|

≤ 4(∧Q̂ + 1) ∧Ŵ sup
α∈∆
‖f(xS ,xT , α)‖.

(A.14)

Proof. We have
D(Ŵ , α̂)−D(Ŵ , α∗)

= D(Ŵ , α̂)− D̂(Ŵ , α̂) + D̂(Ŵ , α̂)− D̂(Ŵ , α∗) + D̂(Ŵ , α∗)−D(Ŵ , α∗)

≤ D(Ŵ , α̂)− D̂(Ŵ , α̂) + D̂(Ŵ , α∗)−D(Ŵ , α∗)

≤ 2 sup
α∈∆
|D(Ŵ , α)− D̂(Ŵ , α)|,

(A.15)

where the first inequality holds because α̂ is the empirical minimizer of D̂(Ŵ , α) and thus D̂(Ŵ , α̂) ≤ D̂(Ŵ , α∗).

Further, we have

|D(Ŵ , α)− D̂(Ŵ , α)|

=

(
E
(

1

m
ψ(x′

S
)Gα− 1

n
ψ(x′

T
)1

)
+

1

m
ψ(x′

S
)Gα− 1

n
ψ(x′

T
)1

)>
(
E
(

1

m
ψ(x′

S
)Gα− 1

n
ψ(x′

T
)1

)
− 1

m
ψ(x′

S
)Gα+

1

n
ψ(x′

T
)1

)
≤
∥∥∥∥E( 1

m
ψ(x′

S
)Gα− 1

n
ψ(x′

T
)1

)
+

1

m
ψ(x′

S
)Gα− 1

n
ψ(x′

T
)1

∥∥∥∥∥∥∥∥E( 1

m
ψ(x′

S
)Gα− 1

n
ψ(x′

T
)1

)
− 1

m
ψ(x′

S
)Gα+

1

n
ψ(x′

T
)1

∥∥∥∥
≤ 2(∧Q̂ + 1) ∧Ŵ

∥∥∥∥E( 1

m
ψ(x′

S
)Gα− 1

n
ψ(x′

T
)1

)
− 1

m
ψ(x′

S
)Gα+

1

n
ψ(x′

T
)1

∥∥∥∥ ,

(A.16)

where the first inequality holds because of Cauchy-Schwarz inequality.

Since

f(xS ,xT , α) , E
(

1

m
ψ(x′

S
)Gα− 1

n
ψ(x′

T
)1

)
− 1

m
ψ(x′

S
)Gα+

1

n
ψ(x′

T
)1, (A.17)

we have
2 sup
α∈∆
|D(Ŵ , α)− D̂(Ŵ , α)| ≤ 4(∧Q̂ + 1) ∧Ŵ sup

α∈∆
‖f(xS ,xT , α)‖. (A.18)

The proof ends. �

Lemma A.2. Given learned Q̂ and Ŵ , let the induced RKHS be universal and upper bounded that ‖ψ(τ(x))‖ ≤ ∧Ŵ for all
x in the source and target domains. Let the entries ofG be bounded that |Gij | ≤ ∧Q̂ for all i ∈ {1, · · · ,m}, j ∈ {1, · · · , c}.
We have

E sup
α∈∆
‖f(xS ,xT , α)‖2 ≤ 4(∧Q̂ + 1)2 ∧2

Ŵ

√
c(

1√
m

+
1√
n

).

Proof. Recall that when ŷk = i, ∀k ∈ {1, · · · ,m}, the k-th row of G ∈ Rm×c is [
Q̂−1

i1

P̂S(Y=1)
, · · · , Q̂−1

ic

P̂S(Y=c)
]. Given Q̂, Ŵ

and the estimated P̂S(Y ), we assumed that the entries of G is bounded, i.e., |Gij | ≤ ∧Q̂, and that RKHS is upper bounded,
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i.e., −ψmax ≤ ψ(τ(x)) ≤ ψmax and ‖ψmax‖ ≤ ∧Ŵ . Because α ≥ 0 and ‖α‖1 = 1, we can conclude that for any training
sample in the source domain, we have

‖ 1

m
ψ(x′

S
)Gα‖ ≤ ∧Ŵ ∧Q̂ .

We then have ‖f(xS ,xT , α)‖ ≤ 2(∧Q̂ + 1)∧Ŵ and that

‖f(xS ,xT , α)‖2 ≤ 2(∧Q̂ + 1) ∧Ŵ ‖f(xS ,xT , α)‖.

Accordingly, we have

E sup
α∈∆
‖f(xS ,xT , α)‖2 ≤ 2(∧Q̂ + 1) ∧Ŵ E sup

α∈∆
‖f(xS ,xT , α)‖. (A.19)

Furthermore, let x̃S and x̃T be i.i.d. copies of xS and xT , respectively. In the literature, x̃S and x̃T are referred as ghost
samples (Mohri et al., 2012). We have

E sup
α∈∆
‖f(xS ,xT , α)‖

= E sup
α∈∆

∥∥∥∥E( 1

m
ψ(x′

S
)Gα− 1

n
ψ(x′

T
)1

)
− 1

m
ψ(x′

S
)Gα+

1

n
ψ(x′

T
)1

∥∥∥∥
= ExS ,xT sup

α∈∆

∥∥∥∥Ex̃S ,x̃T

(
1

m
ψ(x̃′S)Gα− 1

n
ψ(x̃′T )1

)
− 1

m
ψ(x′

S
)Gα+

1

n
ψ(x′

T
)1

∥∥∥∥
≤ ExS ,xT ,x̃S ,x̃T sup

α∈∆

∥∥∥∥( 1

m
ψ(x̃′S)Gα− 1

n
ψ(x̃′T )1

)
− 1

m
ψ(x′

S
)Gα+

1

n
ψ(x′

T
)1

∥∥∥∥ ,
where the last inequality holds because of Jensen’s inequality and that every norm is a convex function.

Since x̃S and x̃T be i.i.d. copies of xS and xT , respectively, the random variable 1
mψ(x̃′S)Gα− 1

nψ(x̃′T )1− 1
mψ(x′

S
)Gα+

1
nψ(x′

T
)1 is a symmetric random variable, which means its density function is even. Let σi be independent Rademacher

variables, which are uniformly distributed from {−1, 1}. Let

ψ(x′
S
, σ) , [σ1ψ(x′S1 ), · · · , σmψ(x′Sm)]>;

and

ψ(x′
T
, σ) , [σ1ψ(x′T1 ), · · · , σnψ(x′Tn )]>.

We have that the random variable 1
mψ(x̃′S)Gα − 1

nψ(x̃′T )1 − 1
mψ(x′

S
)Gα + 1

nψ(x′
T

)1 and the random variable
1
mψ(x̃′S , σ)Gα− 1

nψ(x̃′T , σ)1− 1
mψ(x′

S
, σ)Gα+ 1

nψ(x′
T
, σ)1 have the same distribution.

Then, we have

ExS ,xT ,x̃S ,x̃T sup
α∈∆

∥∥∥∥( 1

m
ψ(x̃′S)Gα− 1

n
ψ(x̃′T )1

)
− 1

m
ψ(x′

S
)Gα+

1

n
ψ(x′

T
)1

∥∥∥∥
= ExS ,xT ,x̃S ,x̃T ,σ sup

α∈∆

∥∥∥∥( 1

m
ψ(x̃′S , σ)Gα− 1

n
ψ(x̃′T , σ)1

)
− 1

m
ψ(x′

S
, σ)Gα+

1

n
ψ(x′

T
, σ)1

∥∥∥∥
≤ 2ExS ,xT ,σ sup

α∈∆

∥∥∥∥( 1

m
ψ(x′

S
, σ)Gα− 1

n
ψ(x′

T
, σ)1

)∥∥∥∥
≤ 2ExS ,σ sup

α∈∆

∥∥∥∥ 1

m
ψ(x′

S
, σ)Gα

∥∥∥∥+ 2ExT ,σ sup
α∈∆

∥∥∥∥ 1

n
ψ(x′

T
, σ)1

∥∥∥∥ ,
where the inequalities hold because of the triangle inequality.
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We then upper bound ExS ,σ supα∈∆

∥∥∥ 1
mψ(x′

S
, σ)Gα

∥∥∥ and ExT ,σ

∥∥∥ 1
nψ(x′

T
, σ)1

∥∥∥, respectively. For example, we have

ExS ,σ sup
α∈∆

∥∥∥∥ 1

m
ψ(x′

S
, σ)Gα

∥∥∥∥
= ExS ,σ sup

α∈∆

∥∥∥∥ 1

m

〈
G>[σ1ψ(x′S1 ), · · · , σmψ(x′Sm)]>, α

〉∥∥∥∥
≤ ExS ,σ sup

α∈∆

1

m
‖G>[σ1ψ(x′S1 ), · · · , σmψ(x′Sm)]>‖‖α‖

≤ ExS ,σ sup
α∈∆

1

m
‖G>[σ1ψ(x′S1 ), · · · , σmψ(x′Sm)]>‖‖α‖1

≤ ExS ,σ
1

m
‖G>[σ1ψ(x′S1 ), · · · , σmψ(x′Sm)]>‖

≤
∧Q̂∧Ŵ
m

Eσ

√√√√c(

m∑
i=1

σi)2

≤
∧Q̂∧Ŵ
m

√√√√cEσ(
m∑
i=1

σi)2

=
∧Q̂ ∧Ŵ

√
c

√
m

,

where G ∈ Rm×c, c is the number of classes. The first inequality holds because of Cauchy-Schwarz inequality. The second
inequality holds because ‖α‖ ≤ ‖α‖1. The fourth inequality holds because of the Talagrand Contraction Lemma (Ledoux &
Talagrand, 2013). And the last inequality holds because of the Jensen’s inequality and that the function sqrt is a concave
function. Similarly, we can prove that

ExT ,σ

∥∥∥∥ 1

n
ψ(x′

T
, σ)1

∥∥∥∥ ≤ ∧Ŵ√n . (A.20)

Combining Eq. (A.19), Eq. (A.20), Eq. (A.20), Eq. (A.20), and Eq. (A.20), we have

E sup
α∈∆
‖f(xS ,xT , α)‖2

≤ 4(∧Q̂ + 1) ∧Ŵ (
∧Q̂ ∧Ŵ

√
c

√
m

+
∧Ŵ√
n

)

≤ 4(∧Q̂ + 1)2 ∧2
Ŵ

√
c(

1√
m

+
1√
n

).

(A.21)

The proof of Lemma A.2 ends. �

Now, we are ready to prove Theorem 2.

Proof of Theorem 2. According to Lemma A.1, we have

D(Ŵ , α̂)−D(Ŵ , α∗) ≤ 2 sup
α∈∆
|D(Ŵ , α)− D̂(Ŵ , α)|

≤ 4(∧Q̂ + 1) ∧Ŵ sup
α∈∆
‖f(xS ,xT , α)‖.

(A.22)

Since ‖f(xS ,xT , α)‖ ≥ 0, it holds that

sup
α∈∆
‖f(xS ,xT , α)‖ =

√
sup
α∈∆
‖f(xS ,xT , α)‖2. (A.23)

Then, we will employ McDiarmid’s inequality to upper bound the defect supα∈∆ ‖f(xS ,xT , α)‖2. We now check its
bounded difference property.
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Let xSi be a new sample in the source domain with the i-th example in xS being replaced by an independent example x̃Si ,
where i ∈ {1, · · · ,m}, and xTi be a new sample in the target domain with the i-th example in xT being replaced by an
independent example x̃Ti , where i ∈ {1, · · · , n}.

For any i ∈ {1, · · · ,m}, we have∣∣∣∣sup
α∈∆
‖f(xSi,xT , α)‖2 − sup

α∈∆
‖f(xS ,xT , α)‖2

∣∣∣∣
≤ sup
α∈∆

∣∣(f(xSi,xT , α) + f(xS ,xT , α))>
(
f(xSi,xT , α)− f(xS ,xT , α)

)∣∣
≤ sup
α∈∆

∣∣∣4(∧Q̂ + 1)ψ>max

(
f(xSi,xT , α)− f(xS ,xT , α)

)∣∣∣
= sup
α∈∆

∣∣∣∣4(∧Q̂ + 1)ψ>max

(
1

m
ψ(x′

Si
)Gα− 1

m
ψ(x′

S
)Gα

)∣∣∣∣
≤

8 ∧Q̂ (∧Q̂ + 1)

m
|ψmax|>|ψmax|

≤
8(∧Q̂ + 1)2∧2

Ŵ

m
.

(A.24)

Similarly, for any i ∈ {1, · · · , n}, we have∣∣∣∣sup
α∈∆
‖f(xS ,xTi, α)‖2 − sup

α∈∆
‖f(xS ,xT , α)‖2

∣∣∣∣
≤ sup
α∈∆

∣∣∣(f(xS ,xTi, α) + f(xS ,xT , α)
)> (

f(xS ,xTi, α)− f(xS ,xT , α)
)∣∣∣

≤ sup
α∈∆

∣∣∣4(∧Q̂ + 1)ψ>max

(
f(xS ,xTi, α)− f(xS ,xT , α)

)∣∣∣
= sup
α∈∆

∣∣∣∣4(∧Q̂ + 1)ψ>max

(
1

n
ψ(x′

Ti
)1− 1

n
ψ(x′

T
)1

)∣∣∣∣
≤

8(∧Q̂ + 1)

n
|ψmax|>|ψmax|

≤
8(∧Q̂ + 1)∧2

Ŵ

n
.

(A.25)

Employing McDiarmid’s inequality, we have that

P (sup
α∈∆
‖f(xS ,xT , α)‖2 − ExS ,xT sup

α∈∆
‖f(xS ,xT , α)‖2 ≥ ε)

≤ exp

(
−ε2

32(∧Q̂ + 1)4 ∧4
Ŵ

( 1
m + 1

n )

)
.

(A.26)

Let

δ = exp

(
−ε2

32(∧Q̂ + 1)4 ∧4
Ŵ

( 1
m + 1

n )

)
.

For any δ > 0, with probability at least 1− δ, we have

sup
α∈∆
‖f(xS ,xT , α)‖

≤

√
E sup
α∈∆
‖f(xS ,xT , α)‖2 + 8(∧Q̂ + 1)2 ∧2

Ŵ

√
1

2
(

1

m
+

1

n
) log

1

δ
.

≤ (∧Q̂ + 1) ∧Ŵ

√
4
√
c(

1√
m

+
1√
n

) +

√
32(

1

m
+

1

n
) log

1

δ

(A.27)
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Table 1. Classification accuracies and their standard deviations for WiFi localization dataset.
Softmax TCA DIP CIC DCIC

t1→ t2 60.73 ± 0.66 70.80 ± 1.66 71.40 ± 0.83 75.50 ± 1.02 79.28 ± 0.56
t1→ t3 55.20 ± 1.22 67.43 ± 0.55 64.65 ± 0.32 69.05 ± 0.28 70.75 ± 0.91
t2→ t3 54.38 ± 2.01 63.58 ± 1.33 66.71 ± 2.63 70.92 ± 3.86 77.28 ± 2.87
hallway1 40.81 ± 12.05 42.78 ± 7.69 44.31 ± 8.34 51.83 ± 8.73 59.31 ± 12.30
hallway2 27.98 ± 10.28 43.68 ± 11.07 44.61 ± 5.94 43.96 ± 6.20 60.50 ± 8.68
hallway3 24.94 ± 9.89 31.44 ± 5.47 33.50 ± 2.58 32.00 ± 3.88 33.89 ± 5.94

Combining the above inequality with those in Lemma A.1 and Lemma A.2, we have

D(Ŵ , α̂)−D(Ŵ , α∗)

≤ 2 sup
α∈∆
|D(Ŵ , α)− D̂(Ŵ , α)|

≤ 4(∧Q̂ + 1) ∧Ŵ sup
α∈∆
‖f(xS ,xT , α)‖

≤ 8(∧Q̂ + 1)2 ∧2
Ŵ

√ √
c√
m

+

√
c√
n

+

√
2(

1

m
+

1

n
) log

1

δ
,

(A.28)

which concludes the proof of Theorem 2. �

4. Additional Description of Methods
4.1. Linear Model

Linear model is a two-stage model in which we first identify invariant representations and PT (Y ) and then train the classifier
according to the importance reweighting framework. In linear model, τ(xi) = x′i = W>xi. To avoid the trivial solution, W
is constrained to be orthogonal. Then, according to Eq. (5) in the main paper, we have

min
W,α
D̂(W,α) = ‖ 1

m
ψ(W>xS)Gα− 1

n
ψ(W>xT )1‖2,

s.t. W>W = I;

c∑
i=1

αi = 1;

αi ≥ 0,∀i ∈ {1, · · · , c}.

Note that even though the objective function has similar form with that in (Gong et al., 2016), it is essentially different. This
is because in this objective function, the source data is noisily labeled and G is carefully designed to relate PSρ (X,Y ) and
PT (X) such that conditional invariant components and PT (Y ) can be identified from noisy source data and unlabeled
target data.

The alternating optimization method is applied to update W and α. Specifically, we apply the conjugate gradient algorithm
on the Grassmann manifold to optimize W , and use the quadratic programming to optimize α. After identifying the invariant
representations and PTY by solving above problem, we can then use them to train a classifier for the target data by minimizing
Eq. (8) in the main paper.

4.2. Structure of Deep Model

Figure 1 illustrates the pipeline of our end-to-end deep domain adaptation model.

5. Additional Experiments
In this section, we give some additional experimental results on WiFi Localization dataset.

WiFi Localization Dataset. We further compare our linear DCIC model with DIP, TCA, and CIC on the cross-domain
indoor WiFi localization dataset (Zhang et al., 2013).
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Figure 1. An overview of the proposed end-to-end deep domain adaptation model.

The problem is to learn the function between signals X and locations Y . Here, we view it as a classification problem, where
each location space is assigned with a discrete label. In the prediction stage, the label is then converted to the location
information. We resample the training set to simulate the changes in PY .

To ensure that the class ratio is not a vector of all ones, we resample the source training examples. We randomly select c/2
classes and let their class ratios be 2.5. For the other c/2 classes, we set their P (Y ) to be equal. The flip rate from one label
to another is set to ρ

c−1 .

We first learn the linear transformation W ∈ Rd×d′ (d′ = 10) and extract the invariant components. A neural network with
one hidden layer is trained by minimizing Eq. (7) in the main paper and then obtain the classifier for the signals in target
domain according to Eq. (8) in the main paper. The output layer is a softmax with the cross-entropy loss. The activation
function in the hidden layer is the Rectified Linear Unit (ReLU). The number of neurons in the hidden layer is set to 800.
During training, learning rate is fixed to 0.1. After training, as in (Gong et al., 2016), we report the percentage of examples
on which the difference between the predicted and true locations is within 3 meters. Here, we train a neural network with
the raw features as the baseline. All the experiments are repeated 10 times and the average performances are reported. In
Table 1, the three upper rows present the transfer across different time periods t1, t2, and t3, where ρ = 0.4. The lower part
shows the transfer across different devices, where ρ = 0.2. We can see that all the results show DCIC can better transfer the
invariant knowledge than other methods.

See the results in the lower parts, since the input features in two domains are too complex in these cases, the invariant
components cannot be well identified by a simple linear transformation, which finally results in the degraded performances.
Therefore, for data with complex features, we would like to introduce our deep denoising models to extract invariant
components and to correct the shift. The experiments on deep models are shown in the following subsections.

5.1. More Discussions

5.1.1. CONVERGENCE ANALYSIS

In order to verify the effectiveness of the proposed method to estimate PTY , in Figure 2 (a), we show the convergence of the
estimation errors ‖α

∗−α̂‖2
‖α∗‖2 of our “DCIC + Forward Q̂” method and the “CIC + Forward Q̂” method, where α∗ is the true

class prior and α̂ is the estimated one. The experiment is conducted on the mnist2usps dataset. We can see that our proposed
method can find a better solution for PTY after using our denoising MMD loss.
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Figure 2. (a) The convergence of class prior estimation in target domain. (b) The sensitivity analysis of the parameter π1.

5.1.2. PARAMETER SENSITIVITY

Here, we check the sensitivity of the trade-off parameter π1 of our denoising MMD loss. Figure 2 (b) shows the classification
accuracies with respect to different values of π1, which ranges from 0.1 to 1.0 with step 0.1. This task is evaluated on
VLS2C dataset. We can see, the overall performance is not very sensitive to the choice of π1. In our experiments, we find
π1 = 1.0 works well on all other datasets.
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